
Unit 3. Integration

3A. Differentials, indefinite integration

3A-1 a) 7x6dx. (d(sin 1) = 0 because sin 1 is a constant.)

b) (1/2)x−1/2dx

c) (10x9 − 8)dx

d) (3e3x sinx + e3x cosx)dx

e) (1/2
√

x)dx + (1/2
√

y)dy = 0 implies

dy = −1/2
√

xdx

1/2
√

y
= −

√
y√
x

dx = −1 −√
x√

x
dx =

(

1 − 1√
x

)

dx

3A-2 a) (2/5)x5 + x3 + x2/2 + 8x + c

b) (2/3)x3/2 + 2x1/2 + c

c) Method 1 (slow way) Substitute: u = 8 + 9x, du = 9dx. Therefore

∫ √
8 + 9xdx =

∫

u1/2(1/9)du = (1/9)(2/3)u3/2 + c = (2/27)(8 + 9x)3/2 + c

Method 2 (guess and check): It’s often faster to guess the form of the antiderivative and
work out the constant factor afterwards:

Guess (8 + 9x)3/2;
d

dx
(8 + 9x)3/2 = (3/2)(9)(8 + 9x)1/2 =

27

2
(8 + 9x)1/2.

So multiply the guess by
2

27
to make the derivative come out right; the answer is then

2

27
(8 + 9x)3/2 + c

d) Method 1 (slow way) Use the substitution: u = 1 − 12x4, du = −48x3dx.

∫

x3(1 − 12x4)1/8dx =

∫

u1/8(−1/48)du = − 1

48
(8/9)u9/8 + c = − 1

54
(1 − 12x4)9/8 + c

Method 2 (guess and check): guess (1 − 12x4)9/8;

d

dx
(1 − 12x4)9/8 =

9

8
(−48x3)(1 − 12x4)1/8 = −54(1− 12x4)1/8.

So multiply the guess by − 1

54
to make the derivative come out right, getting the previous

answer.

e) Method 1 (slow way): Use substitution: u = 8 − 2x2, du = −4xdx.

∫

x√
8 − 2x2

dx =

∫

u1/2(−1/4)du = −1

4

2

3
u3/2 + c = −1

6
(8 − 2x2)3/2 + c
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Method 2 (guess and check): guess (8 − 2x2)3/2; differentiating it:

d

dx
(8 − 2x2)3/2 =

3

2
(−4x2)(8 − 2x2)1/2 = −6(8 − 2x2)1/2;

so multiply the guess by −1

6
to make the derivative come out right.

The next four questions you should try to do (by Method 2) in your head. Write down
the correct form of the solution and correct the factor in front.

f) (1/7)e7x + c

g) (7/5)ex5

+ c

h) 2e
√

x + c

i) (1/3) ln(3x + 2) + c. For comparison, let’s see how much slower substitution is:

u = 3x + 2, du = 3dx, so

∫

dx

3x + 2
=

∫

(1/3)du

u
= (1/3) lnu + c = (1/3) ln(3x + 2) + c

j)
∫

x + 5

x
dx =

∫
(

1 +
5

x

)

dx = x + 5 lnx + c

k)
∫

x

x + 5
dx =

∫
(

1 − 5

x + 5

)

dx = x − 5 ln(x + 5) + c

In Unit 5 this sort of algebraic trick will be explained in detail as part of a general method.
What underlies the algebra in both (j) and (k) is the algorithm of long division for polyno-
mials.

l) u = lnx, du = dx/x, so

∫

lnx

x
dx =

∫

udu = (1/2)u2 + c = (1/2)(lnx)2 + c

m) u = lnx, du = dx/x.

∫

dx

x lnx
=

∫

du

u
= lnu + c = ln(ln x) + c

3A-3 a) −(1/5) cos(5x) + c

b) (1/2) sin2 x+ c, coming from the substitution u = sinx or −(1/2) cos2 x+ c, coming
from the substitution u = cosx. The two functions (1/2) sin2 x and −(1/2) cos2 x are not
the same. Nevertheless the two answers given are the same. Why? (See 1J-1(m).)

c) −(1/3) cos3 x + c

d) −(1/2)(sinx)−2 + c = −(1/2) csc2 x + c
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e) 5 tan(x/5) + c

f) (1/7) tan7 x + c.

g) u = secx, du = secx tan xdx,

∫

sec9 x tan xdx

∫

(secx)8 sec x tan xdx = (1/9) sec9 x + c

3B. Definite Integrals

3B-1 a) 1 + 4 + 9 + 16 = 30 b) 2 + 4 + 8 + 16 + 32 + 64 = 126

c) −1 + 4 − 9 + 16 − 25 = −15 d) 1 + 1/2 + 1/3 + 1/4 = 25/12

3B-2 a)

6
∑

n=1

(−1)n+1(2n + 1) b)

n
∑

k=1

1/k2 c)

n
∑

k=1

sin(kx/n)

3B-3 a) upper sum = right sum = (1/4)[(1/4)3 + (2/4)3 + (3/4)3 + (4/4)3] = 15/128

lower sum = left sum = (1/4)[03 + (1/4)3 + (2/4)3 + (3/4)3] = 7/128

b) left sum = (−1)2 + 02 + 12 + 22 = 6; right sum = 02 + 12 + 22 + 32 = 14;

upper sum = (−1)2 + 12 + 22 + 32 = 15; lower sum = 02 + 02 + 12 + 22 = 5.

c) left sum = (π/2)[sin 0 + sin(π/2) + sin(π) + sin(3π/2)] = (π/2)[0 + 1 + 0 − 1] = 0;

right sum = (π/2)[sin(π/2) + sin(π) + sin(3π/2) + sin(2π)] = (π/2)[1 + 0 − 1 + 0] = 0;

upper sum = (π/2)[sin(π/2) + sin(π/2) + sin(π) + sin(2π)] = (π/2)[1 + 1 + 0 + 0] = π;

lower sum = (π/2)[sin(0) + sin(π) + sin(3π/2) + sin(3π/2)] = (π/2)[0 + 0 − 1 − 1] = −π.

3B-4 Both x2 and x3 are increasing functions on 0 ≤ x ≤ b, so the upper sum is the right
sum and the lower sum is the left sum. The difference between the right and left Riemann
sums is

(b/n)[f(x1 + · · · + f(xn)] − (b/n)[f(x0 + · · · + f(xn−1)] = (b/n)[f(xn) − f(x0)]

In both cases xn = b and x0 = 0, so the formula is

(b/n)(f(b) − f(0))

a) (b/n)(b2 − 0) = b3/n. Yes, this tends to zero as n → ∞.

b) (b/n)(b3 − 0) = b4/n. Yes, this tends to zero as n → ∞.

3B-5 The expression is the right Riemann sum for the integral

∫ 1

0

sin(bx)dx = −(1/b) cos(bx)|10 = (1 − cos b)/b

so this is the limit.
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3C. Fundamental theorem of calculus

3C-1
∫ 6

3

(x − 2)−1/2dx = 2(x − 2)1/2
∣

∣

∣

6

3
= 2[(4)1/2 − 11/2] = 2

3C-2 a) (2/3)(1/3)(3x + 5)3/2
∣

∣

∣

2

0
= (2/9)(113/2 − 53/2)

b) If n 6= −1, then

(1/(n + 1))(1/3)(3x + 5)n+1
∣

∣

2

0
= (1/3(n + 1))((11n+1 − 5n+1)

If n = −1, then the answer is (1/3) ln(11/5).

c) (1/2)(cosx)−2
∣

∣

π

3π/4
= (1/2)[(−1)−2 − (−1/

√
2)−2] = −1/2

3C-3 a) (1/2) ln(x2 + 1)
∣

∣

2

1
= (1/2)[ln 5 − ln 2] = (1/2) ln(5/2)

b) (1/2) ln(x2 + b2)
∣

∣

2b

b
= (1/2)[ln(5b2) − ln(2b2)] = (1/2) ln(5/2)

3C-4 As b → ∞,

∫ b

1

x−10dx = −(1/9)x−9
∣

∣

b

1
= −(1/9)(b−9 − 1) → −(1/9)(0 − 1) = 1/9.

This integral is the area of the infinite region between the curve y = x−10 and the x-axis
for x > 0.

3C-5 a)

∫ π

0

sin xdx = − cosx|π0 = −(cosπ − cos 0) = 2

b)

∫ π/a

0

sin(ax)dx = −(1/a) cos(ax)|π/a
0 = −(1/a)(cosπ − cos 0) = 2/a

3C-6 a) x2 − 4 = 0 implies x = ±2. So the area is

∫ 2

−2

(x2 − 4)dx = 2

∫ 2

0

(x2 − 4)dx =
x3

3
− 4x

∣

∣

∣

∣

2

0

=
8

3
− 4 · 2 = −16/3

(We changed to the interval (0, 2) and doubled the integral because x2 − 4 is even.) Notice
that the integral gave the wrong answer! It’s negative. This is because the graph y = x2−4
is concave up and is below the x-axis in the interval −2 < x < 2. So the correct answer is
16/3.

b) Following part (a), x2 − a = 0 implies x = ±√
a. The area is

∫

√
a

−√
a

(a − x2)dx = 2

∫

√
a

0

(a − x2)dx = 2ax − x3

3

∣

∣

∣

∣

√
a

0

= 2
(

a3/2 − a3/2

3

)

=
4

3
a3/2
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3D. Second fundamental theorem

3D-1 Differentiate both sides;

left side L(x): L′(x) =
d

dx

∫ x

0

dt√
a2 + x2

=
1√

a2 + x2
, by FT2;

right side R(x): R′(x) =
d

dx
(ln(x +

√

a2 + x2) − ln a) =
1 + x√

a2+x2

x +
√

a2 + x2
=

1√
a2 + x2

Since L′(x) = R′(x), we have L(x) = R(x) + C for some constant C = L(x)−R(x). The
constant C may be evaluated by assigning a value to x; the most convenient choice is x = 0,
which gives

L(0) =

∫ 0

0

= 0; R(0) = ln(0 +
√

0 + a2) − ln a = 0; therefore C = 0 and L(x) = R(x).

b) Put x = c; the equation becomes 0 = ln(c +
√

c2 + a2); solve this for c by first

exponentiating both sides: 1 = c +
√

c2 + a2; then subtract c and square both sides; after
some algebra one gets c = 1

2 (1 − a2).

3D-3 Sketch y =
1 − t2

1 + t2
first, as shown at the right. -1

1

1-1

y = - t1
1 + t

2

2

t

y

3D-4 a)

∫ x

0

sin(t3)dt, by the FT2. b)

∫ x

0

sin(t3)dt + 2 c)

∫ x

1

sin(t3)dt − 1

3D-5 This problem reviews the idea of the proof of the FT2.

a) f(t) =
t√

1 + t4

1

∆x

∫ 1+∆x

1

f(t)dt =
shaded area

width
≈ height .

t

2/2

1   1+  x∆

f(t)

lim
∆x→0

1

∆x

∫ 1+∆x

1

f(t)dt = lim
∆x→0

shaded area

width
= height = f(1) =

1√
2
.

b) By definition of derivative,

F ′(1) = lim
∆x→0

F (1 + ∆x) − F (1)

∆x
= lim

∆x→0

1

∆x

∫ 1+∆x

1

f(t)dt;

by FT2, F ′(1) = f(1) =
1√
2

.

3D-6 a) If F1(x) =

∫ x

a1

dt and F2(x) =

∫ x

a2

dt, then F1(x) = x − a1 and F2(x) = x − a2.

Thus F1(x) − F2(x) = a2 − a1, a constant.

b) By the FT2, F ′
1(x) = f(x) and F ′

2(x) = f(x); therefore F1 = F2 + C, for some
constant C.
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3D-7 a) Using the FT2 and the chain rule, as in the Notes,

d

dx

∫ x2

0

√
u sinudu =

√
x2 sin(x2) · d(x2)

dx
= 2x2 sin(x2)

b) =
1

√

1 − sin2 x
· cosx = 1. (So

∫ sin x

0

dt

1 − t2
= x)

c)
d

dx

∫ x2

x

tanudu = tan(x2) · 2x − tan x

3D-8 a) Differentiate both sides using FT2, and substitute x = π/2: f(π/2) = 4.

b) Substitute x = 2u and follow the method of part (a); put u = π, get finally
f(π/2) = 4 − 4π.

3E. Change of Variables; Estimating Integrals

3E-1 L(
1

a
) =

∫ 1/a

1

dt

t
. Put t =

1

u
, dt = − 1

u2
du. Then

dt

t
= − u

u2
du =⇒ L(

1

a
) =

∫ 1/a

1

dt

t
= −

∫ a

1

du

u
= −L(a)

3E-2 a) We want −t2 = −u2/2, so u = t
√

2, du =
√

2dt.

1√
2π

∫ x

0

e−u2/2du =
1√
2π

∫ x/
√

2

0

e−t2
√

2dt =
1√
π

∫ x/
√

2

0

e−t2dt

=⇒ E(x) =
1√
π

F (x/
√

2) and lim
x→∞

E(x) =
1

π
·
√

π

2
=

1

2

b) The integrand is even, so

1√
2π

∫ N

−N

e−u2/2du =
2√
2π

∫ N

0

e−u2/2du = 2E(N) −→ 1 as N → ∞

lim
x→−∞

E(x) = −1/2 because E(x) is odd.

1√
2π

∫ b

a

e−u2/2du = E(b) − E(a) by FT1 or by “interval addition” Notes PI (3).

Commentary: The answer is consistent with the limit,

1√
2π

∫ N

−N

e−u2/2du = E(N) − E(−N) = 2E(N) −→ 1 as N → ∞
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3E-3 a) Using u = lnx, du =
dx

x
,

∫ e

1

√
lnx

x
dx =

∫ 1

0

√
udu =

2

3
u3/2

∣

∣

∣

1

0
=

2

3
.

b) Using u = cosx, du = − sinx,
∫ π

0

sin x

(2 + cosx)3
dx =

∫ −1

1

−du

(2 + u)3
=

1

2(2 + u)2

∣

∣

∣

−1

1
=

1

2
(

1

12
− 1

32
) =

4

9
..

c) Using x = sin u, dx = cosudu,

∫ 1

0

dx√
1 − x2

=

∫ π

2

0

cosu

cosu
du = u

∣

∣

∣

π/2

0
=

π

2
.

3E-4 Substitute x = t/a; then x = ±1 ⇒ t = ±a. We then have

π

2
=

∫ 1

−1

√

1 − x2dx =

∫ a

−a

√

1 − t2

a2

dt

a
=

1

a2

∫ a

−a

√

a2 − t2dt.

Multiplying by a2 gives the value πa2/2 for the integral, which checks,
since the integral represents the area of the semicircle.

-a                        a

a

3E-5 One can use informal reasoning based on areas (as in Ex. 5, Notes FT), but it is
better to use change of variable.

a) Goal: F (−x) = −F (x). Let t = −u, dt = −du, then

F (−x) =

∫ −x

0

f(t)dt =

∫ x

0

f(−u)(−du)

Since f is even (f(−u) = f(u)), F (−x) = −
∫ x

0

f(u)du = −F (x).

b) Goal: F (−x) = F (x). Let t = −u, dt = −du, then

F (−x) =

∫ −x

0

f(t)dt =

∫ x

0

f(−u)(−du)

Since f is odd ((f(−u) = −f(u)), F (−x) =

∫ x

0

f(u)du = F (x).

3E-6 a) x3 < x on (0,1) ⇒ 1

1 + x3
>

1

1 + x
on (0,1); therefore

∫ 1

0

dx

1 + x3
>

∫ 1

0

dx

1 + x
= ln(1 + x)

∣

∣

∣

1

0
= ln 2 = .69

b) 0 < sin x < 1 on (0, π) ⇒ sin2 x < sin x on (0, π); therefore
∫ π

0

sin2 xdx <

∫ π

0

sinxdx = − cosx
∣

∣

∣

π

0
= −(−1 − 1) = 2.

c)

∫ 20

10

√

x2 + 1dx >

∫ 20

10

√
x2dx =

x2

2

∣

∣

∣

20

10
=

1

2
(400 − 100) = 150

3E-7

∣

∣

∣

∣

∣

∫ N

1

sin x

x2
dx

∣

∣

∣

∣

∣

≤
∫ N

1
| sin x|

x2 dx ≤
∫ N

1
1
x2 dx = − 1

x

∣

∣

∣

∣

N

1

= − 1
N + 1 < 1.
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3F. Differential Equations: Separation of Variables. Applications

3F-1 a) y = (1/10)(2x + 5)5 + c

b) (y +1)dy = dx =⇒
∫

(y +1)dy =

∫

dx =⇒ (1/2)(y +1)2 = x+ c. You can leave

this in implicit form or solve for y: y = −1 ±
√

2x + a for any constant a (a = 2c)

c) y1/2dy = 3dx =⇒ (2/3)y3/2 = 3x + c =⇒ y = (9x/2 + a)2/3, with a = (3/2)c.

d) y−2dy = xdx =⇒ −y−1 = x2/2 + c =⇒ y = −1/(x2/2 + c)

3F-2 a) Answer: 3e16.
y−1dy = 4xdx =⇒ ln y = 2x2 + c

y(1) = 3 =⇒ ln 3 = 2 + c =⇒ c = ln 3 − 2.

Therefore
ln y = 2x2 + (ln 3 − 2)

At x = 3, y = e18+ln 3−2 = 3e16

b) Answer: y = 11/2 + 3
√

2.

(y + 1)−1/2dy = dx =⇒ 2(y + 1)1/2 = x + c

y(0) = 1 =⇒ 2(1 + 1)1/2 = c =⇒ c = 2
√

2

At x = 3,

2(y + 1)1/2 = 3 + 2
√

2 =⇒ y + 1 = (3/2 +
√

2)2 = 13/2 + 3
√

2

Thus, y = 11/2 + 3
√

2.

c) Answer: y =
√

550/3

ydy = x2dx =⇒ y2/2 = (1/3)x3 + c

y(0) = 10 =⇒ c = 102/2 = 50

Therefore, at x = 5,

y2/2 = (1/3)53 + 50 =⇒ y =
√

550/3

d) Answer: y = (2/3)(e24 − 1)

(3y + 2)−1dy = dx =⇒ (1/3) ln(3y + 2) = x + c

y(0) = 0 =⇒ (1/3) ln 2 = c

Therefore, at x = 8,

(1/3) ln(3y + 2) = 8 + (1/3) ln 2 =⇒ ln(3y + 2) = 24 + ln 2 =⇒ (3y + 2) = 2e24

Therefore, y = (2e24 − 2)/3
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e) Answer: y = − ln 4 at x = 0. Defined for −∞ < x < 4.

e−ydy = dx =⇒ −e−y = x + c

y(3) = 0 =⇒ −e0 = 3 + c =⇒ c = −4

Therefore,
y = − ln(4 − x), y(0) = − ln 4

The solution y is defined only if x < 4.

3F-3 a) Answers: y(1/2) = 2, y(−1) = 1/2, y(1) is undefined.

y−2dy = dx =⇒ −y−1 = x + c

y(0) = 1 =⇒ −1 = 0 + c =⇒ c = −1

Therefore, −1/y = x − 1 and

y =
1

1 − x

The values are y(1/2) = 2, y(−1) = −1/2 and y is undefined at x = 1.

b) Although the formula for y makes sense at x = 3/2, (y(3/2) = 1/(1 − 3/2) = −2),
it is not consistent with the rate of change interpretation of the differential equation. The
function is defined, continuous and differentiable for −∞ < x < 1. But at x = 1, y and
dy/dx are undefined. Since y = 1/(1 − x) is the only solution to the differential equation
in the interval (0, 1) that satisfies the initial condition y(0) = 1, it is impossible to define a
function that has the initial condition y(0) = 1 and also satisfies the differential equation in
any longer interval containing x = 1.

To ask what happens to y after x = 1, say at x = 3/2, is something like asking what
happened to a rocket ship after it fell into a black hole. There is no obvious reason why
one has to choose the formula y = 1/(1 − x) after the “explosion.” For example, one could
define y = 1/(2− x) for 1 ≤ x < 2. In fact, any formula y = 1/(c− x) for c ≥ 1 satisfies the
differential equation at every point x > 1.

3F-4 a) If the surrounding air is cooler (Te−T < 0), then the object will cool, so dT/dt < 0.
Thus k > 0.

b) Separate variables and integrate.

(T − Te)
−1dT = −kdt =⇒ ln |T − Te| = −kt + c

Exponentiating,
T − Te = ±ece−kt = Ae−kt

The initial condition T (0) = T0 implies A = T0 − Te. Thus

T = Te + (T0 − Te)e
−kt

c) Since k > 0, e−kt → 0 as t → ∞. Therefore,

T = Te + (T0 − Te)e
−kt −→ Te as t → ∞
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d)
T − Te = (T0 − Te)e

−kt

The data are T0 = 680, Te = 40 and T (8) = 200. Therefore,

200 − 40 = (680 − 40)e−8k =⇒ e−8k = 160/640 = 1/4 =⇒ −8k = − ln 4.

The number of hours t that it takes to cool to 50◦ satisfies the equation

50 − 40 = (640)e−kt =⇒ e−kt = 1/64 =⇒ −kt = −3 ln 4.

To solve the two equations on the right above simultaneously for t, it is easiest just to divide
the bottom equation by the top equation, which gives

t

8
= 3, t = 24.

e)

T − Te = (T0 − Te)e
−kt

The data at t = 1 and t = 2 are

800 − Te = (1000 − Te)e
−k and 700 − Te = (1000 − Te)e

−2k

Eliminating e−k from these two equations gives

700 − Te

1000 − Te
=

(

800 − Te

1000 − Te

)2

(800 − Te)
2 = (1000 − Te)(700 − Te)

8002 − 1600Te + T 2
e = (1000)(700)− 1700Te + T 2

e

100Te = (1000)(700)− 8002

Te = 7000 − 6400 = 600

f) To confirm the differential equation:

y′(t) = T ′(t − t0) = k(Te − T (t − t0)) = k(Te − y(t))

The formula for y is

y(t) = T (t− t0) = Te + (T0 − Te)e
−k(t−t0) = a + (y(t0) − a)e−c(t−t0)

with k = c, Te = a and T0 = T (0) = y(t0).

3F-6 y = cos3 u − 3 cosu, x = sin4 u

dy = (3 cos2 u · (− sinu) + 3 sinu)du, dx = 4 sin3 u cosudu

dy

dx
=

3 sinu(1 − cos2 u)

4 sin3 u cosu
=

3

4 cosu
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3F-7 a) y′ = −xy; y(0) = 1

dy

y
= −xdx =⇒ ln y = −1

2
x2 + c

To find c, put x = 0, y = 1: ln 1 = 0 + c =⇒ c = 0.

=⇒ ln y = −1

2
x2 =⇒ y = e−x2/2

b) cosx sin ydy = sinxdx; y(0) = 0

sin ydy =
sin x

cosx
dx =⇒ − cos y = − ln(cosx) + c

Find c: put x = 0, y = 0: − cos 0 = − ln(cos 0) + c =⇒ c = −1

=⇒ cos y = ln(cosx) + 1

3F-8 a) From the triangle, y′ = slope tangent =
y

1

=⇒ dy

y
= dx =⇒ ln y = x + c1 =⇒ y = ex+c1 = Aex (A = ec1)

1

P

b) If P bisects tangent, then P0 bisects OQ (by euclidean geometry)

So P0Q = x ( since OP0 = x).

Slope tangent = y′ =
−y

x
=⇒ dy

y
= −dx

x

=⇒ ln y = − lnx + c1

P

Exponentiate: y =
1

x
· ec1 =

c

x
, c > 0

Ans: The hyperbolas y =
c

x
, c > 0

3G. Numerical Integration

3G-1 Left Riemann sum: (∆x)(y0 + y1 + y2 + y3)

Trapezoidal rule: (∆x)((1/2)y0 + y1 + y2 + y3 + (1/2)y4)

Simpson’s rule: (∆x/3)(y0 + 4y1 + 2y2 + 4y3 + y4)

a) ∆x = 1/4 and

y0 = 0, y1 = 1/2, y2 = 1/
√

2, y3 =
√

3/2, y4 = 1.

Left Riemann sum: (1/4)(0 + 1/2 + 1/
√

2 +
√

3/2) ≈ .518

Trapezoidal rule: (1/4)((1/2) · 0 + 1/2 + 1/
√

2 +
√

3/2 + (1/2)1) ≈ .643

Simpson’s rule: (1/12)(1 · 0 + 4(1/2) + 2(1/
√

2) + 4(
√

3/2) + 1) ≈ .657

as compared to the exact answer .6666 . . .

b) ∆x = π/4

y0 = 0, y1 = 1/
√

2, y2 = 1, y3 = 1/
√

2, y4 = 0.



S. SOLUTIONS TO 18.01 EXERCISES

Left Riemann sum: (π/4)(0 + 1/
√

2 + 1 + 1/
√

2) ≈ 1.896

Trapezoidal rule: (π/4)((1/2) ·0+1/
√

2+1+1/
√

2+(1/2) ·0) ≈ 1.896 (same as Riemann
sum)

Simpson’s rule: (π/12)(1 · 0 + 4(1/
√

2) + 2(1) + 4(1/
√

2) + 1 · 0) ≈ 2.005

as compared to the exact answer 2

c) ∆x = 1/4

y0 = 1, y1 = 16/17, y2 = 4/5, y3 = 16/25, y4 = 1/2.

Left Riemann sum: (1/4)(1 + 16/17 + 4/5 + 16/25) ≈ .845

Trapezoidal rule: (1/4)((1/2) · 1 + 16/17 + 4/5 + 16/25 + (1/2)(1/2)) ≈ .8128

Simpson’s rule: (1/12)(1 · 1 + 4(16/17) + 2(4/5) + 4(16/25) + 1(1/2)) ≈ .785392

as compared to the exact answer π/4 ≈ .785398

(Multiplying the Simpson’s rule answer by 4 gives a passable approximation to π, of
3.14157, accurate to about 2 × 10−5.)

d) ∆x = 1/4

y0 = 1, y1 = 4/5, y2 = 2/3, y3 = 4/7, y4 = 1/2.

Left Riemann sum: (1/4)(1 + 4/5 + 2/3 + 4/7) ≈ .76

Trapezoidal rule: (1/4)((1/2) · 1 + 4/5 + 2/3 + 4/7(1/2)(1/2)) ≈ .697

Simpson’s rule: (1/12)(1 · 1 + 4(4/5) + 2(2/3) + 4(4/7) + 1(1/2)) ≈ .69325

Compared with the exact answer ln 2 ≈ .69315, Simpson’s rule is accurate to about 10−4.

3G-2 We have

∫ b

0

x3dx =
b4

4
. Using Simpson’s rule with two subintervals, ∆x = b/2, so

that we get the same answer as above:

S(x3) =
b

6
(0 + 4(b/2)3 + b3) =

b

6

(

3

2
b3

)

=
b4

4
.

Remark. The fact that Simpson’s rule is exact on cubic polynomials is very significant to
its effectiveness as a numerical approximation. It implies that the approximation converges
at a rate proportional to the the fourth derivative of the function times (∆x)4, which is fast
enough for many practical purposes.

3G-3 The sum
S =

√
1 +

√
2 + ... +

√

10, 000

is related to the trapezoidal estimate of

∫ 104

0

√
xdx :

1

1 3 10,0002

y =   x
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(1)

∫ 104

0

√
xdx ≈ 1

2

√
0 +

√
1 + ... +

1

2

√
104 = S − 1

2

√
104

But
∫ 104

0

√
xdx =

2

3
x3/2

∣

∣

∣

∣

∣

104

0

=
2

3
· 106

From (1),

(2)
2

3
· 106 ≈ S − 50

Hence

(3) S ≈ 666, 717

In (1), we have >, as in the picture. Hence in (2), we have >, so in (3), we have <, Too
high.

3G-4 As in Problem 3 above, let

S =
1

1
+

1

2
+ ... +

1

n

Then by trapezoidal rule,

y = 
1

1 2 3 n-1 n

1
x

∫ n

1

dx

x
≈ 1

2
· 1

2
+

1

2
+

1

3
+ ... +

1

2
· 1

n
= S − 1

2
− 1

2n

Since

∫ n

1

dx

x
= lnn, we have S ≈ lnn +

1

2
+

1

2n
. (Estimate is too low.)

3G-5 Referring to the two pictures above, one can see that if f(x) is concave down on
[a, b], the trapezoidal rule gives too low an estimate; if f(x) is concave up, the trapezoidal
rule gives too high an estimate..


