7. Infinite Series

7A. Basic Definitions

7A-1 Do the following series converge or diverge? Give reason. If the series converges, find

its sum.
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7A-2 Find the rational number represented by the infinite decimal .21111... .
7A-3 For which = does the series Z <g) converge? For these values, find its sum f(z).
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7A-4 Find the sum of these series by first finding the partial sum S,,.
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7A-5 A ball is dropped from height h; each time it lands, it bounces back 2/3 of the height
from which it previously fell. What is the total distance (up and down) the ball travels?

7B: Convergence Tests

7B-1 Using the integral test, tell whether the following series converge or diverge; show

work or reasoning.
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(In the last two, the answer depends on the value of the parameter p.)

7B-2 Using the limit comparison test, tell whether each series converges or diverges; show
work or reasoning. (For some of them, simple comparison works.)

o0

1
2) zlj—nQ—F_Sn b) zl:n—k\/ﬁ ) Z:m
> . 1 > n . Inn
9 Zm(ﬁ) °) an T D2




E. 1801 EXERCISES

7B-3 Prove that if a,, > 0 and ZSO an converges, then Zgo sin a,, also converges.

7B-4 Using the ratio test, or otherwise, determine whether or not each of these series is
absolutely convergent. (Note that 0! = 1.)
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7B-5 For those series in 7B-4 which are not absolutely convergent, tell whether they are
conditionally convergent or divergent.

7B-6 By using the ratio test, determine the radius of convergence of each of the following
power series.
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7C: Taylor Approximations and Power Series

7C-1 Using the general formula for the coefficients a,,, find the Taylor series at 0 for the
following functions; do the work systematically, calculating in order the f(™, f(")(0), and
then the a,,.

a) cosx b) In(1+ ) c) Vi+z

7C-2 Calculate sin 1 using the Taylor series up to the term in 2%. Estimate the accuracy
using the remainder term. (The calculator value is .84147.) Use the remainder term Rg(z),
not Rs(z); why?

7C-3 Using the remainder term, tell for what value of n in the approximation
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the resulting calculation will give e to 3 decimal places (by convention, this means: within
.0005).

2
7C-4 By using the remainder term, tell whether cosx ~ 1 — % will be valid to within

.001 over the interval |z] < .5 .

5
7C-5 Calculate / e*x2dx, using the approximation for e’ up to the term in z*. Esti-

0
mate the error, using the correct remainder term (cf. 7B-3), and tell whether the answer
will be good to 3 decimal places.



7. INFINITE SERIES

7D: General Power Series

7D-1 Find the power series around x = 0 for each of the following functions by using known
Taylor series: use substitution, addition, differentiation, integration, or anything else you

can think of:

a) e~ b) cos\/T, z >0 ¢) sin’z (use an identity)
d) ﬁ e) tan~!x (differentiate)  f) In(1+ x)
g) coshz = ete”
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7D-2 By using operations on power series (substitution, addition, integration, differenti-
ation, multiplication), find the power series for the following functions, and determine the
radius of convergence. (Where indicated, give just the first 2 or 3 non-zero terms.)
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cos? x differentiate; then use a trigonometric identity
g

sinx

h) (3 terms);  do it two ways: multiplication, and dividing sin z series by 1 — z

11—z
i) tanz (2 terms); do it two ways: Taylor series, and division of power series

7D-3 Find the following limits by using linear, quadratic, or cubic approximation (i.e. by

using the first few terms of the Taylor series), not by using L’Hospital’s rule.
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