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1. Introduction

Consider the Laplace operator ∆ on the disk D,

∆ = ∂2
x1

+ ∂2
x2

; D = {x ∈ R2 : x2
1 + x2

2 < 1}

and let uj be the (real-valued, normalized) Dirichlet eigenfunctions

∆uj = −λjuj , x ∈ D; uj(x) = 0, x ∈ ∂D;
�
D

uj(x)2dx = 1

with eigenvalues 0 < λ1 < λ2 ≤ λ3 ≤ · · · , indexed with multiplicity. The wave
trace is the sum

h(t) =
∞∑
j=1

ei
√
λjt,

which converges in the sense of distributions. The purpose of this article is to
announce the following theorem.

Theorem 1.1. h(t), an infinitely differentiable function on 2π < t < 8, has a finite
limit and is infinitely differentiable at t = 2π from the right.

The significance of 2π is that it is a cluster point of the length spectrum from
the left (t < 2π), as described in more detail below. It is easy to verify that there
are no geodesics of length in between 2π and 8; it follows then from [GM] that h(t)
is smooth in 2π < t < 8. The content of the theorem is that h is smooth from the
right up to the endpoint 2π. The same proof applies to every cluster point 2π` of
the length spectrum of geodesic flow on the disk.

We recall now the relationship between h(t) and the wave equation. Consider
the initial value problem for the wave equation,

(∂2
t −∆)u(t, x) = 0, x ∈ D, t > 0

u(t, x) = 0, x ∈ ∂D, t > 0

u(0, x) = f(x), x ∈ D
∂tu(0, x) = g(x), x ∈ D

The solution is

u(t, x) =
�
D

K
(1)
t (x, y)f(y)dy +

�
D

K
(2)
t (x, y)g(y)dy
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where

K
(1)
t (x, y) =

∞∑
j=1

cos(
√
λjt)uj(x)uj(y); K

(2)
t (x, y) =

∞∑
j=1

sin(
√
λjt)√
λj

uj(x)uj(y)

and the trace of the operator with kernel K(1)
t is�

D

K
(1)
t (x, x)dx =

∞∑
j=1

cos(
√
λjt) = Reh(t)

The same proof that shows that h(t) is smooth as t → (2π)+ also shows that the
trace �

D

K
(2)
t (x, x)dx =

∞∑
j=1

sin(
√
λjt)/

√
λj

is smooth as t→ (2π)+.
The close connection between between the length spectrum and the singularities

of h(t) was discovered by way of spectral and inverse spectral problems. In [CdV],
Colin de Verdière showed that on a generic compact Riemannian manifold without
boundary, the length spectrum is determined by the spectrum (list of eigenvalues of
the Laplacian with multiplicity). Duistermaat and Guillemin [DG] and Chazarain
[C] showed that the singular support of h(t) is contained in the length spectrum
and that the two sets are equal generically. Indeed, in the generic case, the sin-
gularity of h(t) for t near L, the length of a geodesic, resembles a negative power
of t− L, or, more precisely, a conormal distribution. In case the boundary is non-
empty, Andersson and Melrose [AM] introduced the notion of generalized geodesic
length spectrum and proved the analogous inclusion for the singular support of h.
Subsequent work on inverse spectral problems for domains in the plane and, more
generally, for manifolds with boundary can be found in [GM, CdV, Z, HeZ].

The periodic geodesics on the disk (with reflecting boundary) have lengths

Lk,` = k(2 sin(π`/k), ` = ±1, ±2, . . . , k = 2, 3, 4, . . .

with k the number of segments (or reflections) of the trajectory and ` the winding
number of the trajectory around the origin. The degenerate cases, (2, 1), (4, 2),
(6, 3), . . . , correspond to the trajectory that traverses a diameter 2, 4, 6, . . . times.
It follows from [GM] that h(t) is singular at t = ±Lk,` and smooth in the com-
plement of the closure of these points. In particular, h(t) is singular when t is the
circumference of each regular polygon,

L2,1 < L3,1 < L4,1 < · · · < Lk,1 → 2π k →∞
and h(t) is smooth in 2π < t < 8, since the shortest periodic geodesic with length
greater than 2π has length 8 = L4,2 (the 2-gon traced twice).

Thus the issue addressed here that is not addressed in previous works, is the
behavior of h(t) near a cluster point of the length spectrum. Although we examine
only the case of the disk, which is far from generic, we expect the analogue of
Theorem 1.1 to be valid for any convex domain in place of the disk. See the final
remarks, below.

It is reasonable to conjecture that h(t) has some power law (classical conormal)
behavior as t → (2π)+. What is surprising is that the power is 0 and h(t) is in-
finitely differentiable. The spikes at t = Lk,1 are asymmetrical and decay rapidly
for t > Lk,1, so rapidly that an infinite sum of them with singularities at points
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closer and closer to 2π still converges at t = 2π . This is explained on a technical
level by the fact that h(t) is represented by sum of oscillatory integrals in which
the first derivative of the phase function tends to infinity along one ray. Because
the derivative of the phase is large, the phase changes quickly, and the correspond-
ing integrals have more cancellation than one would obtain from a classical phase
function.

2. Outline of the Proof

Our theorem is proved from systematic, optimal symbol properties of the zeros
of Bessel functions (or, equivalently, the eigenvalues of the Laplace operator for the
Dirichlet problem on the disk.

Let ρ(m,n) denote the mth zero of the nth Bessel function Jn, ρ(1, n) < ρ(2, n) <
· · · . In polar coordinates x1 = r cos θ, x2 = r sin θ, the eigenfunctions on the disk
have the form

Jn(ρ(m,n)r) cosnθ, Jn(ρ(m,n)r) sinnθ
with eigenvalue −λ = −ρ(m,n)2. Since the multiplicity of the eigenvalue is two
when n ≥ 1 and one when n = 0,

h(t) =
∑

(m,n)∈Z2

ψ1(m)ψ2(n)eitρ(m,n)

for any smooth cut-off functions ψ1 and ψ2 satisfying

ψ1(m) =

{
1, m > 7/8
0, m < 3/4

; ψ2(n) =


0, n < −1/4
1, −1/8 < n < 1/8
2, 3/4 < n

Below we will extend ρ(m,n) in a natural way to be defined for real numbers m.
(The extension to real numbers n will be the standard one for Bessel functions.)
The Poisson summation formula then yields

h(t) =
∑

(k,`)∈Z2

hk,`(t)

where

hk,`(t) =
�

R2
ψ1(m)ψ2(n)eitρ(m,n)−2πi(km+`n)dmdn

Our main result, Theorem 1.1, follows immediately from

Theorem 2.1. ∣∣∣∣ dN1

dtN1
hk,`(t)

∣∣∣∣ ≤ CN1,N2(1 + |k|+ |`|)−N2

for 2π < t < 2π + 1/10

The domain of integration for hk,` is the quadrant m ≥ 3/4, n ≥ −1/4. We will
deduce the estimates on hk,` from symbol estimates for ρ(m,n).

In the sector range of the parameters, m ≥ cn, for any fixed c > 0, the zeros of
the Bessel functions satisfy ordinary symbol estimates as follows.

Proposition 2.2. Fix a constant c0 > 0. If m ≥ 3/4, n ≥ −1/4 and m ≥ c0n,
then

a) |∂jm∂knρ(m,n)| ≤ Cj,k(m+ n)1−j−k
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b) (∂mρ, ∂nρ) = (π/ sinα, α/ sinα) + O((m + n)−1) as (m,n) → ∞ where α is
defined by1

tanα− α = πm/n

In the range of values of (m,n) complementary to Proposition 2.2, the appropri-
ate symbol-type estimates involve fractional powers of m and n, and ∂mρ does tend
to infinity. (For m fixed n → ∞ it turns out that ∂mρ ≈ n1/3. For our purposes
the subtlest and most important bound will be the lower bound on the size of ∂nρ.)

Theorem 2.3. There is an absolute constant c1 > 0 such that if 3/4 ≤ m ≤ c0n
(c0 from Proposition 2.2) then

a) |∂jm∂kn(ρ(m,n)− n)| ≤ Cj,km2/3−j(m+ n)1/3−k

b) ∂n(ρ(m,n)− n) ≥ c1m2/3n−2/3

Proposition 2.2 and Theorem 2.3 will be proved using asymptotic expansions of
Bessel functions, which we derive by the method of Watson ([W], p. 251) starting
from the Debye contour integral representation.

(2.1) Jν(x) + iYν(x) =
1
πi

� ∞+πi

−∞
ex sinh z−νzdz

We cannot merely quote Watson’s asymptotic expansion because we need to differ-
entiate it. To some extent these differentiated estimates were carried out already
by Ionescu and Jerison [IJ], but we need quite a bit more detailed asymptotics, es-
pecially in the transition region where x−n ≈ Cn1/3. Also, one needs to choose the
right coordinate system since differentiation in some directions behaves differently
from others.

Theorem 2.1 is proved by integration by parts. Consider the phase function of
hk,`(t),

Q = i(tρ(m,n)− 2πkm− 2π`n)

Since Q is smooth, the only issue is the asymptotic behavior as (m,n) tends to
infinity. It is easy to show from Proposition 2.2 (b) that for large (m,n) the critical
points of the phase Q occur near t = Lk,` (α = π`/k).

The rest of the paper is organized as follows. In Section 3, we carry out the
proof of Theorem 2.1, dividing the (m,n) quadrant of integration into two sectors.
In the sector where m→∞, Proposition 2.2 and standard integration by parts and
non-stationary phase methods apply. In the sector where n→∞, 3/4 ≤ m ≤ c0n,
the lower bound on ∂nQ given by Theorem 2.3 is used when integrating by parts
with respect to n. On the other hand, when integrating by parts in the m variable,
we will use the oscillation of eikm only and include the rest of the factors in the
exponential eQ in the amplitude.

In Section 4, we prove the symbol estimates and asymptotic expansions for Bessel
function following the method of steepest descent (Debye contours). In Section 5,
we deduce the symbol estimates for the zeros of Bessel functions stated above.
We conclude with remarks about the relationship with earlier work and about the
methods that can be expected to lead to the analogous result when the disk is
replaced by a convex domain.

1We extend the definition of α continuously across n = 0, α = π/2 by the reciprocal equation
1/(tanα− α) = n/πm.
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3. Integration by Parts

We now deduce our main estimate, Theorem 2.1, from the symbol estimates for
ρ(m,n), Proposition 2.2 and Theorem 2.3. Denote

Q = i(tρ(m,n)− 2πkm− 2π`n)

Then

(3.1) eQ =
−i

t∂nρ− 2π`
∂ne

Q

(3.2) eQ = ei(tρ−2π`n i

2πk
∂me

−2πimk

We will divide the region of integration into sectors. Consider first the “non-
classical” region 3/4 ≤ m < c0n. Define

Ik,`(t) =
�

R2
ψ1(m)ψ1(cn/m)ei(tρ(m,n)−2πkm−2π`n)dmdn

We focus at first on the case ` = 1, Q = i(tρ(m,n)− 2πkm− 2πn) from which all
the singularities near t = 2π arise. Applying formula 3.1 and integrating by parts,

Ik,1(t) =
�
ψ1(m)ψ1(cn/m)

−i
t∂nρ− 2π

∂ne
Qdmdn

=
�

−it∂nnρ
(t∂nρ− 2π)2

ψ1(m)ψ2(cn/m)eQdmdn

+
�

c

m
ψ1(m)ψ′1(cn/m)

i

t∂nρ− 2π
eQdmdn

Repeating we obtain

Ik,1(t) = c1

�
1
m2

ψ1(m)ψ′′1 (cn/m)
1

(t∂nρ− 2π)2
eQdmdn

+ c2

�
1
m
ψ1(m)ψ′1(cn/m)

t∂nnρ

(t∂nρ− 2π)2
eQdmdn

+
�
ψ1(m)ψ1(cn/m)

[
c3(∂2

nρ)2

(t∂nρ− 2π)4
+

c4t∂
3
nρ

(t∂nρ− 2π)3

]
eQdmdn

for appropriate coefficients cj(t) (polynomial in t). After N integrations by parts,
Ik,1 is expressed as a linear combination of terms with integrand

eQ
(∂2
nρ)a2(∂3

nρ)a3 · · · (∂N+1
n ρ)aN+1

(t∂nρ− 2π)N+a2+a3+···+aN+1
; (a2 + 2a3 + · · ·+NaN+1 = N)

times cutoff functions ψ1(m)ψ1(cn/m) or derivatives of these cutoff functions. For
t ≥ 2π, the denominator has the lower bound

t∂nρ− 2π ≥ 2π(∂nρ− 1) ≥ cm2/3n−2/3

from Theorem 2.3(b). Moreover, Theorem 2.3(a) says, in particular, that

|∂jnρ| - m2/3n1/3−j
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Denote B = a2 + a3 + · · ·+ aN+1. Then each of the integrands is bounded by∣∣∣∣ (∂2
nρ)a2(∂3

nρ)a3 · · · (∂N+1
n ρ)aN+1

(t∂nρ− 2π)N+a2+a3+···+aN+1

∣∣∣∣ - (m
2
3n

1
3−2)a2(m

2
3n

1
3−3)a3 · · · (m 2

3n
1
3−(N+1))aN+1

(m
2
3n−

2
3 )N+a2+a3+···+aN+1

=
m

2
3Bn

1
3Bn−(2a2+3a3+···+(N+1)aN+1)

(m2/3n−2/3)Nm
2
3Bn−

2
3B

=
n−(a2+2a3+···+NaN+1)

(m2/3n−2/3)N
=

n−N

(m2/3n−2/3)N

= m−
2
3Nn−

1
3N

In particular, Ik,1(t) is represented by a convergent integral.
Next, to prove rapid decay in k we integrate by parts in m using substitution

3.2. The first step is

Ik,1(t) =
�
ei(tρ−2πn) −i

2πk
∂me

−2πimkψ1(m)ψ1(cn/m)dmdn

=
�
−t∂mρ

2πk
eQψ1(m)ψ1(cn/m)dmdn

+
�

i

2πk
eQψ′1(m)ψ1(cn/m)dmdn+

�
−cni

2πm2k
eQψ1(m)ψ′1(cn/m)dmdn

The term with the factor n/m2 also has ψ′1(cn/m) so that it is supported where
cn ≈ m and the term n/m2 is comparable to 1/n ∼ 1/m. All terms have a gain of
a factor 1/k except the one in which the derivative ∂m falls on ρ. In that case,

|∂mρ| - n1/3m−1/3

In all, one step of type (3.2) yields the factor

n1/3m−1/3

k

Now we consider systematically what happens when steps of type (3.2) are applied
after N steps of type (3.1). If the derivative δm in the integration by parts falls on
a factor ∂jnρ, then this gets replaced by ∂jn∂mρ/k and thus the bound is improved
by the very favorable factor

1
mk

If the derivative ∂m falls on the ei(tρ−2πn) as in the first step, we have, as before a
factor

n1/3m−1/3

k
If the derivative falls on a cutoff, then the gain is 1/k. Finally, if the derivative falls
on the denominator (t∂nr − 2π) then it produces a factor

| ∂n∂mρ

k(t∂nρ− 2π)
| - m−1/3n−2/3

km2/3n−2/3
=

1
km

In all, the worst case is the factor n1/3m−1/3/k for each integration by parts in m.
Thus if we integrate by parts N times in n and M times in m, the integrand will
be bounded by

m−
2
3Nn−

1
3Nn

1
3Mm−

1
3Mk−M
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Therefore, if we choose N sufficiently large that

1
3
N − 1

3
M > 2

then we obtain a convergent integrand that gives a bound on the integral by k−M .
For ` 6= 1, the bound is much simpler. ∂nρ is very close to 1 for small m/n, so

if 2π ≤ t ≤ 4π − δ for any fixed δ > 0, then the denominator in the integrands,

|t∂nρ− 2π`| ≈ |`|

for all integers ` 6= 1. By integrating by parts N times, one finds the bound

|Ik,`| - `−N

for each N . The rapid decrease in k follows from similar reasoning to that given
above for Ik,1.

Next, consider derivatives (d/dt)N1Ik,`. The integral representing this expres-
sion just has an extra factor of ρN1 in the integrand. This extra factor has size
(n1/3m2/3)N1 and symbol type bounds of the obvious kind after differentiation with
respect to m and n. Thus one can compensate for these higher powers by more
integrations by parts, and nearly the same proof as above shows that the derivatives
of Ik,`(t) are also rapidly decreasing in (k, `). This ends the main portion of the
proof.

What remains is to make estimates for the integrand in the region region m > cn
of integration.

(3.3) hk,` − 2Ik,` =
�

[ψ1(m)ψ2(n)− 2ψ1(m)ψ1(cn/m)]eQdmdn

For this region we use Proposition 2.2. The informal idea is as follows. Fix α > 0,
and consider a ray in (m,n) space defined by

tanα− α = πm/n

If ∇Q→ (0, 0) as (m,n)→∞ along this ray, then the asymptotic formula implies

tπ/ sinα = 2πk; tα sinα = 2π`,

Thus if Q has a “critical point near infinity” we can solve these equations for α and
t and find

α = π`/k; t = 2k sin(2π`/k) = Lk,`

This explains the singularities at t = Lk,`. The fact that the phase is nonstationary
at other values of t will lead to a proof that hk,`(t) is smooth at each point t 6= Lk,`.

In more detail, first consider the range |(m,n)| ≤ C, truncating the integrand
with a smooth bump function in (m,n) variables. In that range, since the deriva-
tives of ρ are bounded,

|∂nQ| ≥ c|`|, |∂mQ| ≥ c|k|,

for sufficiently large |k| and |`|. Hence, writing

eQ = (1/∂nQ)∂neQ, eQ = (1/∂mQ)∂meQ,

and integrating by parts, one finds that the integral decays like 1/(|k| + |`|). Re-
peating N times, one finds that the integral decays like O(1/(|k| + |`|)N ) for any
N .
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Next we turn to the range |(m,n)| ≥ C, m ≥ cn. In this case, we will also do
integration by parts either in the variable m or n, and use lower bounds on |∂nQ|
or |∂mQ|.

Here we will use the asymptotic formula for (∂mρ, ∂nρ) of Proposition 2.2 b and
restrict t to 2π ≤ t ≤ 2π + δ for suitable small number δ.

First we confirm

(3.4) |∂nQ| = |tα/ sinα− 2π`+O(1/(m+ n))| ≥ c(|`|+ 1),

Recall that α is defined by tanα − α = πm/n. If n > 0, then, since m ≥ cn, we
have α0 ≤ α ≤ π/2 for some fixed α0 > 0 depending on c. In the remaining range,
0 ≥ n ≥ −1/4 and m ≥ C − 1/4, which implies that π/2 ≤ α ≤ π/2 + δ for some
small δ of size on the order of 1/C. It follows that

1 + α2
0/10 ≤ α/ sinα ≤ π/2 + 4δ

The lower bound2 on α/ sinα bounds |∂nQ| from below when ` ≤ 1 and the upper
bound on α/ sinα bounds |∂nQ| from below in the case ` ≥ 2. Thus we have proved
(3.4). We use this bound and integration by parts in n in the range. |`|+C2 ≥ |k|.

Lastly, if k ≥ |`|+ C2, then (taking C2 = 10/ sinα0) we have

(3.5) |∂mQ| = |tπ/ sinα− 2πk +O(1/(m+ n))| ≥ c(|k|+ 1).

On the other hand, if k ≤ 0, then (3.5) is obvious since tπ/ sinα0 ≥ 2π2. In the
range |k| ≥ |`|+ C2, we use (3.5) and integration by parts in the m variable. This
concludes the proof of Theorem 2.1.

4. Asymptotics of Bessel functions

In this section, we establish the optimal symbol properties of

Hn(x) := Jn(x) + iYn(x)

as a functions of two variables (x, n). (The function Hν(x), known as a Hankel
function or Bessel function of the third kind, is denoted H(1)

ν (x) in Watson’s treatise
[W] p. 73.) The asymptotic formula for the Bessel functions as the order and
variable tend to infinity was discovered by Nicholson in 1910. In 1918, Watson used
the Debye contour representation to give an appropriate bound on the error term.
In his treatise on Bessel functions ([W] p. 249), Watson says of his own method
that it is “theoretically simple (though actually it is very laborious).” To prove
Theorem 2.3, we will carry out the even more laborious process of differentiating
Watson’s asymptotic formulas.

To state the symbol properties of Hn(x) in the sector n ≤ x ≤ 2n, especially in
the so-called transition region in which x is very close to n, will require a different
coordinate system (β, ν). For x ≥ n > 0, we write ν = n and define β by x cosβ = n.
Define a(ν, β) by

(4.1) Hν(ν secβ) = eiν(tan β−β)a(ν, β)

Proposition 4.1. If ν ≥ 1/2 and 0 ≤ β ≤ π/4, and a(ν, β) is defined by (4.1),
then

|∂jν∂kβa| - ν−1/2−jβ−1/2−k

2The key here is that in the case ` = 1, tα sinα − 2π ≥ 2πα2
0/10 > 0. We have avoided the

critical points associated with t = Lk,1 → 2π. They occur at infinity along a rays in (m,n) space

near the n axis, rays that are not in the sector m ≥ cn.

8



We will also need more detailed asymptotics involving Airy functions. Define
the function A(y) for y ∈ R as the solution to the equation

A′′(y) + 2yA(y) = 0

with initial conditions

A(0) = Γ(1/3)6−2/3(3 + i
√

3); A′(0) = Γ(2/3)6−1/3(−3 + i
√

3)

Proposition 4.2. Denote b(ν, β) = e−iν(tan3 β)/3ν−1/3A(y) with y = (1/2)ν2/3 tan2 β
and a(ν, β) from Proposition 4.1. Then for 0 ≤ β ≤ π/4,

a) |a− b| - ν−1.
b) |∂ν(a− b)| - ν−2.
c) |∂β(a− b)| - ν−2/3 [also - 1/νβ if β ≥ ν−1/3]

Corollary 4.3. If ν >> 1 and 0 ≤ β ≤ π/4, and a(ν, β) is defined by (4.1), then
a) |a| ≈ ν−1/2β−1/2 provided ν−1/3 ≤ β ≤ π/4.
b) |a| ≈ ν−1/3 provided β ≤ ν−1/3.

In the remainder of the section, we will prove Propositions 4.1 and 4.2 and the
corollary. The range, x ≥ 2n will be discussed at the end of the section.
Proof of Proposition 4.1. Define the phase function ϕ(z) by

ϕ(z) =
1
ν

(x sinh z − νz) = secβ sinh z − z

The contour integral (2.1) can then be written

Hν(ν secβ) =
1
πi

� ∞+πi

−∞
eνϕ(z)dz

The contour of steepest descent3 passes through z = iβ and is parametrized by the
two curves, z = ζ1(r, β) + iβ and z = ζ2(r, β) + iβ, in which the functions ζj(r, β),
j = 1, 2, solve

(4.2) ϕ(ζ + iβ)− ϕ(iβ) = (secβ) sinh(ζ + iβ)− ζ − i tanβ = −r, r > 0,

and satisfy ζ1(0, β) = ζ2(0, β) = 0, Re ζ1(r, β) ≤ 0, Re ζ2(r, β) ≥ 0. Moreover,
ζ1(r, β)→ −∞− iβ and ζ2(r, β)→∞+ i(π − β) as r →∞. Thus

Hν(ν secβ) =
eνϕ(iβ)

πi

� ∞+πi

−∞
eν(ϕ(z)−ϕ(iβ))dz

=
eiν(tan β−β)

πi

� ∞
0

e−νr(∂rζ2(r, β)− ∂rζ1(r, β))dr,

and we have derived the formula for a(ν, β),

(4.3) a(ν, β) =
1
πi

� ∞
0

e−νr(∂rζ2(r, β)− ∂rζ1(r, β))dr

Lemma 4.4. For j = 1, 2,

|∂r∂kβζj(r, β)| -

{
r−1/2β−1/2−k, r < β3

r−(2+k)/3, β3 < r

3We follow [W] p. 244 and pp. 249–252, except that where Watson uses e−xr, we use e−νr so
our expressions differ from his by factors x/ν = cosβ.
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Lemma 4.4 follows in a straightforward way from implicit differentiation and
induction, but the proof takes a few pages. Abbreviate by ζ the functions ζj(r, β)
along the contour of steepest descent satisfying (4.2). Differentiating (4.2) with
respect to β yields

[cosh(iβ + ζ)− cosh(iβ)]∂βζ + (tanβ) sinh(ζ + iβ) + i cosh(ζ + iβ)− i secβ = 0

Therefore, using cosh(a + b) = cosh a cosh b + sinh a sinh b with a = ζ + iβ and
b = −iβ,

∂βζ =
−i(cosh ζ − 1) secβ

cosh(ζ + iβ)− cosh(iβ)
Define

F1(ζ) = 1/ sinh(ζ/2); F2(ζ, β) = 1/ sinh(ζ/2+iβ); G(ζ, β) = (cosh ζ−1)(secβ)/ζ2

Since
cosh(iβ + ζ)− cosh(iβ) = 2 sinh(ζ/2) sinh(iβ + ζ/2),

we may write

(4.4) ∂βζ =
−i
2
F1F2Gζ

2

Similarly,

(4.5) ∂rζ =
−1
2
F1F2 cosβ

Lemma 4.5. Along the contour of steepest descent ζ = ζ1(r, β) and ζ = ζ2(r, β),
for all k ≥ 0,

a) |∂kβF1(ζ(r, β))| -

{
|ζ|−1(β + |ζ|)−k for |ζ| ≤ 1
e−|ζ|/2 for |ζ| ≥ 1

b) |∂kβF2(ζ(r, β), β)| -

{
(β + |ζ|)−k−1 for |ζ| ≤ 1
e−|ζ|/2 for |ζ| ≥ 1

c) |∂kβG(ζ(r, β), β)| -

{
(β + |ζ|)−k for |ζ| ≤ 1
e|ζ|/|ζ|2 for |ζ| ≥ 1

d) |∂k+1
β ζ(r, β)| -

{
|ζ|(β + |ζ|)−k−1 for |ζ| ≤ 1
1 for |ζ| ≥ 1

To begin the proof of Lemma 4.5, denote by DζF (ζ, β) the derivative of F (ζ, β)
with β fixed and let DβF (ζ, β) represent the derivative of F (ζ, β) with ζ fixed.
(This is to distinguish from the partial derivative ∂βF (ζ(r, β), β) representing the
derivative with r fixed.) We bound Dζ and Dβ derivatives of F1, F2 and G as
follows. On the curve of steepest descent (ζ = ζj(r, β), j = 1, 2)

(4.6) |Dp
ζF1(ζ)| = |(d/dζ)pF1(ζ)| -

{
|ζ|−k−1 for |ζ| ≤ 1
e−|ζ|/2 for |ζ| ≥ 1

(4.7) |Dp
ζD

s
βF2(ζ, β)| -

{
(β + |ζ|)−p−s−1 for |ζ| ≤ 1
e−|ζ|/2 for |ζ| ≥ 1

(4.8) |Dp
ζD

s
βG(ζ, β)| -

{
1 for |ζ| ≤ 1
e|ζ|/|ζ|2 for |ζ| ≥ 1
10



To prove (4.6) when p = 0, note that if ζ = ξ + iη and ξ ≥ 0, then

| sinh(ζ/2)| ≥ (eξ/2 − 1)/2 ≥

{
ξ/4, ξ ≥ 0
eξ/2/4, ξ ≥ 2

Along the contour ζ = ξ+ iη = ζ2(r, β), 0 ≤ η ≤ π− β. (Recall that 0 ≤ β ≤ π/2.)
Furthermore, the slope of η as a function of ξ is at most

√
3 ([W] 8.32, p. 240) so

that ξ ≥ |ζ| − π and ξ ≥ |ζ|/10. It follows that |F1(ζ)| = |1/ sinh(ζ)| ≤ 40|ζ|−1 for
all ζ = ζ2(r, β). For |ζ| ≥ 20, we have ξ ≥ 2 and consequently |F1(z)| ≤ 4e−ξ/2 ≤
4eπ/2e−|ζ|/2. This proves (4.6) for p = 0 and ζ = ζ2(r, β). The other branch ζ = ζ1
is similar, with the only difference that the curve ζ1 is in a horizontal strip of the
complex plane is below the ξ-axis: −β ≤ η = Im ζ1 ≤ 0. The case of p = 1, 2, . . .
are easy consequences of the same estimates. A very similar proof to the one for
(4.6) gives (4.7) because

|iβ + ζ| ≈ β + |ζ|
along the contour. The estimate (4.8) is easy.

We can now carry out the proof of Lemma 4.5 by induction. Parts (a)–(c) for
k = 0 are the same as (4.6–4.8) for p = 0. Part (d) for k = 0 (k + 1 = 1) follows
from (a)–(c) for k = 0 and the formula (4.4).

For the induction step, assume (a)–(d) are valid up to k. Part (a), ∂k+1
β F1(ζ(r, β)),

is a linear combination of terms

(Dp
ζF1)(∂q1β ζ)(∂q2β ζ) · · · (∂qpβ ζ) (q1 + · · ·+ qp = k + 1; qj ≥ 1)

Part (b), ∂k+1
β F2(ζ(r, β), β), is a linear combination of terms

(Dp
ζD

s
βF2(z, β))(∂q1β ζ)(∂q2β ζ) · · · (∂qpβ ζ) (q1 + · · ·+ qp + s = k + 1; qj ≥ 1)

Part (c), ∂k+1
β G(ζ(r, β), β), is a linear combination of terms

(Dp
ζD

s
βG(z, β))(∂q1β ζ)(∂q2β ζ) · · · (∂qpβ ζ) (q1 + · · ·+ qp + s = k + 1; qj ≥ 1)

Since the induction hypothesis says that ∂qβζ has the given bounds for all 1 ≤ q ≤
k + 1, each of the factors has appropriate bounds and multiplying them yields the
appropriate bounds for (a)–(c) with k replaced by k + 1.

Lastly, to prove the induction step for (d), observe that

∂k+1
β (∂βζ) = ∂k+1

β [(−i/2)F1F2Gζ
2]

is a linear combination of terms of the form

(∂k1β F1(ζ))(∂k2β F2(ζ, β))(∂k3β G)(∂k4β ζ)(∂k5β ζ)

with k1 + k2 + · · · + k5 = k + 1. Since kj ≤ k + 1, we have already proved the
appropriate bounds on each factor. Multiplying them yields the correct bound for
∂k+2
β ζ. This ends the proof of Lemma 4.5.

To convert the implicit bounds of Lemma 4.5 to ones in terms of r and β, observe
that for ζ = ζj(r, β),

|ζ| ≈


r1/2β−1/2, r ≤ β3

r1/3, β3 ≤ r ≤ 1
1 + log r, 1 ≤ r

In the range r ≥ 1, there is also a more precise estimate along the contour, namely,

e|ζ| ≈ e|ξ| ≈ r (ζ = ξ + iη)
11



It follows that

|iβ + ζ| ≈ β + |ζ| ≈


β, r ≤ β3

r1/3, β3 ≤ r ≤ 1
1 + log r, 1 ≤ r

With these upper and lower bounds on |ζ| and β + |ζ|, one can rewrite Lemma
4.5 as

Lemma 4.6. Along the contour of steepest descent ζ = ζ1(r, β) and ζ = ζ2(r, β),
for all k ≥ 0,

a) |∂kβF1(ζ(r, β))| -


r−1/2β1/2−k r ≤ β3

r−
1
3 (k+1) β3 ≤ r ≤ 1

r−1/2 1 ≤ r

b) |∂kβF2(ζ(r, β), β)| -


β−(k+1) r ≤ β3

r−
1
3 (k+1) β3 ≤ r ≤ 1

r−1/2 1 ≤ r

c) |∂kβG(ζ(r, β), β)| -


β−k r ≤ β3

r−k/3 β3 ≤ r ≤ 1
r/(1 + log r)2 1 ≤ r

d) |∂k+1
β ζ(r, β)| -


r1/2β−3/2−k r ≤ β3

r−
1
3k β3 ≤ r ≤ 1

1 1 ≤ r

It is now routine to confirm Lemma 4.4. Differentiate (4.5),

∂kβ∂rζ = (−1/2)∂kβ(F1F2 cosβ)

The right-hand side is a linear combination of terms of the form

(∂k1β F1)(∂k2β F2)(∂k3β cosβ), k1 + k2 + k3 = k

which are bounded using Lemma 4.6. Now that Lemma 4.4 is proved, Proposition
4.1 follows from the formula (4.3) for a(ν, β).

We now turn to the proof of Proposition 4.2. The function ϕ from (4.2) can be
rewritten

(4.9) ϕ(z + iβ)− ϕ(iβ) = (i tanβ)(cosh z − 1) + (sinh z − z)

The Taylor approximations cosh z − 1 ≈ z2/2 and sinh z − z = z3/6 so the cubic
approximation to (4.9) is

(4.10) Φ(z) = (i tanβ)z2/2 + z3/6

Following Watson, we prove Proposition 4.2 by comparing ζ1(r, β) and ζ2(r, β), the
two solutions to (4.2), to the functions Z1(r, β) and Z2(r, β) solving the correspond-
ing equation

(4.11) Φ(Z) = −r, r ≥ 0

with Z1(0, β) = Z2(0, β) = 0, and ReZ1(r, β) ≤ 0, ReZ2(r, β) ≥ 0.
12



Following Watson again, curve Z1(r)→ −∞− i tanβ as r →∞, whereas Z2(r)
is asymptotic to the ray whose argument is π/3 as r →∞. Thus we define

b(β, ν) =
� eiπ/3∞

−∞−i tan β

eνΦ(Z)dZ

In order to show that this function b(β, ν) is the same as the function b of Proposi-
tion 4.2, we evaluate it using the contour consisting of the two rays Z = −i tanβ−ξ
and Z = −i tanβ + ξeiπ/3, ξ ≥ 0, rather than the steepest descent contour defined
using Z1 and Z2. With the parametrization given for these rays, and the change of
variable ξ = u/ν1/3, one obtains

b(β, ν) = e−i(ν tan3 β)/3

� ∞
0

e−νξ
3/6
[
γeγ(νξ tan2 β)/2 + e−(νξ tan2 β)/2

]
dξ(4.12)

= e−i(ν tan3 β)/3ν−1/3A((ν2/3 tan2 β)/2) (γ = eπi/3)

where A(t) is defined by

A(t) =
� ∞

0

e−u
3/6[γeγtu + e−tu]du

We claim that
A′′(t) + 2tA(t) = 0

Indeed, for λ ∈ C, define

Fλ(t) =
� ∞

0

e−u
3/6+λtudu

Then

−1 =
� ∞

0

(d/du)e−u
3/6+λtudu

=
� ∞

0

(−u2/2 + λt)e−u
3/6+λtudu

= (−1/2λ2)F ′′λ (t) + λtFλ(t)

Hence,

−1
2
F ′′λ (t) + λ3tFλ(t) = −λ2

Then A(t) = γFγ(t) + F−1(t) and γ3 = −1 give the equation A′′(t) + 2tA(t) = 0,
as desired.

Thus A(t) is an Airy-type function, identified uniquely by its value and derivative

A(0) = Γ(1/3)6−2/3(3 + i
√

3); A′(0) = Γ(2/3)6−1/3(−3 + i
√

3)

Writing A in terms of its real and imaginary parts, A(t) = u(t)+ iv(t), we find that
the Wronskian takes the constant value

(4.13) u(t)v′(t)− u′(t)v(t) = u(0)v′(0)− u′(0)v(0) = Γ(1/3)Γ(2/3)
√

3 = 2π

Having identified b with the function of Proposition 4.2, we can now proceed
with the proof.

Lemma 4.7. For j = 1, 2, 0 ≤ β ≤ π/4,

|ζj |+ |Zj | -

{
r1/2β−1/2 r < β3

r1/3 r > β3

13



Lemma 4.7 is routine and the proof is omitted. In fact ζj grows more slowly than
Zj for for r >> 1 (like log r), but we don’t make use of this.

Lemma 4.8. For j = 1, 2,

a) |ϕ′(ζj)| = |i tanβ sinh ζj + cosh ζj − 1| %


r1/2β1/2 r < β3

r2/3 β3 ≤ r ≤ 1
r 1 ≤ r

b) |Φ′(Zj)| = |i tanβZj + Z2
j /2| %

{
r1/2β1/2 r < β3

r2/3 r > β3

Part (a) of this lemma is proved in [IJ] 9.15 and 9.16, p. 1072. The proof of part
(b) is similar and is omitted.

Lemma 4.9. For j = 1, 2, 0 ≤ β ≤ π/4,

|ζj − Zj | ≤


r3/2β−3/2 r ≤ β3

r β3 ≤ r ≤ 1
r1/3 1 ≤ r

Proof. Fix a small number r0 > 0. For 0r ≥ r0, the estimate follows immediately
from Lemma 4.7. For this argument we will use subscripts on the constants, because
some will depend on others. For |z| ≤ 1, |ϕ(z) − Φ(z)| ≤ C1(β|z|4 + |z|5). Fix
r, β and j = 1 or 2. We consider first the case 0 < r ≤ β3. Denote wj =
ζj(r, β)− Zj(r, β) and Zj = Zj(r, β). Our goal is to show that

|wj | ≤ Cr3/2β−3/2

The root in the appropriate half-plane of

ϕ(w + Zj) + r = 0

is w = wj . We will show that for a suitable constant C to be chosen later, the curve

S = {ϕ(w + Zj) + r : |w| = Cr3/2β−3/2}
encloses the origin. Thus the root wj is inside. We will show that S enclosed the
origin by showing that ϕ(w + Zj) + r − Φ′(Zj)w is suitably small. Recall that
|Φ′(Zj)| ≥ c1r1/2β1/2. It follows that the circle

S0 = {Φ′(Zj)w : |w| = Cr3/2β−3/2}
has radius at least Cc1r2/β.

By Lemma 4.7, |Zj | ≤ C2r
1/2β−1/2. We will require that

(4.14) Cr3/2β−3/2 ≤ C2r
1/2β−1/2

so that |w + Zj | ≤ 2C2r
1/2β−1/2 and

|ϕ(w + Zj)− Φ(w + Zj)| ≤ C1(β|w + Zj |4 + |w + Zj |5) ≤ C3r
2/β

with a constant C3 depending only on C1 and C2 (using r ≤ β3). Furthermore,
since F (Zj) = −r,

Φ(w + Zj) = −r + Φ′(Zj)w + (1/2)(i tanβ + Zj)w2 + w3/6

and

|(i tanβ + Zj)w2/2 + w3/6| ≤ C2β−2r3 + C2C
2r7/2β−7/2 + C3r9/2β−9/2

14



We will require

(4.15) C2β−2r3 + C2C
2r7/2β−7/2 + C3r9/2β−9/2 ≤ (1/100)c1Cr2/β

Now our final requirement on C is the lower bound

(4.16) C3 ≤ (1/4)c1C

Combining these estimates, we have for |w| = Cr3/2β−3/2,

|ϕ(w + Zj) + r − Φ′(Zj)w| ≤ C3r
2/β + (1/100)c1Cr2/β ≤ (1/2)c1Cr2/β

so that
|ϕ(w + Zj) + r| ≥ (1/2)c1Cr2/β.

On the other hand |Φ′(Zj)w| ≥ c1Cr2/β. So S is a loop surrounding the origin.
Finally, we check that all three requirements on C are satisfied. For (4.16) fix

C = 4C3/c1. Now that C is fixed, we choose r0 > 0 sufficiently small that the other
two inequalities (4.14) and (4.15) are satisfied for all r, 0 < r ≤ r0, 0 < r ≤ β3

(0 ≤ β ≤ π/4). The remaining case, β3 ≤ r ≤ r0 is similar and slightly simpler. It
will be omitted. This concludes the proof of Lemma 4.9.

Lemma 4.10. For j = 1, 2,

a) |∂rZj | ≤

{
r−1/2β−1/2 r < β3

r−2/3 r > β3

b) |∂rζj | ≤


r−1/2β−1/2 r < β3

r−2/3 β3 ≤ r ≤ 1
r−1 1 ≤ r

c) |∂r(ζj − Zj)| ≤ 1 all r

Proof. Differentiating (4.11), we find

Φ′(Zj)∂rZj = −1; ϕ′(ζj)∂rζj = −1

and the bounds of Lemma 4.8 imply parts (a) and (b). For part (c),

∂r(Zj − ζj) =
Φ′(Zj)− ϕ′(ζj)

Φ′(Zj)ϕ′(ζj)

=
Φ′(ζj)− ϕ′(ζj)
Φ′(Zj)ϕ′(ζj)

+
Φ′(Zj)− Φ′(ζj)

Φ′(Zj)ϕ′(ζj)

Lemma 4.8 implies
|Φ′(Zj)ϕ′(ζj)| % max(rβ, r4/3)

The formula of Φ′ and Lemmas 4.7 and 4.9 imply

|Φ′(Zj)− Φ′(ζj)| - (β + |Zj |+ |ζj |)|Zj − ζj | -


r3/2β−1/2 r < β3

r4/3 β3 ≤ r ≤ 1
r2/3 1 ≤ r

Hence, |(Φ′(Zj)− Φ′(ζj))/Φ′(Zj)ϕ′(ζj))| - 1 Lemma 4.7 implies

|Φ′(ζj)− ϕ′(ζj)| - β|ζj |3 + |ζj |4 -

{
r3/2β−1/2 r < β3

r4/3 β3 ≤ r

Hence, similarly, |(Φ′(ζj)−ϕ′(ζj))/Φ′(Zj)ϕ′(ζj)| - 1. This concludes Lemma 4.10.
15



Lemma 4.11. For j = 1, 2,

a) |∂r∂βZj | ≤

{
r−1/2β−3/2 r ≤ β3

r−1 β3 ≤ r

b) |∂r∂βζj | ≤

{
r−1/2β−3/2 r < β3

r−1 β3 ≤ r
c) |∂r∂β(ζj − Zj)| - r−1/3

Proof. Differentiate the implicit equation with respect to β to obtain

∂βZj = −(i sec2 β)Z2
j /2Φ′(Zj)

and
∂β∂rZj = −(i sec2 β)∂rZj [2ZjΦ′(Zj)− F ′′(Zj)Z2

j ]/2F ′(Zj)2

We have already bounded each of these terms and the bounds combine to give
Lemma 4.11 (a). To prove (b), differentiate (4.2) with respect to β to obtain

∂βζj = −i(sec2 β)(cosh ζj − 1)/ϕ′(ζj)

Then, differentiating with respect to r,

∂r∂bζj = −i(sec2 β)∂rζj [sinh ζjϕ′(ζj)− ϕ′′(ζj)(cosh ζj − 1)]/ϕ′(ζj)2

The estimates above for ζj , ∂rζj , ϕ′(ζj), and

ϕ′′(ζj) -


β r ≤ β3

r1/3 β3 ≤ r ≤ 1
r 1 ≤ r

combine to give part (b) of Lemma 4.11.
To prove (c) write

∂β(ζj − Zj) = −i sec2 β[Z2
j (ϕ′(ζj)− ϕ′(Zj)) + Z2

j (ϕ′(Zj)− Φ′(Zj))+
(4.17)

(Zj − ζj)2Φ′(Zj)− 2(cosh ζj − 1− ζ2
j /2)Φ′(Zj)]/Φ′(Zj)ϕ′(ζj)(4.18)

With z is a point on the line segment from Zj to ζj ,

|∂β(ζj − Zj)| ≤ C|Zj |2|ϕ′′(z)||Zj − ζj |+ |Zj |2(β|Zj |3+
(4.19)

|Zj |4) + |Zj ||Zj − ζj ||Φ′(Zj)|+ |ζj |4||Φ′(Zj)|]/|Φ′(Zj)ϕ′(ζj)|(4.20)

Using the preceding bounds and (4.19),

|∂β(ζj − Zj)| -

{
r3/2β−5/2 r ≤ β3

r2/3 β3 ≤ r ≤ 1

In the range 0 < r ≤ 1, differentiation of (4.17) with respect to r replaces terms Zj
(with the bound r1/2β−1/2) by ∂rZj (with the bound r−1/2β−1/2) or the similar
replacement of ζj with ∂rζj . This results in a bound of the same type as (4.19)
with an extra factor of 1/r. In other words,

|∂r∂β(ζj − Zj)| -


r1/2β−5/2 r ≤ β3

r−1/3 β3 ≤ r ≤ 1
r−1 1 ≤ r
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(The case r ≥ 1 follows separately from parts (a) and (b).) In all three cases this
is less than r−1/3, so this concludes Lemma 4.11.

Define
b(β, ν) =

� ∞
0

e−νr(∂rZ2(r, β)− ∂rZ1(r, β))dr

Then Lemmas 4.10 and 4.11 imply that

|a(β, ν)− b(β, ν)| ≤
� ∞

0

e−νrdr ≤ 1/ν(4.21)

|∂ν [a(β, ν)− b(β, ν)]| ≤
� ∞

0

re−νrdr ≤ 1/ν2(4.22)

|∂β [a(β, ν)− b(β, ν)]| ≤
� ∞

0

r−1/3e−νrdr ≤ ν−2/3(4.23)

This concludes the proof of Proposition 4.2.
Next, in order to deduce Corollary 4.3, we will prove some estimates for b(ν, β)

that will also be needed in the next section.

Proposition 4.12. If y ≥ 0 and ν ≥ 1/2, 0 ≤ β ≤ π/4, then

a) |b| ≈

{
ν−1/3 β ≤ ν−1/3

ν−1/2β−1/2 β ≥ ν−1/3

b) |∂νb| -

{
ν−4/3 β ≤ ν−1/3

ν−1/2β5/2 β ≥ ν−1/3

c) |∂βb| -

{
ν1/3β β ≤ ν−1/3

ν1/2β3/2 β ≥ ν−1/3

Proof. The proposition will follow easily from the formula for b in terms of A(y)
and the estimates for y ≥ 0,

(4.24) |A(y)| ≈ (1 + y)−1/4; |A′(y)| ≈ (1 + y)1/4

(4.24) is well known, but we include a sketch of a proof. The upper bounds are
standard; indeed, the asymptotic behavior as y →∞ follows from the fact that A(y)
is a multiple of the Hankel function H1/3((2y)3/2/3) [W] p. 252. The lower bounds
(for all y ≥ 0) follow from the upper bounds and the fact that the Wronskian (4.13)
is constant.

Next, using (4.24) we deduce (a). Recall that from (4.12),

|b(ν, β)| = ν−1/3|A(y)| ≈ ν−1/3(1 + |y|)−1/4; y = (1/2)ν2/3 tan2 β

When β ≤ ν−1/3, |y| - 1 and |b| ≈ ν−1/3. When β ≥ ν−1/3,

|b(ν, β)| ≈ ν−1/3(ν2/3β2)−1/4 ≈ ν−1/2β−1/2

Parts (b) and (c) of Proposition 4.12 are proved as follows. Differentiating (4.12)
gives

|∂νb(ν, β)| - β3ν−1/3|A(t)|+ ν−2/3β2|A′(t)| - min(ν−1/2β5/2, ν−4/3)

and
|∂βb(ν, β)| - ν2/3β2|A(t)|+ ν1/3β|A′(t)| - min(ν1/2β3/2, ν1/3β)

Proposition 4.12 (a) and (4.21) imply Corollary 4.3.
Finally, we discuss the range π/4 ≤ β < π/2 and beyond. To formulate this we

return to the variables (x, n). Fix c > 0 and let β0 > 0 be the smallest number such
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that cosβ0 = 1/(1 + c). Let β1, π/2 < β1 < π satisfy cosβ1 = −1/4. For x ≥ 1,
n ≥ −1/4 and x ≥ (1 + c)n, define β(x, n) as the unique number β0 ≤ β ≤ β1 such
that x cosβ = n.

Proposition 4.13. Let x ≥ 1, n ≥ −1/4 and x ≥ (1+c)n for a fixed c > 0. Define
ã(x, n) by

Hn(x) = ei(x sin β−nβ)ã(x, n).
with β = β(x, n) defined above. Then

|∂jx∂knã(x, n)| - x−1/2−j−k

To explain the connection with the previous notation, if ν = n and x = ν secβ,
then a(ν, β) = ã(x, n). The distinction between the coordinate systems is that
∂ν is the derivative with β (or equivalently x/ν fixed), whereas ∂n represents the
derivative with x held fixed. The ∂ν direction is special when β is near 0 and the ∂n
direction is special when β is near π/2. The estimates we carried out in the range
u0 ≤ β ≤ π/4 can be extended to β → π/2, but they require additional factors of
secβ which tends to infinity. They do not suffice: In the eventual analysis of the
behavior of zeros ρ(m,n), the range x = ρ(m,n) ≥ (1 + c)n corresponds to m ≥ cn
and estimates in the (ν, β) coordinates give rise to error terms of size O(1/n) when
what is needed is O(1/m) = O(1/ρ).

Proposition 4.13 was already proved in the case n ≥ 0, j = 0, k = 0, 1, 2 in
Theorem 9.1 (i) of [IJ]. (In the notation ax(ν) of [IJ], ν = n, ax(n)x−1/4(x −
n)−1/4 = ã(x, n), and in the range of variables specified here, x − n ≈ x.) The
full proof of Proposition 4.13 follows the same procedure as in [IJ] pp. 1068–1072,
with the only extra ingredient being the systematic treatment of derivatives of all
orders, which was already carried out above in the very similar proof of the symbol
estimates for a(ν, β) in Proposition 4.1 (a). These details will be omitted. We call
attention to one difference. The integrals in the proof of Proposition 4.1 involve
e−νrdr as ν → ∞, whereas in the proof of Proposition 4.13, (following [IJ]) the
integrals involve e−xrdr and x→∞. We mention this in order to explain why the
proof is unchanged when the range of n is extended from n = ν ≥ 0 to n ≥ −1/4.
The range n ≤ 0 would be problematic for integrals on 0 < r <∞ involving e−nrdr,
but these integrands are replaced by ones involving e−xrdr with x ≥ 1.

5. Asymptotics of arg Jn + iYn and of the zeros of Bessel functions

Denote Hn(x) = Jn(x) + iYn(x). It is well known that for all real numbers n,
|Hn(0+)| =∞ and |Hn(x)| is a decreasing function of x for x > 0 (Watson [W] p.
446). Moreover,

∂x arg(Hn(x)) = Im
H ′n(x)
Hn(x)

=
J ′n(x)Yn(x)− Y ′n(x)Jn(x)

Jn(x)2 + Yn(x)2
=

2
πx|Hn(x)|2

> 0

Therefore, for all real values of n, as x > 0 increases, Hn(x) traces a simple spiral
counterclockwise in the complex plane. To choose a well-defined branch of the
argument

θ(x, n) = arg(Hn(x))
note that Yn(x) = (Jn(x) cos(nπ) − J−n(x))/ sin(nπ) and one has the asymptotic
formula Jn(x) ∼ (x/2)n/Γ(n+ 1) as x→ 0+. We deduce that for n ≥ 0,

Hn(x)/|Hn(x)| → −i = e−iπ/2 as x→ 0+
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whereas for 0 ≤ n ≤ −1/2,

Hn(x)/|Hn(x)| → − sinnπ − i cosnπ = e−i(n+1/2)π as x→ 0+

Therefore, for x > 0 sufficiently small Hn(x) is in the 4th quadrant. and a consistent
definition of the branch is given by

θ(0+, n) = −π/2 (n ≥ 0)

and
θ(0+, n) = −(n+ 1/2)π 0 ≥ n ≥ −1/2

It then follows that the mth positive zero of Jn(x) satisfies

(5.1) θ(ρ(m,n), n) = mπ − π/2

for m = 1, 2, . . . . This implicit equation can then be used to extend the definition
of ρ(m,n) for all real m and n satisfying m+ n > 0.

Next, we establish a few preliminary upper and lower bounds for ρ(m,n). It
follows from the fact that ∂xθ(x, n) > 0 that ρ(m,n) well-defined and infinitely
differentiable. In the range |n| ≤ 1/4, the formula for ∂xθ(x, n) and the estimates
|Hn(x)| - x−1/4 in 0 < x < 1 and |Hn(x)| - x−1/2 in 1 ≤ x <∞ imply that

(5.2) ρ(m,n) ≈ m (m ≥ 1/2, |n| ≤ 1/4)

In the range n ≥ 1/4, m ≥ 3/4, we prove (well-known) upper and lower bounds

(5.3) ρ(m,n)− n ≈ m+m2/3n1/3

Let n > 0, then according to [W] (p. 485–487), n < yn where yn = ρ(1/2, n) is the
smallest positive zero of Yn(x). Since θ(yn, n) = 0,

mπ − π/2 =
� ρ(m,n)

yn

∂xθ(x, n) dx

For all n ≥ 1/4, |Hn(x)| ≈ n−1/3 in n ≤ x ≤ n + n1/3 and |Hn(x)| ≈ x−1/4(x −
n)−1/4 in x ≥ n+n1/3. These estimates along with the formula for ∂xθ(x, n) above
yield (5.3).

To prove Theorem 2.3, we require symbol estimates for θ(x, n) expressed in terms
of the variables (β, ν) with x = ν secβ, n = ν.

Lemma 5.1. Denote
σ(ν, β) = θ(ν secβ, ν)

There is an absolute constant C such that if Cν−1/3 ≤ β ≤ π/4, then
a) |∂jν∂kβ [σ(β, ν)− ν(tanβ − β)]| - ν−jβ−k j + k ≥ 1
b) |∂jν∂kβ [σ(β, ν)| - ν1−jβ3−k j + k ≥ 1

In the transition region, where c ≤ νβ3 ≤ C, for some absolute constants 0 <
c < C < ∞ more detailed asymptotics are required. Denote y = (ν2/3 tan2 β)/2
and define the derivative of argA(y) by

B(y) = Im
A′(y)
A(y)

= Im
u(y)v′(y)− u′(y)v(y)

|A(y)|2

where A(y) = u(y)+ iv(y) is the Airy function in (4.13). The asymptotic expansion
for σ(ν, β) is given by
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Lemma 5.2. If j + k ≥ 1, then

a) ∂νσ =
1
3

(ν−1/3 tan2 β)B(y)(1 +O(β2 + ν−4/3β−2))

b) ∂βσ = (ν2/3 tanβ sec2 β)B(y)(1 +O(β2 + ν−1β−1))

Proof of Lemma 5.1. First note that the definition of σ and (4.1) imply

∂βσ = (sec2 β − 1)ν + Im
∂βa

a

and

∂νσ = (tanβ − β) + Im
∂νa

a
Thus Lemma 5.1 follows from Proposition 4.1 and Corollary 4.3.

Next, we prove Lemma 5.2.

∂νσ = tanβ − β + Im(∂νa/a)

= tanβ − β + Im(∂νb/b) + Im[(∂νa− ∂νb)/a] + Im[(∂νb)(1/a− 1/b)]

= tanβ − β + Im(∂νb/b) +O(|∂ν(a− b)|/|a|+ |∂nb||a− b|/|ab|)

= tanβ − β + Im(∂νb/b) +O((β + ν−1/3)5)

Moreover (with y = (ν2/3 tan2 β)/2), and recalling that B(y) = Im(A′(y)/A(y)),

Im
∂νb

b
= − tan3 β/3 +

ν−1/3

3
tan2 βB(y)

and tanβ − β − (tan3 β)/3 - β5. Thus,

∂νσ =
ν−1/3

3
tan2 βB(y) +O((β + ν−1/3)5)

Similarly,

∂βσ = ν(sec2 β − 1) + Im(∂βa/a)

= ν[sec2 β − 1 + Im(∂βb/b) + Im[(∂βa− ∂βb)/a] + Im[(∂βb)(1/a− 1/b)]

= ν[sec2 β − 1] + Im(∂βb/b) +O(ν(β + ν−1/3)4)

Moreover,

Im
∂βb

b
= −ν tan2 β sec2 β + ν2/3(tanβ)(sec2 β)B(y)

Since ν[sec2 β − 1]− ν tan2 β sec2 β - νβ4,

∂βσ = ν2/3(tanβ)(sec2 β)B(y) +O(ν(β + ν−1/3)4)

Finally, in order to write the error as a multiplicative expression, we use |B(y)| ≈
(1 + y)1/2 which follows from the upper and lower bounds on A(y) and A′(y) (and
ultimately from the Wronskian formula).

We can now deduce Theorem 2.3 from Lemmas 5.1 and 5.2. Consider the func-
tions ν and β of n and m defined by

ν = n; cosβ = n/ρ(m,n)

For 3/4 ≤ m ≤ 3n, ρ(m,n)− n ≈ m2/3n1/3 implies

β(m,n) ≈ (m/n)1/3 if 3/4 ≤ m ≤ 3n

νβ2 ≈ m2/3n1/3 =⇒ β ≈ (m/n)1/3
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In particular when m ≥ 3/4, β ≥ cn−1/3 for some small absolute constant c > 0.
We will be treating three ranges of β in different ways. One is the transition region
where cn−1/3 ≤ β ≤ Cn−1/3 where C is a large constant. The second is the region
Cn−1/3 ≤ β ≤ β0 for some small absolute constant β0, and the third is the classical
region β0 ≤ β. We will never need to consider β smaller than cn−1/3.

Differentiating σ(ν, β) = mπ − π/2, we find the implicit formulas

∂nβ =
−∂νσ
∂βσ

; ∂mβ =
π

∂βσ

We are going to prove by induction the property Q(j, k) that says that for all
0 ≤ `1 ≤ j and all 0 ≤ `2 ≤ k,

|∂`1m∂`2n β| - β1−3`1ρ−`1−`2(≈ m1/3−`1n−1/3−`2)

(β ≈ (m/n)1/3) The property Q(0, 0) is trivial. For Q(0, 1), observe that by Lemma
5.2

(5.4)
∂νσ

∂βσ
=

ν−1/3 tan2 β

3ν2/3 tanβ secβ
(1 +O(β2 + ν−4/3β−2))

Moreover,
∂nβ = O(βν−1); ∂mβ = O(β−2ν−1)

The proof of Q(1, 0) is similar. Suppose that Q(j, k) is valid. Differentiating the
implicit formula for ∂jm∂

k
nβ with respect to m, there are three types of things that

can happen. First the derivative falls on the denominator, which is a power of ∂βσ,
in which case the expression is multiplied by a constant times

(∂2
βσ)∂mβ
∂βs

But recall that |∂βσ| % β2ν, |∂2
βσ| - βν, and |∂mβ| - β−2ν−1 so that the product

is majorized by β−3ν−1. This is the new factor required for the estimate Q(j+1, k).
If the derivative falls on the numerator, then it may increase the degree of differen-
tiation on a derivative of β, but always below the level of the induction hypothesis.
Replacing a derivative of β by one derivative higher yields a change in estimation
of the whole by the appropriate factor β−3ν−1. Finally, the differentiation may
land on a derivative of Dσ. This replaces Dσ by (∂βDσ)∂mβ, so the change in
the estimation is the same (difference between Dσ and ∂βDσ is a factor β−1 and
∂mβ is bounded by β−2ν−1. Again the product is β−3ν−1, which is the factor we
want. Similarly, to prove Q(j, k + 1), differentiation with respect to n produces an
estimate that differs by the factor ν−1 from the bound for Q(j, k).

Next we can use Q(j, k) to prove the property P (j, k) that for all 0 ≤ `1 ≤ j and
all 0 ≤ `2 ≤ k,

|∂`1m∂`2n (ρ(m,n)− n)| - β2−3`1ρ1−`1−`2(≈ m2/3−`1n1/3−`2)

In fact, implicit differentiation of ρ cosβ = n with respect to n and with respect to
m gives

∂nρ− 1 = (secβ − 1) + ρ(tanβ)∂nβ
and

∂mρ = ρ(tanβ)∂mβ
The induction argument is similar to the proof of Q(j, k) and is left to the reader.
This concludes Theorem 2.3 (a).
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We turn now to the lower bound (Theorem 2.3 b).

∂nρ− 1 = (secβ − 1) + ρ(tanβ)∂nβ

= (secβ − 1)− ρ(tanβ)
∂νσ

∂βσ

=
1
2
β2 +O(β4)− 1

3
sinβ tanβ(1 +O(β2 + ν−4/3β−2)

=
1
6
β2 +O(β4 + ν−4/3)

Note that we need the precise asymptotics because the lower bound of order
β2 ≈ m2/3n−2/3 requires the coefficient 1/2 − 1/3 = 1/6 > 0. The error term
is lower order if β << 1 and n−4/3 << β2. Thus we have Theorem 2.3 (b) for n
sufficiently large, in which case ν−2/3 << β ≤ Cν−1/3. We do not need smaller
values of β, because for m ≥ 1/20, and β defined implicitly in terms of ρ(m,n),
β ≈ (m/n)1/3 >> ν−2/3.

At last, here are some details of the much simpler estimates in what we are
calling the classical region. Let n ≥ 1 and x ≥ (1 + c)n. Then we are in the range
in which (x − n) ∼ x. As suggested in the remark of [IJ] p. 1069, following the
methods above one finds

Hn(x) = x−1/4(x− n)−1/4ei(x sin β−nβ)s(x, n)

where β(x, n) is defined by x cosβ = n and s(x, n) satisfies

|∂jx∂kns(x, n)| - x−j−k

Moreover, it is well-known that |s(x, n)| > c > 0. It follows that θ(x, n) = argHn(x)
(defined using any appropriate branch) satisfies

θ(x, n) = x sinβ − nβ + E(x, n)

where E(x, n) is a symbol satisfying

|∂jx∂knE(x, n)| - x−j−k

It is not hard to extend this estimate to negative values of n. Indeed the remaining
range of n is the range −1/2 ≤ n ≤ 1. For a fixed range of the parameter n,
the Hankel formula for Hn(x) ([W] pp. 196–198) may be used. Let x ≥ 1 and
−1/2 ≤ n ≤ x cosβ0, where β0 is a small, fixed constant. Then since β0 > 0,
x ≥ (1 + c)n for some c > 0 and we are in the range in which (x− n) ' x.

One calculates that

∂xβ =
n

x2 sinβ
; ∂nβ = − 1

x sinβ

and
∂nθ = −β + ∂nE; ∂xθ + ∂xE

Differentiating the implicit equation for ρ(m,n)

θ(ρ(m,n), n) = mπ − π/2

with respect to m and n, we find

∂mρ =
π

∂xθ(ρ(m,n), n)
=

π

sinβ
+ F1(ρ, n)
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and

∂nρ = −∂nθ(ρ(m,n), n)
∂xθ(ρ(m,n), n)

=
β

sinβ
+ F2(ρ, n)

with F1 and F2 satisfying

|∂jρ∂knF (ρ, n)| - ρ−1−j−k

and ρ cosβ = n, β0 ≤ β ≤ π/2 + ε (β extends a small amount beyond π/2 to
accomodate the negative values of n — we only care about ρ sufficiently large, so
ε can be arbitrarily small.)

Finally, this implicit asymptotic formula for ρ(m,n) can be differentiated many
times expressing derivatives of ρ(m,n) in terms of lower derivatives. This yields

|∂jm∂knρ(m,n)| - ρ1−j−k ≈ m1−j−k

for all m ≥ 100+cn for a small fixed c > 0. For the asymptotic gradient we already
have the implicit formula

(∂mρ, ∂nρ) = (π/ sinβ, β/ sinβ) + F (ρ, n)

with F a symbol of order -1 as above. Thus of order O(1/m) since ρ ≈ m in this
range. We also have the implicit equation for ρ that gives us β as a function of ρ
as follows:

n(tanβ − β) + E(ρ, n) = mπ − π/2
so that (ρ cosβ = n)

tanβ − β =
mπ

n
(1− (E + π/2)/πm) =

mπ

n
(1−O(1/m))

Thus if we define α(m,n) by

tanα− α = πm/n

(across π/2 as needed is perfectly ok) then α = β + O(1/m) and we get the as-
ymptotic formula we wanted. (We can also characterize the error term as a symbol
rather than with a bound, but we don’t need this.)

6. Final Remarks

The length spectrum of the disk is far from generic. The regular k-gon trajectory
on the disk can be rotated around the circle giving a one-parameter family of
periodic geodesics of the same length, whereas in general the length of the geodesic
with k reflections varies depending on where its vertices are. Nevertheless, we expect
that the contribution to the wave trace at times t greater or equal to the perimeter
from this family of k-reflection periodic trajectories resembles the effect of the family
of regular k-gons in the case of the circle. Indeed the almost integrable behavior of
the dyamical system of geodesic flow on convex planar regions near the generalized
geodesic that follows the boundary has been treated in detail by Lazutkin [L] and by
Melrose and Marvisi [MM]. Moreover, as we saw above, the asymptotics depended
in a fundamental way on nondegeneracy conditions on derivatives of Airy functions.
This is a hopeful sign, since general microlocal constructions of the parametrix of
the wave equation near the boundary also involve Airy functions [AM, MS, MT].

As already mentioned, certain symbol properties of Bessel functions Jν(x) as a
function of the two variables x and ν were already proved in Ionescu and Jerison in
[IJ]. There are three features of the treatment in [IJ] that are not enough for our
purposes here. First, there is the minor point that we need bounds on derivatives of
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all orders, not just the first two. Second, the full symbol-type estimates (conjectured
in [IJ], p. 1069) while valid are not sufficient here. Those bounds are for derivatives
in the variables (x, ν), whereas for the present purpose in the range ν ≤ x ≤ 2ν,
especially when x is near ν, it is necessary to distinguish a special directional
derivative, namely, the derivative with respect to ν with the ratio x/ν held fixed
(or equivalently with β defined by cosβ = ν/x held fixed). Third, [IJ] treats only
upper bounds on Jν(x)+ iYν(x) and its derivatives. We need both upper and lower
bounds on the argument and its derivatives, which require detailed asymptotics,
not just bounds on the Bessel functions and their first derivatives.
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