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Abstract

Central limit theorem: In previous works, we showed that the internal
DLA cluster on Zd with t particles is a.s. spherical up to a maximal error of
O(log t) if d = 2 and O(

√
log t) if d ≥ 3. This paper addresses “average error”:

in a certain sense, the average deviation of internal DLA from its mean shape
is of constant order when d = 2 and of order r1−d/2 (for a radius r cluster)
in general. Appropriately normalized, the fluctuations (taken over time and
space) scale to a variant of the Gaussian free field.

Smoother than lattice balls: In some ways, internal DLA clusters in
high dimensions grow even more smoothly than the lattice balls Zd ∩ Br(0).
The fluctuations of the latter are related to famous problems in number theory
(including Gauss’s circle and ball problems). These number theoretic fluctua-
tions (while very small) are much larger than those produced by the randomness
associated to internal DLA.
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1 Introduction

1.1 Overview

We study the scaling limits of internal diffusion limited aggregation (“internal DLA”),
a growth model introduced in [MD86, DF91]. In internal DLA, one inductively con-
structs an occupied set At ⊂ Zd for each time t ≥ 0 as follows: begin with
A0 = ∅, A1 = {0} and let At+1 be the union of At and the first place a random walk
from the origin hits Zd \At.

The purpose of this paper is to study the growing family of sets At. Let A∗t ⊂ Rd

be the union of the unit cubes centered at points of At. Following the pioneering
work of [LBG92], it is by now well known that, for large t, the set A∗t approximates
an origin-centered Euclidean ball Br(0) (where r = r(t) is such that Br(0) has
volume t). The authors recently showed that this is true in a fairly strong sense
[JLS09, JLS10a, JLS10b]: the maximal distance of a point on ∂A∗t from ∂Br(0) is
a.s. O(log t) if d = 2 and O(

√
log t) if d ≥ 3. In fact, if C is large enough, the

probability of an error of C log t (or C
√

log t when d ≥ 3) decays faster than any
fixed (negative) power of t. Some of these results are obtained by different methods
in [AG10a, AG10b].

This paper will ask what happens if, instead of considering the maximal gap
between ∂A∗t from ∂Br(0) at time t, we consider the “average error” at time t
(allowing inner and outer errors to cancel each other out). It turns out that in a
distributional “average fluctuation” sense, the set A∗t deviates from Br(0) by only
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a constant number of lattice spaces when d = 2 and by an even smaller amount
when d ≥ 3. Appropriately normalized, the fluctuations of At, taken over time and
space, define a distribution on Rd that converges in law to a variant of the Gaussian
free field (GFF): a random distribution on Rd that we will call the augmented
Gaussian free field. (It comes from the GFF by replacing variances associated
to spherical harmonics of degree ` by variances associated to spherical harmonics of
degree `+ 1; see Section 1.5.)

The “augmentation” is related (as discussed below) to the curvature of the
sphere. (Though we do not prove this here, we expect that continuous time in-
ternal DLA on the half cylinder [0, . . . ,m]d−1×Z+, with particles started uniformly
on the bottom level, produces clusters whose boundaries are approximately flat
cross-sections of the cylinder, with fluctuations that scale to the ordinary GFF on
the half cylinder as m→∞.) To our knowledge, this result has not been previously
suggested in either the physics or the mathematics literature.

Nonetheless, the heuristic idea is easy to explain. Write a point z ∈ Rd as rθ
where |θ| = 1. Suppose that at each time t the boundary of At is approximately
parameterized by rt(θ)θ for a function rt on the unit disc. How do we expect the
discrepancy r̄t between rt and its expectation to evolve in time? First, there is a
smoothing effect coming from the fact that places where r̄t is small are more likely
to be hit by the random walks (hence more likely to grow in time). Second, there
is another smoothing effect coming from the curvature of the sphere, which implies
that even if particles hit all angles with equal probability, the magnitude of the
fluctuations in r̄t would shrink as t increased and these fluctuations were averaged
over larger spheres. And finally, there is a space-time white noise term coming from
the randomness of the particles.

The white noise should correspond to adding independent Brownian noise terms
to the spherical Fourier modes of r̄t. The rate of smoothing in time should be
approximately given by Λr̄t for some linear operator Λ. Since the random walks
approximate Brownian motion (which is rotationally invariant), we would expect
Λ to commute with orthogonal rotations, and hence have spherical harmonics as
eigenfunctions. With the right normalization and parameterization, it is therefore
natural to expect the spherical Fourier modes of r̄t to evolve as independent Brow-
nian motions subject to linear “restoration forces” depending on their degrees. It
turns out that the restriction of the (augmented) GFF on Rd to a centered volume
t sphere evolves in time in a similar way.

Of course, as stated above, the spherical Fourier modes of r̄t have not really been
defined (since the boundary of At generally cannot be parameterized by rt(θ)θ). The
key to our construction is to define related quantities that (in some sense) encode
the Fourier modes of r̄t and are easy to work with. These quantities will turn out
to be martingales obtained by summing discrete harmonic polynomials over At.
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1.2 FKG inequality statement

Before we set about formulating our central limit theorems precisely, we mention a
previously overlooked fact. Suppose that we run internal DLA in continuous time
by adding particles at Poisson random times instead of at integer times: this process
we will denote by AT (t) (or often just AT ) where T (t) is the counting function for a
Poisson point process in the interval [0, t] (so T (t) is Poisson distributed with mean
t). We then view the IDLA growth process as a (random) function on [0,∞)× Zd,
which takes the value 1 or 0 on the pair (t, x) accordingly as x ∈ AT (t) or x /∈
AT (t). Write F for the set of all functions [0,∞) × Zd → {0, 1}, endowed with the
coordinate-wise partial ordering.

Theorem 1.1. (FKG inequality) For any two increasing L2 functions F,G : F →
R, the random variables F ({AT (t)}t≥0) and G({AT (t)}t≥0) are nonnegatively corre-
lated.

One example of an increasing function is the total number of particles absorbed
at a fixed time t. Another is −1 times the smallest t which all of the particles in
some fixed set are occupied. Intuitively, Theorem 1.1 means that if one point is
absorbed at an early time, then it is conditionally more likely for all other points to
be absorbed early. The FKG inequality is an important feature of the discrete and
continuous Gaussian free fields [She07], so it is interesting (and reassuring) that it
appears in internal DLA at the discrete level.

Note that sampling a continuous time internal DLA cluster at time t is equivalent
to first sampling a Poisson random variable T with expectation t and then sampling
an ordinary internal DLA cluster with T particles. (By the central limit theorem,
|t−T | has order

√
t with high probability.) Although using continuous time amounts

to only a modest time reparameterization (chosen independently of everything else)
it is sometimes aesthetically natural. Our use of “white noise” in the heuristic of the
previous section implicitly assumed continuous time. (Otherwise the noise would
have to be conditioned to have mean zero at each time.)

1.3 Main results in dimension two

For x ∈ Z2 write
F (x) := inf{t : x ∈ AT (t)}

and
L(x) :=

√
F (x)/π − |x|.

In words, L(x) is the difference between the radius of the area t disc — at the time
t that x was absorbed into AT — and |x|. It is a measure of how much later or
earlier x was absorbed into AT than it would have been if the sets AT (t) were exactly
centered discs of area t. By the main result of [JLS10a],

|L(x)| = O(log |x|),
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Figure 1: Left: Continuous-time IDLA clusterAT (t) for t = 105. Early points (where
L is negative) are colored red, and late points (where L is positive) are colored blue.
Right: The same cluster, with the function L(x) represented by blue-red scaling.

almost surely.
The coloring in Figure 1(a) indicates the sign of the function L(x), while Fig-

ure 1(b) provides a more nuanced illustration of L(x). Note that the use of con-
tinuous time means that the average of L(x) over x may differ substantially from
0. Indeed we see that — in contrast with the corresponding discrete-time figure of
[JLS10a] — there are noticeably fewer early points than late points in Figure 1(a),
which corresponds to the fact that in this particular simulation T (t) was smaller
than t for most values of t. Since for each fixed x ∈ Z2 the quantity L(x) is a
decreasing function of At(x), the FKG inequality holds for L as well. The positive
correlation between values of L at nearby points is readily apparent from the figure.

Identify R2 with C and let H0 be the linear span of the set of functions on
C of the form Re(azk)f(|z|) for a ∈ C, k ∈ Z≥0, and f smooth and compactly
supported on R>0. The space H0 is obviously dense in L2(C), and it turns out to
be a convenient space of test functions. The augmented GFF (and its restriction to
∂B1(0)) will be defined precisely in Section 1.5.

Theorem 1.2. (Weak convergence of the lateness function) As R→∞, the rescaled
functions on R2 defined by GR((x1, x2)) := L((bRx1c, bRx2c)) converge to the aug-
mented Gaussian free field h in the following sense: for each set of test functions
φ1, . . . , φk in H0, the joint law of the inner products (φj , GR) converges to the joint
law of (φj , h).
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Theorem 1.3. (Fluctuations from circularity) Let A∗t ⊂ R2 be the union of the unit
squares centered at points of At. Consider the random discrepancy function on R2

given by
Et :=

√
t
(
1√

π/tA∗t
− 1B1(0)

)
.

As t → ∞, these functions converge (in the same sense as in Theorem 1.2) to the
restriction of the augmented GFF to ∂B1(0). The latter restriction is absolutely
continuous with respect to the restriction of the ordinary GFF on R2 to ∂B1(0)
(where an additive constant for the latter is chosen so that the mean on ∂B1(0) is
zero).

1.4 Main results in general dimensions

We do not expect the exact analog of Theorem 1.2 to be true for large d. The
main reason for this is that the lattice balls themselves do not grow very smoothly
in high dimensions. By classical number theory results, the size of Br(0) ∩ Zd is
approximately the volume of Br(0) — but with errors of order rd−2 in all dimensions
d ≥ 5. The errors in dimension d = 4 are of order rd−2 times logarithmic correction
factors. It remains a famous open number theory problem to estimate the errors
when d ∈ {2, 3}. (When d = 2 this is called Gauss’s circle problem.) A recent and
detailed survey of this subject appears in [IKKN04].

The results mentioned above imply that even if points were added to At precisely
in order of their radius, we would find gaps between the radius of At and the radius of
the ball Br(0) of volume t, gaps of order at least r−1 if d ≥ 4. On the other hand, we
will see that the kinds of fluctuations that emerge from internal DLA randomness
are of the order that one would obtain by spreading an extra

√
t particles over

a constant fraction of the spherical boundary, which is also what one obtains by
changing the radius (along some or all of the boundary) by r1−d/2. This is of course
much smaller than r−1 whenever d > 4.

Fortunately, there is another way of formulating a central limit theorem for
internal DLA that is both natural and amenable to proof in any dimension. This
formulation requires that we define and interpret the (augmented) Gaussian free
field in a particular way.

Given smooth real-valued functions f and g on Rd, write

(f, g)∇ =
∫

Rd
∇f(z) · ∇g(z)dz. (1)

Given a bounded domain in Rd, let H(D) be the Hilbert space closure in (·, ·)∇
of the set of smooth compactly supported functions on D. We define H = H(Rd)
analogously except that the functions are taken modulo additive constants. The
Gaussian free field (GFF) is defined formally by

h :=
∞∑
i=1

αifi, (2)
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where the fi are any fixed (·, ·)∇ orthonormal basis for H and the αi are i.i.d. mean
zero, unit variance normal random variables. (One also defines the GFF on D
similarly, using H(D) in place of H.) The augmented GFF will be defined similarly
below, but with a slightly different inner product.

Since the sum a.s. does not converge within H, one has to think a bit about
how h is defined. Note that for any fixed f =

∑
βifi ∈ H, the quantity (h, f)∇ :=∑

(αifi, f)∇ =
∑
αiβi is almost surely finite, and has the law of a centered Gaussian

with variance ‖f‖∇ =
∑
|βi|2. However, there a.s. exist some functions f ∈ H for

which the sum does not converge, and (h, ·)∇ cannot be considered as a continuous
functional on h. Rather than try to define (h, f)∇ for all f ∈ H, it is often more
convenient and natural to focus on some subset of f values (with dense span) on
which f → (h, f)∇ is a.s. a continuous function (in some topology). Here are some
sample approaches to defining a GFF on D:

1. h as a random distribution: For each smooth, compactly supported φ,
write (h, φ) := (h,−∆−1φ)∇, which (by integration by parts) is formally the
same as

∫
h(z)φ(z)dz. This is almost surely well defined for all such φ and

makes h a random distribution [She07]. (If D = Rd and d = 2, one requires∫
φ(z)dz = 0, so that (h, φ) is defined independently of the additive constant.

When d > 2 one may fix the additive constant by requiring that the mean of
h on Br(0) tends to zero as r →∞ [She07].)

2. h as a random continuous (d + 1)-real-parameter function: For each
ε > 0 and z ∈ Rd, let hε(z) denote the mean value of h on ∂Bε(z). For each
fixed z, this hε(z) is a Brownian motion in time parameterized by − log ε in
dimension 2, or −ε2−d in higher dimensions [She07]. For each fixed ε, hε can
be thought of as a regularization of h (a point of view used extensively in
[DS10]).

3. h as a family of “distributions” on origin-centered circles: For each
polynomial function ψ on Rd and each time t, define Φh(ψ, t) to be the integral
of hψ over ∂Br(0) where Br(0) is the origin-centered ball of volume t. We
actually lose no generality in requiring ψ to be a harmonic polynomial on Rd,
since the restriction of any polynomial to ∂Br(0) agrees with the restriction
of a (unique) harmonic polynomial.

The latter approach turns out to be particularly natural for our purposes. Using
this approach, we will now give our first definition of the augmented GFF: it is the
centered Gaussian function Φh for which

Cov
(
Φh(ψ1, t1),Φh(ψ2, t2)

)
=
∫
Br(0)

ψ1(z)ψ2(z)dz, (3)
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where Br(0) is the ball of volume min{t1, t2}. In particular, taking ψ1 = ψ2 = ψ,
then we find that

Var
(
Φh(ψ, t)

)
=
∫
Br(0)

ψ(z)2dz. (4)

Though not immediately obvious from the above, we will see in Section 1.5 that
this definition is very close to that of the ordinary GFF. Now, for each integer
m and harmonic polynomial ψ, we will write ψm(x) for the discrete polynomial
on 1

mZd (defined precisely in Section 2.2) that approximates ψ in the sense that
for each fixed ψ, we have |ψm(x) − ψ(x)| = O(|x|d/m2). In particular, if we fix
ψ and limit our attention to x in a fixed bounded subset of Rd, then we have
|ψm(x)−ψ(x)| = O(1/m2). Let G denote the grid comprised of the edges connecting
nearest neighbor vertices of Zd. (As a set, G consists of the points in Rd with at
most one non-integer coordinate.) As in [JLS10a], we extend the definition of ψm
to G by linear interpolation.

Now write

Φm
A (ψ, t) :=

(
m−d/2

∑
x∈Zd

ψm(x)Amdt(mx)
)
− tψm(0) (5)

= m−d/2
∑
x∈At

ψm(x/m)− tψm(0). (6)

This is a way of measuring the deviation of Amdt from circularity.

Theorem 1.4. Let h be the augmented GFF, and Φh as discussed above. Then the
random functions Φm

A converge in law to Φh (w.r.t. the smallest topology that makes
Φ→ Φ(ψ, t) continuous for each ψ and t). In other words, for each finite collection
of pairs (ψ, t), the joint law of Φm

A on this set converges in law to the joint law of
Φh evaluated on the same set.

1.5 Comparing the GFF and the augmented GFF

We may write a general vector in Rd as rθ where r ∈ [0,∞) and θ ∈ Sd−1 := ∂B1(0).
We write the Laplacian in spherical coordinates as

∆ = r1−d
∂

∂r
rd−1 ∂

∂r
+ r−2∆Sd−1 . (7)

Let A` denote the space of all homogenous harmonic polynomials of degree ` in d
variables, and let H` denote the space of functions on Sd−1 obtained by restriction
from A`. If f ∈ H`, then we can write f(rθ) = g(θ)r` for a function g ∈ H`, and
setting (7) to zero at r = 1 yields

∆Sd−1g = −`(`+ d− 2)g,

i.e., g is an eigenfunction of ∆Sn−1 with eigenvalue −`(` + d − 2). Note that (7)
continues to be zero if we replace ` with the negative number `′ := −(d − 2) − `,
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since the expression −`(`+d− 2) is unchanged by replacing ` with `′. Thus, g(θ)r`
′

is also harmonic on Rd \ {0}.
Now, suppose that g is normalized so that∫

Sd−1

g2(z)dz = 0.

By scaling, the integral of f over ∂BR(0) is thus given by Rd−1R2`. The L2 norm
on all of BR(0) is then given by∫

BR(0)
f(z)2dz =

∫ R

0
rd−1r2`dr =

Rd+2`

d+ 2`
. (8)

A standard identity states that the Dirichlet energy of g, as a function on Sd−1,
is given by the L2 inner product (−∆g, g) = `(`+d−2). The square of ‖∇f‖ is given
by the square of its component along Sd−1 plus the square of its radial component.
We thus find that the Dirichlet energy of f on BR(0) is given by∫

BR(0)
‖∇f(z)‖2dz = `(`+ d− 2)

∫ R

0
rd−1r2(`−1)dr +

∫ R

0
rd−1r2(`−1)`2dr

=
`(`+ d− 2)
2`+ d− 2

R2`+d−2 +
`2

2`+ d− 2
R2`+d−2

=
2`2 + (d− 2)`
2`+ (d− 2)

R2`+d−2

= `R2`+d−2.

Now suppose that we fix the value of f on ∂BR(0) as above but harmonically
extend it outside of BR(0) by writing f(rθ) = R`−`

′
g(θ)r`

′
for r > R. Then the

Dirichlet energy of f outside of BR(0) can be computed as

R2(`−`′)`(`+ d− 2)
∫ ∞
R

rd−1r2(`′−1)dr +R2(`−`′)
∫ ∞
R

rd−1r2(`′−1)(`′)2dr,

which simplifies to

−`
2 + `(d− 2) + (`′)2

2`′ + (d− 2)
R2`+d−2 = −

`2 + `(d− 2) +
(
`+ (d− 2)

)2
2(−`− (d− 2)) + (d− 2)

R2`+d−2

= −2`2 + 3`(d− 2) + (d− 2)2

−2`− (d− 2)
R2`+d−2

= (`+ d− 2)R2`+d−2.

Combining the inside and outside computations in the case R = 1, we find that
the harmonic extension f̃ of the function given by g on Sd−1 has Dirichlet energy
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2`+ (d− 2). If we decompose the GFF into an orthonormal basis that includes this
f̃ , we find that the component of f̃ is a centered Gaussian with variance 1

2`+(d−2) .

If we replace f̃ with the harmonic extension of g(R−1θ) (defined on ∂BR(0)), then
by scaling the corresponding variance becomes 1

2`+(d−2)R
2−d.

Now in the augmented GFF the variance is instead given by (8), which amounts
to replacing 1

2`+(d−2) with 1
2`+d . Considering the component of g(R−1θ) in a basis

expansion the space of functions on ∂BR(0) requires us to divide (8) by R2` (to
account for the scaling of f) and by (Rd−1)2 (to account for the larger integration
area), so that we again obtain a variance of 1

2`+dR
2−d for the augmented GFF,

versus 1
2`+(d−2)R

2−d for the GFF.
In light of Theorem 1.3, the following implies that (up to absolute continuity)

the scaling limit of fixed-time At fluctuations can be described by the GFF itself.

Proposition 1.5. When d = 2, the law ν of the restriction of the GFF to the unit
circle (minus a constant, so that the mean is zero) is absolutely continuous w.r.t.
the law µ of the restriction of the augmented GFF restricted to the unit circle.

Proof. The relative entropy of a Gaussian of density e−x
2/2 with respect to a Gaus-

sian of density σ−1e−x
2/(2σ2) is given by

F (σ) =
∫
e−x

2/2
(
(σ−2 − 1)x2/2 + log σ

)
dx = (σ−2 − 1)/2 + log σ.

Note that F ′(σ) = −σ−3 + σ−1, and in particular F ′(1) = 0. Thus the relative
entropy of a centered Gaussian of variance 1 with respect to a centered Gaussian
of variance 1 + a is O(a2). This implies that the relative entropy of µ with respect
to ν — restricted to the jth component αj — is O(j−2). The same holds for the
relative entropy of ν with respect to µ. Because the αj are independent in both µ
and ν, the relative entropy of one of µ and ν with respect to the other is the sum
of the relative entropies of the individual components, and this sum is finite.

2 General dimension

2.1 FKG inequality: Proof of Theorem 1.1

We recall that increasing functions of a Poisson point process are non-negatively
correlated [GK97]. (This is easily derived from the more well known statement that
increasing functions of independent Bernoulli random variables are non-negatively
correlated.) Let µ be the simple random walk probability measure on the space Ω
of walks W beginning at the origin. Then the randomness for internal DLA is given
by a rate-one Poisson point process on µ×ν where ν is Lebesgue measure on [0,∞).
A realization of this process is a random collection of points in Ω × [0,∞). It is
easy to see that adding an additional point (w, s) increases the value of At for all
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times t. The At are hence increasing functions of the Poisson point process, and
are non-negatively correlated. Since F and L are increasing functions of the At, we
conclude that increasing functions of these objects are also increasing functions of
the point process — and are thus also non-negatively correlated.

2.2 Discrete Harmonic Polynomials

Let ψ(x1, . . . , xd) be a polynomial that is harmonic on Rd, that is

d∑
i=1

∂2ψ

∂x2
i

= 0.

In this section we give a recipe for constructing a polynomial ψ1 that closely ap-
proximates ψ and is discrete harmonic on Zd, that is,

d∑
i=1

D2
i ψ1 = 0

where
D2
i ψ1 = ψ1(x+ ei)− 2ψ1(x) + ψ1(x− ei)

is the symmetric second difference in direction ei. The construction described below
is nearly the same as the one given by Lovász in [Lov04], except that we have tweaked
it in order to obtain a smaller error term: if ψ has degree m, then ψ−ψ1 has degree
m−2 instead of m−1. Discrete harmonic polynomials have been studied classicaly,
primarily in two variables: see for example Duffin [Duf56], who gives a construction
based on discrete contour integration.

Consider the linear map

Ξ : R[x1, . . . , xd]→ R[x1, . . . , xd]

defined on monomials by

Ξ(xm1
1 · · ·x

md
d ) = Pm1(x1) · · ·Pmd

(xd)

where we define

Pm(x) =
(m−1)/2∏

j=−(m−1)/2

(x+ j).

Lemma 2.1. If ψ ∈ R[x1, . . . , xd] is a polynomial of degree m that is harmonic on
Rd, then the polynomial ψ1 = Ξ(ψ) is discrete harmonic on Zd, and ψ − ψ1 is a
polynomial of degree m− 2.
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Proof. An easy calculation shows that

D2Pm = m(m− 1)Pm−2

from which we see that

D2
i Ξ[ψ] = Ξ[

∂2

∂x2
i

ψ].

If ψ is harmonic, then the right side vanishes when summed over i = 1, . . . , d, which
shows that Ξ[ψ] is discrete harmonic.

Note that Pm(x) is even for m even and odd for m odd. In particular, Pm(x)−xm
has degree m− 2, which implies that ψ − ψ1 has degree m− 2.

To obtain a discrete harmonic polynomial ψR on the lattice 1
RZd, we let

ψR(x) = R−mψ1(Rx),

where m is the degree of ψ.

2.3 General-dimensional CLT: Proof of Theorem 1.4

Proof of Theorem 1.4. For each fixed ψ, the value Φm
A is actually a martingale

in t. Each time a new particle is added, we can imagine that it performs Brownian
motion on the grid (instead of a simple random walk), which turns Φm

A into a
continuous martingale, as in [JLS10a]. This martingale is a Brownian motion if
we parameterize time by the quadratic variation, which we denote by s. We write
s(t) = sm(t) for the quadratic variation time corresponding the time that the tth
particle is added to At. To show that Ψm

A (ψ, t) converges in law as m → ∞ to a
Gaussian (whose variance is some value depending on ψ and t), it suffices to show
that when t is fixed, the random variable sm(t) converges in law to that value.

Let Vt(ψ) := Var
(
ψ(z)

)
where z is chosen uniformly on the sphere of volume of

t. For later purposes, we also write Vt(ψ1, ψ2) := Cov
(
ψ1(z), ψ2(z)

)
. We claim that

the following limit holds in probability:

lim
m→∞

sm(t) =
∫ t

0
Vu(ψ)du. (9)

Indeed (9) is essentially immediate from the following bounds:

1. The fact that ψ and ψm agree up to an error of O(1/m2)

2. The bounds in [JLS10a] and [JLS10b], which show that A(t) is asymptotically
spherical, up to an error a.s. bounded (for all t) by a constant times log t in
dimension 2 and a constant times

√
log t in dimension d > 2. (Actually, any

bound o(t1/d), including the bounds in [LBG92], would suffice here.)
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3. Kakutani’s theorem, which implies that a Brownian motion on G can be cou-
pled with Brownian motion on Rd up to an error of log s.

Similarly, suppose we are given 0 = t0, t1 < t2 < . . . < t` and distinct functions
ψ1, ψ2, . . . ψ`. The same argument as above implies that

∑`
i=j Φm

A (tj , ψj) converges
in law to a Gaussian with variance

∑̀
j=1

∫ tj

tj−1

Vu(
∑̀
i=j

ψi).

The theorem now follows from a standard fact about Gaussian random variables on
a finite dimensional vector spaces (proved using characteristic functions): namely, a
sequence of random variables on a vector space converges in law to a multivariate
Gaussian if and only if all of the one-dimensional projections converge. The law of
h is determined by the fact that it is a centered Gaussian with covariance

Cov(Φh(ψ1, t1),Φh(ψ2, t2)) =
∫ t

0
Vu(ψ1, ψ2)du, (10)

where t = min{t1, t2}, which agrees with (3).

3 Dimension two

3.1 Two dimensional CLT: Proof of Theorem 1.2

Recall that At for t ∈ Z+ denotes the discrete-time IDLA cluster with exactly t sites,
and AT = AT (t) for t ∈ R+ denotes the continuous-time cluster whose cardinality is
Poisson-distributed with mean t.

Define
F0(t) := inf{t : z ∈ At}

and
L0(z) :=

√
F0(z)/π − |z|.

Fix N <∞, and consider a test function of the form

ϕ(reiθ) =
∑
|k|≤N

ak(r)eikθ

where the ak are smooth functions supported in an interval 0 < r0 ≤ r ≤ r1 < ∞.
We will assume, furthermore, that ϕ is real-valued. That is, the complex numbers
ak satisfy

a−k(r) = ak(r)

13



Theorem 3.1. As R→∞,

1
R2

∑
z∈(Z+iZ)/R

L0(Rz)
φ(z)
|z|2

−→ N(0, V0)

in law, where

V0 =
∑

0<|k|≤N

2π
∫ ∞

0

∣∣∣∣∫ ∞
ρ

ak(r)(ρ/r)|k|+1dr

r

∣∣∣∣2 dρρ .
This can be interpreted as saying that L0(Rz) tends weakly to a Gaussian ran-

dom variable associated to the Hilbert space H1
nr with norm

‖η‖20 =
∑

0<|k|<∞

2π
∫ ∞

0
[|r∂rηk|2 + (|k|+ 1)2|ηk|2]

dr

r

where

ηk(r) =
1

2π

∫ 2π

0
η(reiθ)e−ikθdθ

and η0(r) ≡ 0. (The subscript nr means nonradial: H1
nr is the orthogonal comple-

ment of radial functions in the Sobolev space H1.)
If we use AT and corresponding functions F (z) and L(z), then the a0 coefficient

figures in the limit formula as follows.

Theorem 3.2. As R→∞,

1
R2

∑
z∈(Z+iZ)/R

L(Rz)
φ(z)
|z|2

−→ N(0, V )

in law, where

V =
∑
|k|≤N

2π
∫ ∞

0

∣∣∣∣∫ ∞
ρ

ak(r)(ρ/r)|k|+1dr

r

∣∣∣∣2 dρρ .
Theorem 3.2 is a restatement of Theorem 1.2. It can be interpreted as saying

that L(Rz) tends to a Gaussian distribution for the Hilbert space H1 with the norm

‖η‖2 =
∞∑

k=−∞
2π
∫ ∞

0
[|r∂rηk|2 + (|k|+ 1)2|ηk|2]

dr

r
.

By way of comparison, the usual Gaussian free field is the one associated to the
Dirichlet norm ∫

R2

|∇η|2dxdy =
∞∑

k=−∞
2π
∫ ∞

0
[|r∂rηk|2 + k2|ηk|2]

dr

r
.

14



Comparing these two norms, we see that the second term in ‖η‖ has an additional
+1, hence our choice of the term “augmented Gaussian free field.”

To prove Theorem 3.1, write

L0(z) =
1

2
√
π

∫ ∞
0

(1− 1At)t
1/2dt

t
− 1

2
√
π

∫ ∞
0

(1− 1π|z|2≤t)t
1/2dt

t

=
1

2
√
π

∫ ∞
0

(1π|z|2≤t − 1At)t
1/2dt

t

Let p0(z) = 1, and for k ≥ 1 let pk(z) = qk(z)− qk(0), where

qk(z) = Ξ[zk]

is the discrete harmonic polynomial associated to zk = (x1 + ix2)k as described in
§2.2.. Note that p1(z) = z. We also set p−k(z) = pk(z).

Define

ψ(z, t, R) =
N∑

k=−N
ak(
√
t/πR2)pk(z)(

√
t/π)−|k|

and
ψ0(z, t, R) = ψ(z, t, R)− a0(

√
t/πR2)

Lemma 3.3. If c1R2 ≤ t ≤ c2R2 and ||z| −
√
t/π| ≤ C logR, then

|ψ(z, t, R)− φ(z/R)| ≤ C(logR)/R

This lemma follows easily from the fact that the coefficients ak are smooth and
the bound |pk(z)− zk| ≤ C|z||k|−1.

3.2 Van der Corput bounds

Lemma 3.4. (Van der Corput)
a) |#{z ∈ Z + iZ : π|z|2 ≤ t} − t| ≤ Ct1/3
b) For k ≥ 1, ∣∣∣∣∣ ∑

z∈Z+iZ
zk 1π|z|2≤t

∣∣∣∣∣ ≤ Ct1/3
c) For k ≥ 1, ∣∣∣∣∣ ∑

z∈Z+iZ
pk(z) 1π|z|2≤t

∣∣∣∣∣ ≤ Ct1/3
Part (a) of this lemma was proved by van der Corput. Part (b) follows from

the same method, as proved below. Part (c) follows from part (b) and the estimate
|pk(z)− zk| ≤ C|z||k|−1.
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We prove part (b) in all dimensions. Let Pk be a harmonic polynomial on Rd of
homogeneous of degree k. Normalize so that

max
x∈B
|Pk(x)| = 1

where B is the unit ball. In this discussion k will be fixed and the constants are
allowed to depend on k.

We are going to show that for k ≥ 1,∣∣∣∣∣∣ 1
Rd

∑
|x|<R, x∈Zd

Pk(x)/Rk

∣∣∣∣∣∣ ≤ R−1−α

where
α = 1− 2/(d+ 1)

For d = 2, α = 1/3, and RdR−1−α = R2/3 ≈ t1/3. This is the claim of part (b).
The van der Corput theorem is the case k = 0. It says

(1/Rd)
∣∣∣#{x ∈ Zd : |x| < R

}
− vol (|x| < R)

∣∣∣ ≤ R−1−α

Let ε = 1/Rα.
Consider ρ a smooth, radial function on Rd with integral 1 supported in the unit

ball. Then define χ = 1B characteristic function of the unit ball. Denote

ρε(x) = ε−dρ(x/ε), χR(x) = R−dχ(x/R)

Then ∣∣∣∣∣∣
∑
x∈Zd

(χR ∗ ρε(x)− χR(x))Pk(x)/Rk

∣∣∣∣∣∣ ≤ R−1−α

This is because χR ∗ρε(x)−χR(x) is nonzero only in the annulus of width 2ε around
|x| = R in which (by the van der Corput bound) there are O(Rd−1ε) lattice points.

The Poisson summation formula implies∑
x∈Zd

χR ∗ ρε(x)Pk(x)/Rk =
∑

ξ∈2πZd

[χ̂R(ξ)ρ̂ε(ξ)] ∗ P̂k(ξ)/Rk

in the sense of distributions. The Fourier transform of a polynomial is a derivative
of the delta function, P̂k(ξ) = Pk(i∂ξ)δ(ξ). Because k ≥ 1 and Pk(x) is harmonic,
its average with repect to any radial function is zero. This is expressed in the dual
variable as the fact that when ξ = 0,

Pk(i∂ξ)(χ̂R(ξ)ρ̂ε(ξ)]) = 0

16



So we our sum equals ∑
ξ 6=0, ξ∈2πZd

[χ̂R(ξ)ρ̂ε(ξ)] ∗ P̂k(ξ)/Rk

Next look at
χ̂R(ξ) = χ̂(Rξ)

Pk(i∂ξ)χ̂(Rξ) = Rk
∫
|x|<1

Pk(x)e−iRx·ξdx

All the terms in which fewer derivatives fall on χ̂R and more fall on ρε give much
smaller expressions: the factor R corresponding to each such differentiation is re-
placed by an ε.

The asymptotics of this oscillatory integral above are well known. For any fixed
polynomial P they are of the same order of magnitude as for P ≡ 1, namely

|Pk(i∂ξ)χ̂(Rξ)|/Rk ≤ Ck|Rξ|−(d+1)/2

This is proved by the method of stationary phase and can also be derived from well
known asymptotics of Bessel functions.

It follows that our sum is majorized by (replacing the letter d by n so that it
does not get mixed up with the differential dr)∫ ∞

1
(Rr)−(n+1) rn−1dr

(1 + εr)N
≈
∫ 1/ε

1
(Rr)−(n+1)rn

dr

r

≈ R−(n+1)/2ε−(n−1)/2

= R−1−α.

3.3 The other 90% of the proof

Denote
XR =

1
R2

∑
z∈(Z+iZ)/R

L0(Rz)
φ(z)
|z|2

Applying the formula above for L0,

XR =
∑

z∈Z+iZ
L0(z)

φ(z/R)
|z|2

=
1

2
√
π

∫ ∞
0

∑
z∈Z+iZ

(1π|z|2≤1 − 1At)
φ(z/R)
|z|2

t1/2
dt

t

=
1

2
√
π

∫ ∞
0

∑
z∈Z+iZ

(1π|z|2≤1 − 1At)
ψ(z, t, R)
t/π

t1/2
dt

t
+ ER

17



To estimate the error term ER, note first that the coefficients ak are supported in
a fixed annulus, the integrand above is suported in the range c1R2 ≤ t ≤ c2R

2.
Furthermore, by [JLS10a], 1π|z|2≤1 − 1At is almost surely supported where ||z| −√
t/π| ≤ C logR. Thus, almost surely,∑

z∈Z+iZ
|1π|z|2≤1 − 1At | ≤ CR logR

Moreover, Lemma 3.3 applies and

|ER| ≤ C
∫ c2R2

c1R2

(R logR)
logR
R

t−1/2dt

t
= O((logR)/R)

Next, Lemma 3.4 a) says (since #At = t)∣∣∣∣∣ ∑
z∈Z+iZ

|1π|z|2≤1 − 1At

∣∣∣∣∣ ≤ Ct1/3
Thus replacing ψ by ψ0 gives an additional error of size at most

C

∫ c2R2

c1R2

t1/3t−1/2dt

t
= O(R−1/3)

In all,

XR =
√
π

2

∫ ∞
0

∑
z∈Z+iZ

(1π|z|2≤1 − 1At)ψ0(z, t, R)t−1/2dt

t
+O(R−1/3) (11)

For s = 0, 1, . . . , define

M(s) =
√
π

2

∫ ∞
0

∑
z∈Z+iZ

(1π|z|2≤1 − 1A(s∧t))ψ0(z, t, R)t−1/2dt

t

Note that M(s) −→ XR as s→∞. Note also that Lemma 3.4 c) implies

M(0) = O(R−1/3)

Because pk are discrete harmonic and pk(0) = 0 for all k 6= 0, M(s) −M(0) is a
martingale. It remains to show that M(s)−M(0) −→ N(0, V0) in law. As outlined
below, this will follow from the martingale convergence theorem (see, e.g., [Dur,
p. 414]).

Note that M(s+ 1)−M(s) is zero almost surely outside the range c1R2 ≤ s ≤
c2R

2. Moreover, almost surely,

|M(s+ 1)−M(s)|2 = O(1/R2)
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The only other thing we need to check is that almost surely
∞∑
s=0

|M(s+ 1)−M(s)|2 = V0 +O((logR)/R) (12)

Because At fills the lattice Z + iZ as t→∞,
∞∑
s=0

|M(s+ 1)−M(s)|2

=
∑

z∈Z+iZ

∣∣∣∣∣∣
√
π

2

∫ ∞
F0(z)

∑
0<|k|≤N

ak(
√
t/πR2)pk(z)(t/π)−|k|/2t−1/2dt

t

∣∣∣∣∣∣
2

We prove (12) in three steps: replace pk(z) by zk (or z̄|k| if k < 0); replace the lower
limit F0(z) by π|z|2; replace the sum of z over lattice sites with the integral with
respect to Lebesgue measure in the complex z-plane.

Begin by estimating the size of the integrand. Recall, as usual, that c1R2 ≤
t ≤ c2R

2 is the only range in which the integrand is nonzero. By [JLS10a], almost
surely,

π|z|2 − C(logR)R ≤ F0(z) ≤ t =⇒ |z| ≤
√
t/π + C logR

It follows that
|pk(z)|(t/π)−|k|/2 ≤ Ck

Moreover, the support properties of ak imply that the integral is zero if F0(z) ≥ cR2,
so the terms of the sum are zero unless |z| ≤ CR. There are only O(R2) such lattice
points z. The size of each of these terms is majorized by(∫ c2R2

c1R2

t−1/2dt

t

)2

= O(1/R2)

The error term introduced by replacing pk with zk is

|pk(z)− zk|(t/π)−|k|/2 ≤ Ckt−1 = O(1/R2)

In the integral this is majorized by∫ c2R2

c1R2

t−1/2dt

t

∫ c2R2

c1R2

1
R2

t−1/2dt

t
= O(1/R4)

Since there are O(R2) such terms, this change contributed order R2/R4 = 1/R2 to
the sum.

Next, we change the lower limit from F0(z) to π|z|2. Since |F0(z) − π|z|2| ≤
CR logR, the integral inside | · · · |2 is changed by∫ π|z|2

F0(z)
1c1R2≤c2R2t−1/2dt

t
= O((logR)/R2)
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Thus the change in the whole expression is majorized by the order of the cross term

(1/R)(logR)/R2 = (logR)/R3

Again there are R2 terms in the sum over z, so the sum of the errors is O((logR)/R).
Lastly, we replace the value at each site z0 by the integral

∫
Qz0

∣∣∣∣∣∣
√
π

2

∫ ∞
πr2

∑
0<|k|≤N

ak(
√
t/πR2)rkeikθ(t/π)−|k|/2t−1/2dt

t

∣∣∣∣∣∣
2

rdrdθ

where Qz0 is the unit square centered at z0 and z = reiθ. Because the square has
area 1, the term in the lattice sum is the same as this integral with z = reiθ replaced
by z0 at each occurrence. Since |z − z0| ≤

√
2,

|zk − zk0 | ≤ 4k(|z|+ |z0|)k−1 = O(Rk−1)

After we divide by (
√
t/π)k, the order of error is 1/R. Adding all the errors con-

tributes at most order 1/R to the sum. We must also take into account the change in
the lower limit of the integral, π|z0|2 is replaced by π|z|2 = πr2. Since |z−z0| ≤

√
2,

||z|2 − |z0|2| ≤
√

2(|z|+ |z0|) ≤ CR

Recall that in the previous step we previously changed the lower limit by O(R logR).
Thus by the same argument, this smaller change gives rise to an error of order 1/R
in the sum over z0.

The proof of (12) is now reduced to evaluating

∫ 2π

0

∫ ∞
0

∣∣∣∣∣∣
√
π

2

∫ ∞
πr2

∑
0<|k|≤N

ak(
√
t/πR2)r|k|eikθ(t/π)−|k|/2t−1/2dt

t

∣∣∣∣∣∣
2

rdrdθ

Integrating in θ and changing variables from r to ρ = r/R,

=
π2

2

∑
0<|k|≤N

∫ ∞
0

∣∣∣∣∫ ∞
πρ2R2

ak(
√
t/πR2)(Rρ)|k|+1(t/π)−|k|/2t−1/2dt

t

∣∣∣∣2 dρρ
Then change variables from t to to r =

√
t/πR2 to obtain

= 2π
∑

0<|k|≤N

∫ ∞
0

∣∣∣∣∫ ∞
ρ

ak(r)(ρ/r)|k|+1dr

r

∣∣∣∣2 dρρ = V0

This ends the proof of Theorem 3.1.
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The proof of Theorem 3.2 follows the same idea. We replace At by the Poisson
time region AT , and we need to find the limit as R→∞ of

√
π

2

∫ ∞
0

(t−#AT )a0(
√
t/πR2)t−1/2dt

t

+
√
π

2

∫ ∞
0

∑
z∈Z+iZ

(1π|z|2≤1 − 1AT
)ψ0(z, t, R)t−1/2dt

t

The error terms in the estimation showing this quantity is within O(R−1/3) of

1
R2

∑
z∈(Z+iZ)/R

L(Rz)
φ(z)
|z|2

are nearly the same as in the previous proof. We describe briefly the differences.
The difference between Poisson time and ordinary counting is

|#AT −#At| = |#AT − t| ≤ Ct1/2 log t = O(R logR) almost surely

if t ≈ R2. It follows that for |z| ≈ R,

|F (z)− π|z|2| ≤ R logR almost surely

as in the previous proof for F1(z). Further errors are also controlled since we then
have the estimate analogous to the one above for At, namely∑

z∈Z+iZ
|1π|z|2≤1 − 1AT

| ≤ CR logR

We consider the continuous time martingale

M(s) =
√
π

2

∫ ∞
0

(s ∧ t−#As∧t)a0(
√
t/πR2)t−1/2dt

t

+
√
π

2

∫ ∞
0

∑
z∈Z+iZ

(1π|z|2≤1 − 1As∧t)ψ0(z, t, R)t−1/2dt

t

Instead of using the martingale central limit theorem, we use the martingale rep-
resentation theorem. This says that the martingale when reparameterized by its
quadratic variation has the same law as Brownian motion. We must show that
almost surely the quadratic variation of M on 0 ≤ s <∞ is V +O(R−1/3).

lim
ε→0

E ((M(s+ ε)−M(s))2|A(s))/ε

=
1

2π

∫ 2π

0

∣∣∣∣∣∣
√
π

2

∫ ∞
s

∑
|k|≤N

ak(
√
t/πR2)eikθ)(s/t)|k|/2t−1/2dt

t

∣∣∣∣∣∣
2

dθ

+O(R−1/3)

Integrating with respect to s gives the quadratic variation V + O(R−1/3) after a
suitable change of variable as in the previous proof.
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3.4 Fixed time fluctuations: Proof of Theorem 1.3

This follows almost immediately from the d = 2 case of Theorem 1.4 and the esti-
mates above.
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