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Abstract

Let A(t) denote the cluster produced by internal diffusion limited
aggregation (internal DLA) with ¢ particles in dimension d > 3. We
show that A(t) is approximately spherical, up to an O(y/logt) error.

In the process known as internal diffusion limited aggregation (internal
DLA) one constructs for each integer time ¢ > 0 an occupied set A(t) C Z¢
as follows: begin with A(0) = ( and A(1) = {0}. Then, for each integer
t > 1, form A(t + 1) by adding to A(t) the first point at which a simple
random walk from the origin hits Z¢\ A(t). Let B, C R? denote the ball of
radius r centered at 0, and write B, := B, N Z%. Let wy be the volume of
the unit ball in R%. Our main result is the following.

Theorem 1. Fix an integer d > 3. For each v there exists an a = a(y,d) <
oo such that for all sufficiently large r,

C
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We treated the case d = 2 in | ]. Theorem 1 shows that internal
DLA in dimensions d > 3 is extremely close to a perfect sphere: when the
cluster A(t) has the same size as a ball of radius r, its fluctuations around
that ball are confined to the y/logr scale (as opposed to the logr scale
established for dimension 2 in | D).

In [ ] we explained that our method for d = 2 would also apply in
dimensions d > 3 to prove a bound of order v/logr. We outlined the changes
needed in higher dimensions (stating that the full proof would follow in this
paper) and included a key step: Lemma A, which bounds the probability of
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“thin tentacles” in the internal DLA cluster in all dimensions. The purpose
of this note is to carry out the adaptation of the d = 2 argument of | ]
to higher dimensions. Asselah and Gaudilliere | | recently presented a
different way of deriving the y/logr bound from Lemma A of | ].

One way for A(wgr?) to deviate from the radius 7 sphere is for it have a
single “tentacle” extending beyond the sphere. The thin tentacle estimate
[ , Lemma A] essentially says that in dimensions d > 3, the probability
that there is a tentacle of length m and volume less than a small constant
times m? (near a given location) is at most g—em? By summing over all
locations, one may use this to show that the length of the longest “thin
tentacle” produced before time ¢ is O(y/logt). To complete the proof of
Theorem 1, we will have to show that other types of deviations from the
radius 7 sphere are also unlikely.

We remark that | , Lemma A] was also proved for d = 2 (albeit with
e—em? replaced by e—em?/ logm) -~ However, when d = 2 there appear to be
other more “global” fluctuations that swamp those produced by individual
tentacles. (Indeed, we expect, but did not prove, that the logr fluctuation
bound is tight when d = 2.) We bound these other fluctuations in higher
dimensions via the same scheme introduced in | ], which involves con-
structing and estimating certain martingales related to the growth of A(t).
It turns out the quadratic variations of these martingales are (with high
probability) of order logt when d = 2 and of constant order when d > 3,
closely paralleling what one obtains for the discrete Gaussian free field (as
outlined in more detail in | ]). The connection to the Gaussian free
field will be made more explicit in | ].

Section 1 proves Theorem 1 by iteratively applying higher dimensional

analogues of the two main lemmas of [ ]. (The lemmas are themselves
proved in Section 3, which is really the heart of the argument.) We remark
that in | | we used an estimate from | ] to start this iteration,

while here we have modified the argument slightly so that this a priori
estimate is no longer required. Section 2 contains preliminary estimates
about random walks that are used in Section 3.

1 Proof of Theorem 1

Let m and ¢ be positive real numbers. We say that = € Z? is m-early if

z € Awa(lz| —m)?),



where wy is the volume of the unit ball in R%. Likewise, we say that z is
{-late if

z ¢ Alwq(|z] +0)%).
Let &,[T] be the event that some point of A(T) is m-early. Let L,[T] be
the event that some point of B(T Jug)1/d—g 18 f-late. These events correspond
to “outer” and “inner” deviations of A(T) from circularity.

Lemma 2. (Early points imply late points) Fiz a dimension d > 3. For
each v > 1, there is a constant Cy = Co(y,d), such that for all sufficiently
large T, if m > Co\/logT and £ < m/Cy, then

P(En[T] N LT)S) < T,

Lemma 3. (Late points imply early points) Fizx a dimension d > 3. For
each v > 1, there is a constant C1 = Cy(7,d) such that for all sufficiently
large T, if m > € > C1y/Tog T and £ > C1((log T)m)Y3, then

P(ER[T]E N Ly[T]) < T,

ly = C(Tlog T)Y/3

Figure 1: Let m’ be the smallest m’ for which A(T) contains an m' early
point. Let 7 be the largest ¢ for which some point of B jugyrra_p is ?'-late.
By Lemma 2, (¢7,m") is unlikely to belong to the semi-infinite rectangle
in the left figure if £ < m/Cy. By Lemma 3, (¢7,m7) is unlikely to belong
to the semi-infinite rectangle in the second figure if £ > Cy((log T)m)/3.
Theorem 1 will follow because m? > mg = T is impossible and the other
rectangles on the right are all (by Lemmas 2 and 3) unlikely.

We now proceed to derive Theorem 1 from Lemmas 2 and 3. The lemmas
themselves will be proved in Section 3. Let C' = max(Cp, C1). We start with

mo =1T.



Note that A(T) C By, so P(E7[T]) = 0. Next, for j > 0 we let

¢; = max(C((log T)m;)'/3,C\/log T)

and
mj+1 = ng

By induction on j, we find
P(Em, [T]) < 2T
B(Ly, [T]) < (2 + )T,
To estimate the size of /;, let K = C*log T and note that l; < E;-, where
= (KT)"3; ¢}, =max((K;)"3 K'?).

Then , .
g; S maX(Kl/3+1/9+"~+1/3]T1/3J7K1/2)

so choosing J = log T we have
T3 <2

and
0y <2K'Y? < Cy\/logT.

The probability that A(T) has ¢;-late points or mj-early points is at
most
4T+ )T <779 <77,

Setting T = wgr?, ¢ = ¢; and m = m, we conclude that if a is suffi-
ciently large, then

P{B, oyiszr C Alwar) € B, o iogr } < PEITIULAT]) < 17

which completes the proof of Theorem 1.

2 Green function estimates on the grid

This section assembles several Green function estimates that we need to
prove Lemmas 2 and 3. The reader who prefers to proceed to the heart of
the argument may skip this section on a first read and refer to the lemma
statements as necessary. Fix d > 3 and consider the d-dimensional grid

G ={(x1,...,24) € R : at most one z; ¢ Z}.



In many of the estimates below, we will assume that a positive integer k£ and
a y € Z% have been fixed. We write s = |y| and

Q=Q(y, k) =GN Bsyi\{y}

For x € 09, let
P(z) = Py r(x)

be the probability that a Brownian motion on the grid G (defined in the
obvious way; see [ ]) starting at x reaches y before exiting Bs,x. Note
that P is grid harmonic in  (i.e., P is linear on each coordinate of Q\ Z¢,
and for each x € QN Z<, the sum of the slopes of P on the 2d directed edge
segments starting at x is zero). Boundary conditions are given by P(y) = 1
and P(z) =0 for z € (0Q) \ {y}. The point y plays the role that ¢ played
in [ |, and P plays the role of the discrete harmonic function H¢. One
difference from | | is that we will take y inside the ball (i.e., & > 1)
instead of on the boundary.

To estimate P we use the discrete Green function g(z), defined as the
expected number of visits to x by a simple random walk started at the origin
in Z%. The well-known asymptotic estimate for g is | ]

g(x) — aglz[*~?| < Cla| ™ (1)

for dimensional constants ag and C' (i.e., constants depending only on the
dimension d). We extend ¢ to a function, also denoted g, defined on the grid
G by making ¢ linear on each segment between lattice points. Note that g
is grid harmonic on G \ {0}.

Throughout we use C' to denote a large positive dimensional constant,
and c to denote a small positive dimensional constant, whose values may
change from line to line.

Lemma 4. There is a dimensional constant C such that
(a) P(a) < C/(1+ o — y|*?).
(b) P(z) < Ck(s+k+1—|z])/|z —y|% for |z —y| > k/2.
(c) max P(z) < Ck/(s —r — k)T forr < s — 2k.

Proof. The maximum principle (for grid harmonic functions) implies Cg(x —
y) > P(z) on 2, which gives part (a).
The maximum principle also implies that for z € €,

P(z) < Clg(x —y) —g(z —y")) (2)



where y* is the one of the lattice points nearest to (s+2k+ C1)y/s. Indeed,
both sides are grid harmonic on €2, and the right side is positive on 0B
by (1), so it suffices to take C' = (g(0) — g(y — y*)) L.

Combining (1) and (2) yields the bound

Ck

P(z) < —=%
() < |z —y|d=1’

for |z —y| > 2k.

Next, let z € 0Bsyr be such that |z — y| = 2L, with L > 2k. The bound
above implies

Ck
P(z) < o1

Let z* be one of the lattice points nearest to (s + k + L + C1)z/|z|. Then

for x € Br(2)

F(z) = agL?>~% — g(x — 2%)

is comparable to L2~% on 0By, (z*) and positive outside the ball By, (z*) (for
a large enough dimensional constant C'| — in fact, we can also do this with
Ch = 1 with L large enough). It follows that

P(z) < C(k/LTN) (L) F(x)

on 0(Bar(z*) N Q) and hence by the maximum principle on Bar(z*) N Q.
Moreover,
F(z) <C(s+k+1—|z])/L%"

for  a multiple of z and s+ k — L < || < s+ k. Thus for these values of z,
P(z) < C(k/L)F(z) < Ck(s + k+1 — |z|)/L?

We have just confirmed the bound of part (b) for points x collinear with 0
and z, but z was essentially arbitrary. To cover the cases |z — y| < 2k one
has to use exterior tangent balls of radius, say k/2, but actually the upper
bound in part (a) will suffice for us in the range |z — y| < Ck.

Part (c) of the lemma follows from part (b). O

The mean value property (as typically stated for continuum harmonic
functions) holds only approximately for discrete harmonic functions. There
are two choices for where to put the approximation: one can show that
the average of a discrete harmonic function v over the discrete ball B, is
approximately u(0), or one can find an approximation w, to the discrete
ball B, such that averaging u with respect to w, yields ezactly u(0). The
divisible sandpile model of | | accomplishes the latter. In particular, the
following discrete mean value property follows from Theorem 1.3 of | ].



Lemma 5. (Exact mean value property on an approximate ball) For each
real number v > 0, there is a function w, : Z% — [0,1] such that

o wy(x) =1 for all x € B,_., for a constant ¢ depending only on d.
o w.(z) =0 for all x ¢ B,.

e For any function u that is discrete harmonic on B,

> we(@)(u(z) — u(0)) = 0.

xCZ4

The next lemma bounds sums of P over discrete spherical shells and
discrete balls. Recall that s = |y|.

Lemma 6. There is a dimensional constant C' such that
) Y. P@)<Ckforalr<s+k.

IEEBTJFl\Br

(b) | > (P(x) — P(0)| < Ck for allr < s.

$EBT

© | 3 (P) - PO)| < Ok

xEBs-&-k

Proof. Part (a) follows from Lemma 4: Take the worst shell, when r = s.
Then the lattice points with |z — y| < k, s < |z| < s+ 1 are bounded by

Lemma 4(a)
k
/ s27ds2ds = k
0

(volume element on disk with thickness 1 and radius k in Z9~! is s%~2ds.) For
the remaining portion of the shell, Lemma 4(b) has numerator k(s+k—s) =
k2, so that
o
/ ks~ 2ds = k
k

Next, for part (b), let w, be as in Lemma 5. Since P is discrete harmonic
in B,, we have for r < s



Since w, equals the indicator 1g, except on the annulus B, \ B,_., and
lw,| <1, we obtain

S (P(a) - P(O)

zeB,

< Y lw(@)]|P@) - PO)

xeBr\Brfc

< ) (Px)+P(0)
z€B,\B,_.

< Ck.

In the last step we have used part (a) to bound the first term; the second
term is bounded by Lemma 4(b), which says that P(0) < Ck/s%!.

Part (c) follows by splitting the sum over By, into k sums over spherical
shells Bg4; \ Bsjj—1 for j =1,...,k, each bounded by part (a), plus a sum
over the ball By, bounded by part (b). O

Fix a > 0, and consider the level set
U={zrcgG|glx)>a}.

For x € OU, let p(x) be the probability that a Brownian motion started at
the origin in G first exits U at x. Choose « so that U does not intersect 74,

Lemma 7. For each x € OU, the quantity p(x) equals the directional deriva-
tive of g/2d along the directed edge in U starting at x.

Proof. We use a discrete form of the divergence theorem

/UdivV:ZuU-V. (3)

ou

where V is a vector-valued function on the grid, and the integral on the left
is a one-dimensional integral over the grid. The dot product vy -V is defined
as ej - V(z — Oe;), where e; is the unit vector pointing toward x along the
unique incident edge in U. To define the divergence, for z = = + te;, where
0§t<1andac€Zd,let

d
V(2) +02(2) Y (e - V(z + 0¢j) — e - V(z — Oej)).

J=1

0

div V(Z) = 876]
J

If f is a continuous function on U that is C'! on each connected compo-
nent of U — Z%, then the gradient of f is the vector-valued function

V =Vf=((9/0x1)f,(0/0x2)f,...,(0/0x4)f)



with the convention that the entry 0/0z; f is 0 if the segment is not pointing
in the direction z;. Note that V f may be discontinuous at points of 7.

Let G = —g/2d, so that div VG = §p. If u is grid harmonic on U, then
div Vu = 0 and

div (uVG — GVu) = u(0)dy.

Indeed, on each segment this is the same as (uG’ — v'G) = v/'G' — v'G' +
uG"” —u”G = 0 because u and G are linear on segments. At lattice points u
and G are continuous, so the divergence operation commutes with the factors
u and G and gives exactly one nonzero delta term, the one indicated.

Let u(y) be the probability that Brownian motion on U started at y first
exits U at x. Since v is grid-harmonic on U, we have divVu = 0 on U,
hence by the divergence theorem

u(0) = / div (uVG — GVu) = ZUI/U -VG. O
v ou

Next we establish some lower bounds for P.
Lemma 8. There is a dimensional constant ¢ > 0 such that
(a) P(0) > ck/s? 1,
(b) Let k=1, and z = (1 — 2@)y. Then

s

in P(x)> d=1
pemin Plz) 2 ¢/m

Proof. By the maximum principle, there is a dimensional constant ¢ > 0
such that

P(x) > c(g(z —y) — aq(k/2)*~)
for z € By /2(y). In particular,
P(z) > ck?>™ % forall |z —y| <k/4
Now consider the region
U={zeG:g(x)>als)* %}

where s is chosen so that |s' — (s — k/8)] < 1/2 and all of the boundary
points of U are non-lattice points. (A generic value of s’ in the given range
will suffice.)



By (1), this set is within unit distance of the ball of radius s — k/8. Let
p(z) represent the probability that a Brownian motion on the grid starting
from the origin first exits U at z € OU. Thus

u(0) = Y u(=)p(=) (4)

zedU

for all grid harmonic functions u in U.

Take any boundary point of z € OU. Take the nearest lattice point z*.
Let z; be a coordinate of z largest in absolute value. Then |z;| > |z|/d. The
rate of change of |z|>~? in the jth direction near z has size > 1/d|z|?"1,
which is much larger than the error term C|z|~% in (1). It follows that
on the segment in that direction, where the function g(x) — aq(s — k/8)%>~¢
changes sign, its derivative is bounded below by 1/2d|z|*~!. In other words,
by Lemma 7, within distance 2 of every boundary point of z € QU there
is a point 2/ € QU for which p(z’) > ¢/s%~!. There are at least ck?~! such
points in the ball By, 4(y) where the lower bound for P was ck?>~% so

P(0) > ck? 41 /st = ck /5?7

Next, the argument for Lemma 8(b) is nearly the same. We are only
interested in k = 1. It is obvious that for points  within constant distance
of y (and unit distance from the boundary at radius s+ 1, the values of P(z)
are bounded below by a positive constant. We then bound P((s—2m)y/|y|)
from below using the same argument as above, but with Green’s function
for a ball of radius comparable to m. Finally, Harnack’s inequality says
that the values of P(z) for z in the whole ball of size m around this point
(s —2m)y/|y| are comparable. O

3 Proofs of main lemmas

The proofs in this section make use of the martingale

M(t) = Myx(t):== Y (P(x) - P(0))

$€Ay’k(t)

where A, j(t) is the modified internal DLA cluster in which particles are
stopped if they exit . As in [ |, we view A, (t) as a multiset: points
on the boundary of €2 where many stopped particles accumulate are counted
with multiplicity in the sum defining M. In addition to these stopped par-
ticles, the set A, ;(t) contains one more point, the location of the currently
active particle performing Brownian motion on the grid G.

10



Recall that P = P, and M = M, depend on k, which is the distance
from y to the boundary of 2. We will choose & = 1 for the proof of Lemma 2,
and k = af for a small constant a in the proof of Lemma 3. Taking k& > 1 is
one of the main differences from the argument in | .

Proof of Lemma 2. The proof follows the same method as | , Lemma
12]. We highlight here the changes needed in dimensions d > 3. We use the
discrete harmonic function P(x) with k = 1. Fix z € Z%, let r = |2| and
y=(r+2m)z/r. Let

Ty = [wa(r —m)7]

where wy is the volume of the unit ball in R?. If z is m-early, then z € A(T});
in particuar, this means that » > m, so that r+m, r+2m are all comparable
to r. Since k = 1, we have by Lemmas 4(c) and 8(a)

P(0) = 1/r%1,
where ~ denotes equivalence up to a constant factor depending only on d.
First we control the quadratic variation
N

S(t)= _ lim > (M(t;) — M(ti-1))?

0<tp<..<tny<t <4
max(tifti,l)ﬁo i=1

on the event &p,4+1[T]¢ that there are no (m + 1)-early points by time 7.

Asin | , Lemma 9], there are independent standard Brownian motions
B° B!, ... such that each increment (S(n+ 1) — S(n))1g, ., 7)- is bounded
above by the first exit time of B™ from the interval [—a,, by], where
1
ap, = P(0) = T
1
b, = max P(z) <

el (n/wa) Vi mL [r+ 2m — ((n/wa) V4 + m + 1)}d-1"

Here we have used Lemma 4(b) in the bound on b,,.

Unlike in dimension 2, we will use the large deviation bound for Brownian
exit times | , Lemma 5] with A = c¢m? instead of A = 1. Here c is a
constant depending only on d. Note that b, < 1/md~!, for all n < T}, so
this is a valid choice of A in all dimensions d > 3 (that is, the hypothesis

11



VXan +by) <3 of | , Lemma 5] holds). We obtain
IOgE |:€)\S(T1 15 +1[T]e :| 210)\@71 n

< /T1 A ¢ 1 d

n

S Tl (r 4+ m— (njwg)t/d — 1)d-1
roC 1

<[ A =1 gj

_/1 rd—1 (r—|—m—j—1)d*1‘] J

" CAdj d—2
< < .
_/1 (r+m—j—1)d—1_c>\/m

Note that the last step uses d > 3. Taking A = cm? for small enough ¢ we
obtain , Y
E [ecm S<T1)1gm+1[T]c} <M /mTTE < om

Therefore, by Markov’s inequality,
P({S(T1) > 1/c} N Empr[T]S) < ™™ < T7207, (5)
Fix 2z € By and t € {1,...,T}, and let ., be the event that z €
A(t) \ A(t — 1) and z is m-early and no point of A(t — 1) is m-early. This
event is empty unless (t/wq)/?+m < |z| < (t/wg)/*+m+ 1; in particular,
the first inequality implies t < T7. We will bound from below the martingale
M(t) on the event Q.+ N L,[T]°. With no ¢-late point, the ball B,_,,_y_;
is entirely filled by time t. Lemma 6(b) shows that the sites in this ball
contribute at most a constant to M (t) (recall that £ = 1). The thin tentacle
estimate [ , Lemma A] says that except for an event of probability
e=“™* there are order m? sites in A(t) within the ball B(z,m). By Lemma
8(b), P is bounded below by ¢/m?~! on this ball, so these sites taken together
contribute order m to M (t). Each of the remaining terms in the sum defining
M (t) is bounded below by —P(0), and there are at most r?~! sites in
A(t) \ By—m—¢—1. So these terms contribute at least

—r? 1 = 0> —m/C

which cannot overcome the order m term. Thus
2

P(Q.e N {M¢(t) <m/C} N L) < e ™. (6)
We conclude that
P(Q.: N LTI <P(Q.: N{S(t) > 1/c})
+P(Q.: N{M(t) <m/C} N Ly[t]°)
+P{S(t) <1/c; n{M(t) = m/C}).

12



The first two terms are bounded by (5) and (6). Since M (t) = B(S(t)) for
a standard Brownian motion B, the final term is bounded by

IP’{ sup B(s) > m/C} < e—cm/C)?)2 - p=207
0<s<1/c

Proof of Lemma 3. Fix y € Z%, and let L[y] be the event that y is ¢-late.
Let s = |y|, and set k = af in the definition of P. Here a > 0 is a small
dimensional constant chosen below. Note that the hypotheses on m and
¢ imply that ¢ is at least of order \/logT; after choosing a, we take the
constant C appearing in the statement of the lemma large enough so that
k% > 10007y log T.

Case 1. 1 < s <2k. Then P(0) ~ 1/5%2. Let
T1 = Lwd(s + g)dj

With a,, = P(0) and b, = 1, we have S(n + 1) — S(n) < 7,, where 7, is the
first exit time of the Brownian motion B" from the interval [—a,, b,]. (Note
that because we take b, = 1, the indicator 1g __ (r}c is not needed here as it

was in the proof of Lemma 2.) We obtain

Ty
log Ee*™) <3 "logRe™ < Ty P(0).
t=1

Let Q = Ty P(0). By Markov’s inequality, P(S(T1) > 2Q) < e~ €.

On the event Ly], the site y is still not occupied at time 77. Accordingly,
the largest M (T) can be is if A, ,(T7) fills the whole ball B4y}, (except for
y), and then the rest of the particles will have to collect on the boundary
where P is zero. The contribution from B}, is at most Ck? by Lemma 6(c).
The number of particles stopped on the boundary is at least

T
T — 2wy(s + k)% > ?1
Therefore, on the event L[y] we have
2T
M(Th) < Ck* — ?P(O). (7)

Note that Q := Ty P(0) ~ (s +£)9/s472 > ¢4/(k/2)?2, so by taking a = k/¢
sufficiently small, we can ensure that the right side of (7) is at most —Q/4.

13



Also, Q > £? > 1000v1log T. Since M (t) = B(S(t)) for a standard Brownian
motion B, we conclude that

P(LI) < P(S(T) > 2Q) + P{ inf, B(s) < ~Q/1)
< Q| o (@2/1Q

< T2,

Case 2. s > 2k. Then by Lemma 4(c) with » = 1, and Lemma 8(a), we
have P(0) ~ k/s%"!. First take

To = |wa(s + k — 3m)dJ

(or To =01if s+ k —3m < 0). As in the previous lemma (but taking A = 1
instead of A = em?) we have

k

To dn
log B | ¥ ™)1, .| < Csd—l/o (s+k—(
stk

n/wd)l/d)d—l

< C’k/m”l_2 <C.

The last inequality follows from d > 3 and m > k/a. By Markov’s inequality,
P({S(Tp) > C + k*} N En[T]) < e ¥ < 77207,

Now since

(T) — Tp)P(0) =~ ms® (k/sY) = km

we have
log EeS(T)=5(10) < Ckm.

Thus (since km > k?)
P({S(T1) > 2Ckm} N E,[T]°) < 277207, (8)

As in case 1, the martingale M (7}) is largest if the ball Bs, is com-
pletely filled, and in that case the total contribution of sites in this ball is
at most Ck?. On the event L[y], the number of particles stopped on the
boundary of €2 at time 7T} is at least

T — #Boyr > wa((s + 0% = (s + k4 C)%) ~ 05471,

14



Each such particle contributes —P(0) ~ —k/s%"! to M(T}), for a total
contribution of order —kf = —k?/a. Taking a sufficiently small we obtain
M(Ty) < Ck? — k%/a < —k?. We conclude that
P(Lly| N E[T]?) < P{S(T1) > 2Ckm} N ER[T])+
+P({S(T1) < 2Ckm} N {M(T1) < —k?}).
The first term is bounded above by (8), and the second term is bounded
above by

IP’{ inf B(s) < —k2} < ¢ K/ACkm o p=207,
s<2Ckm

Hence P(L[y|NE,[T)¢) < 3T~2%7. Since L[T] is the union of the events L[y]
fory € B := B(T/wd)l/d—€7 summing over y € B completes the proof. O
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