
18.155 Problem Set 9

Due Wednesday, 12/10/08

Define the space H1(Ω) as the space of all function u such that u ∈ L2(Ω) and ∇u ∈ L2(Ω) with
inner product

〈u, v〉1 =
∫

Ω
[∇u(x) · ∇v̄(x) + u(x)v̄(x)]dx

and norm ‖u‖2
H1(Ω) = 〈u, u〉1. Assume that aij , bj and c are infinitely differentiable functions on

Rn with aij a real symmetric matrix satisfying the ellipticity condition,
n∑

i,j=1

aij(x)ξiξj ≥ m|ξ|2

for some constant m > 0 and all ξ ∈ Rn. For u and v in H1(Ω), define

Q(u, v) =
∫

Ω
aij ∂u

∂xi

∂v̄

∂xj
dx +

∫
Ω

bj ∂u

∂xi
v̄dx +

∫
Ω

cuv̄dx

We also write

Lu(x) = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+

∑
j

bj(x)
∂u

∂xi
+ c(x)u(x)

See Evans’s book, Chapter 5 for a proof that for domains Ω with C1 boundary, the space H1(Ω) is
the restriction to Ω of functions in H1(Rn). Furthermore, C∞(Ω̄) functions are dense in H1(Ω).

Recall that the closure of C∞
c (Ω) in this norm is the subspace H1

0 (Ω). This subspace can also be
identified via the restriction theorem. Consider a function in C∞(Ω̄), then the restriction operator,
R : C∞(Ω̄) → C(∂Ω) given by Rf(x) = f(x) for x ∈ ∂Ω satisfies

‖Rf‖L2(∂Ω,dσ) ≤ C‖f‖H1(Ω)

where dσ is surface measure on ∂Ω. It follows that the mapping R extends to a bounded linear
mapping on all of H1(Ω) to L2(∂Ω, dσ). As proved in Evans’s book, the subspace H1

0 (Ω) is the null
space of this mapping.

1. We carry out here the application of Fredholm theory to general quadratic forms like Q. First
we will restrict to the space H1

0 (Ω), which gives rise to the Dirichlet problem. (See Chapter 6 of
Evans’s book if you need further hints.)

a) Denote 〈u, v〉0 =
∫

Ω
u(x)v̄(x)dx. Define Qλ(u, v) = Q(u, v) + λ〈u, v〉0. Show that for λ

sufficiently large (real) there is a constant c > 0 such that

|Q(u, u)| ≥ c

∫
Ω
[|∇u|2 + |u|2]dx

Note also that |Qλ(u, v)| ≤ C‖u‖H1‖v‖H1 .

b) Show that for λ sufficiently large there is a bounded linear operator T : L2(Ω) → H1
0 (Ω) such

that
Qλ(Tf, v) = 〈f, v〉0 for all v ∈ H1

0 (Ω)
following these steps

i) The mapping v 7→ Qλ(u, v) is C̄-linear on H1
0 (Ω), so by the Riesz representation theorem for

the Hilbert space H1
0 (Ω), there is w such that

〈w, v〉1 = Qλ(u, v) for all v ∈ H1
0 (Ω)
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Show that w = Au is a bounded linear mapping on H1
0 (Ω) and that A is invertible if λ is sufficiently

large.

ii) Show that there is a bounded linear mapping B : L2(Ω) → H1
0 (Ω) such that 〈Bf, v〉1 = 〈f, v〉0

and show that the composition T = A−1B does the job.

c) Define Q∗(u, v) = Q(v, u) and Q∗
λ(u, v) = Q∗(u, v) + λ〈u, v〉0 . It follows from (b) that for

sufficiently large λ, there is a bounded operator S : L2(Ω) → H1
0 (Ω) such that

Q∗
λ(Sf, v) = 〈f, v〉0 for all v ∈ H1

0 (Ω)

Show that S = T ∗ on L2(Ω), that is, for all f and g in L2(Ω), 〈Tf, g〉0 = 〈f, Sg〉0.
d) Recall that for f ∈ L2, we say Lu = f in the weak sense if u ∈ H1

0 (Ω) and Q(u, v) = 〈f, v〉0 for
all v ∈ H1

0 (Ω). Show that if u is a weak solution then (I −λT )u = Tf and conversely, if u ∈ L2(Ω)
satisfies (I−λT )u = Tf , then u ∈ H1

0 (Ω) and u is a weak solution. In particular, if u ∈ N(I−λT ),
the null space of I − λT (in L2(Ω)), then u ∈ H1

0 (Ω) and Lu = 0 in the weak sense.

e) Denote by N(L) the null space of weak solutions v ∈ H1
0 (Ω) to Lv = 0 in Ω, and similarly for

L∗. (What is L∗?) Explain why N(L) and N(L∗) are finite dimensional. Show that if f ∈ L2(Ω),
the equation Lu = f for u ∈ H1

0 (Ω) can be solved uniquely up to addition of an element of N(L)
if and only if 〈f, v〉0 = 0 for all v ∈ N(L∗).

Remark: Assuming the regularity theory (proved in lecture), we know that if the boundary of
Ω is smooth and the right side f is smooth, then the function u is smooth. Thus the solution
u ∈ H1

0 (Ω) is infinitely differentiable. The restriction theorem implies Ru ∈ L2(dσ) is zero. It
follows that u(x) = 0 for x ∈ ∂Ω.

f) Show that a smooth function u ∈ C∞(Ω̄) such that u(x) = 0 on ∂Ω belongs to H1
0 (Ω).

2. Prove the Poincaré inequality,

inf
a

∫
Q
|f(x)− a|2dx ≤

∫
Q
|∇f(x)|2dx

for the unit cube Q = [0, 1]n as follows. We will assume that f ∈ C∞(Q̄), although this estimate is
valid for any distribution (vacuous unless the right side is finite).

a) Do the case n = 1 using a = f(0) and the fundamental theorem of calculus.

b) The rest of the approach shows that whatever constant you get the in dimension 1 works in
all dimensions. Note that

inf
a

∫ 1

0
|f(x)− a|2dx =

∫ 1

0
|f(x)− a1|2dx

where a1 =
∫ 1

0
f(x)dx, the average. Denote

f1(x) =
∫ 1

0
f(y, x2, x3, . . . , xn)dy; f12(x) =

∫ 1

0

∫ 1

0
f(y1, y2, x3, . . . , xn)dy1dy2;

Note that f1 is independent of x1 and f12 is independent of x1 and of x2. Use the 1-dimensional
inequality to show (x = (x1, x2, . . . , xn))∫ 1

0
|f(x)− f1(x)|2dx1 ≤

∫ 1

0

∣∣∣∣ ∂f

∂x1

∣∣∣∣2 dx1

With a little extra work, show that∫ 1

0

∫ 1

0
|f1(x)− f12(x)|2dx1dx2 ≤

∫ 1

0

∫ 1

0

∣∣∣∣ ∂f

∂x2

∣∣∣∣2 dx1dx2



3

Finally, observe that f − f1, f1 − f12, etc, are perpendicular to each other to get the desired
inequality with constant 1.

Remark: This method does not give the best constant, which is 1/π2. The best constant can be
derived in one variable by ordinary Fourier analysis or directly from the calculus of variations, that
is the Neumann problem for the operator L = −(d/dx)2 on [0, 1] and the extremal function cos(πx).
The n-variable case can also be derived from n-dimensional Fourier analysis. But what (b) shows
is that for any product of domains, the worst of the constants in each factor is the constant that
works for the product.

c) Prove that for any bounded C1 domain Ω there is a constant C such that

inf
a

∫
Ω
|f(x)− a|2dx ≤ C

∫
Ω
|∇f(x)|2dx

Hint: Make a C1 change of variables so that the boundary is given locally by a hyperplane. Then
use the Poincaré inequality for a finite collection of cubes covering the whole region Ω. Make cubes
have significant overlap adjacent ones so that there is an overlapping chain to one central cube.

3. Do the same thing as in Problem 1 with the space H1(Ω) replacing the space H1
0 (Ω). This is

practically the same as before, requiring only the Poincaré inequality of Problem 2 in place of the
baby Poincaré inequality for compactly supported functions in Ω. The boundary conditions are no
longer Dirichlet conditions, but are what are known as Neumann conditions. It does not appear as
if u has a boundary condition, but this is hidden in the variational formulation. The fact that

Q(u, v) = 〈f, v〉0
is true for v ∈ H1

0 (Ω) shows that Lu = f in the weak sense in the interior Ω. Now suppose that
u ∈ C∞(Ω̄). Show that the fact that the equation also holds for v ∈ H1(Ω) implies an equation for
u on the boundary. Do this first for L = −∆, then the general variable coefficient case. What you
should get is a normal derivative (Neumann type) condition with respect to a direction known as
the conormal in the general case.

4. The Harnack inequality. Consider an elliptic operator L in non-divergence form with C∞

coefficients,

Lu = −aijuij = −
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj

We will be using subscripts i, j, etc, for differentiation with respect to the variables xi, xj . We will
also use the Einstein summation convention, in which repeated indices are summed. This will save
you a lot of writing!

Theorem: Let u ∈ C∞(B2) be a nonnegative function. Suppose also that Lu = 0 in B2. Then

sup
B1

u ≤ C inf
B1

u

where the constant C depends only on the ellipticity constant of L and bounds on a few derivatives
of aij . (This is a special case of the theorem for parabolic equations in Evans’s text in Section 7.1.)

There are several remarkable, much deeper theorems in the case of minimal smoothness, in
which the distinction between divergence and nondivergence form becomes very important. These
more general theorems are central to the theory of nonlinear elliptic equations. Other forms of
the Harnack inequality are important in geometry, and the proof below is more closely tied to the
geometric variants.



4

Define v = log(u + ε) for some ε > 0, and w = Lv (At the very end of the problem, remember
to let ε tend to 0. We need to add ε so that u + ε > 0 and v is a smooth function.) Note that
a corollary of the Harnack inequality is the strict minimum principle for u, namely, if u achieves
its minimum, 0, then u is identically zero. The Harnack inequality is a quantitative form of the
(strict) maximum or minimum principle.

a) Show that w = aijvivj and c1|Dv|2 ≤ w ≤ c2|D2v| for some positive constants c1 and c2.
Here and below we are using the notations Dv = ∇v, the gradient, and D2v is the Hessian matrix.
|D2v| is any norm on the n2 dimensional vector space of matrices such as the square root of the
sum of squares of entries.

b) Show that for some positive constants ci,

Lw + bkwk ≤ −c1|D2v|2 + c2|Dv|2 + c3, with bk = 2ak`v`

c) Let η ∈ C∞(B2) be a smooth bump function 0 ≤ η ≤ 1 with η = 1 on B1. Let x0 be a point
at which η4w attains its maximum. Explain why D(η4w) = 0 and L(η4w) ≥ 0 at x0.

d) Show that at x0, η4|Dw| ≤ Cη3w and η4Lw ≥ −Cη2w.

e) Deduce that at x0,

η4|D2v|2 ≤ C(η4 + η4|Dv|2 + η3|Dv|w + η2w) ≤ C ′(η4 + η3|D2v|3/2 + η2|D2v|)

f) Show that for every ε > 0, z3 + z2 ≤ εz4 + C(ε) for some C = C(ε), and deduce that

η3|D2v|3/2 + η2|D2v| ≤ εη4|D2v|2 + C(ε)

g) Show that there is a constant C with the dependence of the theorem such that at x0

η4|D2v|2 ≤ C

h) Recall how x0 was defined and deduce that there is a constant C with the dependence of the
theorem for which

sup
B1

|Dv| ≤ C

Deduce the Harnack inequality from this.


