18.155 Problem Set 8; Part II Due Wednesday, 12/03/08

1. Consider a mapping $Q: H \times H \to \mathbf{C}$ that is sesquilinear, i.e., linear in x and conjugate linear in y. Suppose that Q(v, u) is the conjugate of Q(u, v), and $Q(u, u) \ge 0$ (positive semidefinite). Show that $|Q(u, v)| \le Q(u, u)^{1/2}Q(v, v)^{1/2}$

2. a) Show that if x_j is a norm-bounded sequence in a Hilbert space H, then x_j has a weakly convergent subsequence. (Note that the closure of the span of the sequence x_j is a separable Hilbert space, so that we may as well assume that H has a countable orthonormal basis e_n , $n = 1, 2, \ldots$) Hint: Explain why there is a subsequence y_ℓ for which $\langle y_\ell, e_n \rangle \to a_n$ as $\ell \to \infty$ for every n. Then show that $\sum |a_n|^2 < \infty$ and that $\langle y_\ell, z \rangle \to \langle y, z \rangle$ as $\ell \to \infty$ for every $z \in H$ where y is what vector?

b) Show that if S is a closed subspace of H, then there exists a unique bounded linear mapping $P: H \to H$ satisfying Px = x for all $x \in S$, $P^* = P$, and Px = 0 for all $x \in S^{\perp}$.

c) Prove the Riesz representation theorem, namely, that for every bounded linear functional $\Lambda : H \to \mathbb{C}$ there is a unique $u \in H$ such that $\Lambda(v) = \langle v, u \rangle$. (The right side is the inner product on the Hilbert space.)

d) Note that $H^1(\mathbf{R}^n)$ is a Hilbert space with inner product,

$$\langle f,g \rangle = \int_{\mathbf{R}^n} \nabla f \cdot \nabla \bar{g} + f \bar{g} \, dx$$

Use part (c) to show that the dual space is the space of all distributions of the form

$$f_0 + \sum_{j=1}^n \frac{\partial f_j}{\partial x_j}$$

where $f_j \in L^2(\mathbf{R}^n)$ for j = 0, 1, ..., n. Don't use the Fourier transform. (There's another proof using the Fourier transform and the fact that the dual of L^2 is L^2 .)

e) Let Ω be an open subset of \mathbb{R}^n Show the dual space of $H_0^1(\Omega)$ is the space similar to (d) with $f_i \in L^2(\Omega)$.

3. Hölder's inequality. a) Show that $u^{\theta}v^{1-\theta} \leq \theta u + (1-\theta)v$ for all u > 0, v > 0 and $0 \leq \theta \leq 1$. Hint: Show the left side is a convex function of θ .

b) Substitute $u^{\theta} = |Af|$, $v^{1-\theta} = |Ag|$ with $1/p = \theta$ and $1/p' = 1 - \theta$. Consider f = f(x) and g = g(x) and integrate with respect to measure $d\mu(x)$. Optimize in A to get

$$\int_X |fg|d\mu \le \|f\|_p \|g\|_{p'}$$

where

$$\|f\|_p = \left(\int_X |f|^p d\mu\right)^{1/p}$$

for $1 \le p < \infty$ (and $||f||_{\infty} = \text{ess sup}|f(x)|$).

c) (converse inequality) Show that if $1 \le p \le \infty$ is fixed, f is measurable, and

$$\sup \Re \int fg d\mu \le C$$

for all $||g||_p \leq 1$, then $f \in L^{p'}$ and $||f||_{p'} \leq C$. (Use a slightly different argument at the endpoints p = 1 and $p = \infty$.)