18.155 Problem Set 8; Part I Due Wednesday, 12/03/08

1. Let Ω be a bounded, open subset of \mathbf{R}^n . Define $H_0^s(\Omega)$ as the closure in the $H^s(\mathbf{R}^n)$ norm of functions in $C_c^{\infty}(\Omega)$.

a) Show that for $s \ge 0$,

$$\|\hat{f}\|_{C^{1}(\mathbf{R}^{n})} := \max_{\xi \in \mathbf{R}^{n}} (|\hat{f}(\xi)| + |\nabla \hat{f}(\xi)|) \le C \|f\|_{H^{s}(\mathbf{R}^{n})}$$

for every $f \in C_c^{\infty}(\Omega)$, and conclude that \hat{f} is a well-defined function in $C^1(\mathbf{R}^n)$ (with the same uniform bound as for the dense subclass) for every $f \in H_0^s(\Omega)$. (The restriction $s \ge 0$ is not necessary but makes the proof easier. What is crucial is that Ω is bounded.)

b) Show that the inclusion $H_0^s(\Omega) \subset L^2(\Omega)$ is compact for s > 0.

2. For $h \in \mathbf{R}^n$, $h \neq 0$, denote $D^h f(x) = (f(x+h) - f(x))/|h|$.

a) Let $f \in L^1_{loc}(\mathbf{R}^n)$. Show that for t > 0, |h| = 1, $D^{th}f$ tends to $h \cdot \nabla f$ in the sense of distributions as $t \to 0$.

b) Show that if $f \in L^p(\mathbf{R}^n)$, 1 and

$$\sup_{0<|h|\leq 1} \|D^h f\|_{L^p(\mathbf{R}^n)} \leq C$$

then $f \in W^{1,p}(\mathbf{R}^n)$, the space of all functions $f \in L^p(\mathbf{R}^n)$ such that the distributional derivative $\nabla f \in L^p(\mathbf{R}^n)$. (Use the characterization of L^p norm, 1 via duality.)

- c) Show that (b) fails for p = 1.
- d) Prove a converse. If $1 \le p < \infty$, and $f \in W^{1,p}(\mathbf{R}^n)$, then

$$\sup_{|h|>0} \|D^{h}f\|_{L^{p}(\mathbf{R}^{n})} \le \|\nabla f\|_{L^{p}(\mathbf{R}^{n})}$$

This assertion is also true for $p = \infty$ as you will demonstrate in Problem 3. (Hint: Assume, in addition, $f \in C^1(\mathbf{R}^n)$). In this case the estimate can be proved using the fundamental theorem of calculus and Minkowski's inequality. Moreover, one can approximate in a standard way. Let φ be a smooth, compactly supported function on \mathbf{R}^n with

$$\int \varphi(x) dx = 1$$

and denote $\varphi_{\epsilon}(x) = \epsilon^{-n} \varphi(x/\epsilon)$. Show that

$$\|f * \varphi_{\epsilon} - f\|_{L^p} \to 0$$

for all $f \in L^p(\mathbf{R}^n)$, $1 \le p < \infty$. For the sharp constant 1 in the inequality, you will also need to assume $\varphi \ge 0$.)

3. a) Show that for $f \in C^1$ and p > n,

$$\int_{B_1(x_0)} |f(x) - f(x_0)| dx \le C \left(\int_{B_1(x_0)} |\nabla f(x)|^p dx \right)^{1/p}$$

The constant C depends only on p and n. Hint: Without loss of generality, let $x_0 = 0$ and apply the fundamental theorem of calculus to $g(t) = f(tx) - f(0), 0 \le t \le 1$.

b) Show by scaling that there is at most one value of $\alpha,\,0<\alpha<1$ depending on p and n for which

$$\max_{|x-y| \le r} |f(x) - f(y)| \le Cr^{\alpha} \|\nabla f\|_{L^{p}(B_{2r}(x))}$$

for all $f \in C^1$, and find the formula for α . Then prove that the inequality is true using part (a).

c) Show that for $p > n, f \in C^1(\mathbf{R}^n)$,

 $\max |f| \le C(\|\nabla f\|_{L^{p}(\mathbf{R}^{n})} + \|f\|_{L^{p}(\mathbf{R}^{n})})$

d) Deduce that $W^{1,p}(\mathbf{R}^n) \subset C^{\alpha}(\mathbf{R}^n)$ with α you found in part (b).

e) Show (by example) that $W^{1,\infty}(\mathbf{R}^n)$ is not a subset of $C^1(\mathbf{R}^n)$, On the other hand, show that the endpoint result corresponding to 2(b) and (d) above is valid with an exact control on the constant. A distribution f has a continuous representative satisfying

$$|f(x) - f(y)| \le A|x - y|$$

if and only if the distributional derivative of f, satisfies $\nabla f \in L^{\infty}(\mathbf{R}^n)$ and $\|\nabla f\|_{L^{\infty}} \leq A$. In particular, the class $W^{1,\infty}(\mathbf{R}^n)$ is the same as the class of Lipschitz functions, that is bounded functions on \mathbf{R}^n satisfying

$$|f(x) - f(y)| \le C|x - y|$$

Hint: Show that

$$\|f * \varphi_{\epsilon} - f\|_{L^{\infty}} \to 0,$$

holds for all $f \in W^{1,\infty}(\mathbf{R}^n)$. The difficulty with the argument you used in Problem 2 is that this property fails for some $f \in L^{\infty}(\mathbf{R}^n)$.