
18.103 Fall 2013

Problem Set 10 (due 10am Fri, Nov 22)

Do AG §3.5/ 9, 11, 12.

1. a) Let f ∈ Lp(R), 1 < p <∞ and g ∈ L1(R). Show that

‖f ∗ g‖p ≤ ‖f‖p‖g‖1

Hint: Let 1/p+ 1/q = 1, and apply Hölder’s inequality to

|f(x− y)g(y)| = (|f(x− y)||g(y)|1/p)(|g(y)|1/q)

(See Prop 17, AG Appendix B.) Note that this inequality is also true for p = 1, using
Fubini’s theorem carried out in §3.5/9, and for p =∞, using more elementary properties of
the Lebesgue integral.

b) Deduce that if f ∈ Lp(R), 1 ≤ p <∞ and K ∈ L1(R) with∫
R
K(x) dx = 1; Kε(x) = (1/ε)K(x/ε)

then
lim
ε→0
‖f ∗Kε − f‖p = 0

c) Show that if f ∈ L∞(R) and K ∈ L1(R), then f ∗ K ∈ Cucb(R), where Cucb(R) is the
class of uniformly continuous functions bounded functions. (See also Fourier series notes 3,
where the analogous statement on T is mentioned as an exercise, with a hint as to how it is
proved.)

d) Give a counterexample to the statement in part b) in the case p =∞.

2. We will solve the equation
∂

∂t
u =

∂2

∂x2
u+ a

∂

∂x
u (1)

for a function u(x, t) with initial value

u(x, 0) = f(x).

This is interpreted as a heat equation or diffusion equation with drift (the a(∂/∂x) term is
the drift).

a) Denote by û(ξ, t) and f̂(ξ) the Fourier transform in the x variable of u and f . For each
fixed ξ find the ordinary differential equation for û(ξ, t) formally (assuming the derivatives
all make sense). Then solve the equation for û in terms of f̂ .
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b) Take the inverse Fourier transform of your formula for û(ξ, t) in part (a), and find a
proposed formula for u in terms of f in the form

u(x, t) = f ∗ gt(x)

(See §3.5/10 for the formula for gt in the case a = 0.)

c) Show that the formula in part (b) solves the initial value problem. Namely, for f ∈ L1, u
given by the formula in (b) satisfies the differential equation (1) in t > 0, x ∈ R, and satisfies
the initial condition in the sense that

lim
t→0

∫ ∞
−∞
|u(x, t)− f(x)|dx = 0 (t > 0).

3. (See also §3.5/6; SS Chap 5/ Exercise 23, p. 168–169.) Define

Tf(y) =
1√
2π

∫
R
f(x)e−ixydx

a) Show that T 4 = I the identity mapping on S, the Schwartz class. (This extends by
continuity to L2(R). Recall that we proved in lecture that T maps S to S. The Plancherel
formula says that T is an isometry in the L2(R) norm. We also showed in lecture that, since
S is dense in L2, one can extend T by continuity to the whole space L2(R), where it is again
an isometry.)

b) Suppose that h ∈ S and Th = ch (an eigenvector for T with eigenvalue c). Find the short
list of possible values of c. (See SS, p. 163, 6.)

c) Consider the so-called annihilation and creation operators A and B defined by

A =
d

dx
+ x; B = − d

dx
+ x

and denote the L2(R) inner product by

〈f, g〉 =

∫
R
f(x)g(x)dx

Show that for all f and g in S, 〈Af, g〉 = 〈f,Bg〉. This says that B = A∗, the adjoint of A,
and A∗ = B.

d) Find numbers a and b such that

TA = aAT ; TB = bBT

e) Let h0(x) = e−x
2/2 and hk = Bkh0. Show that hk(x) = Hk(x)e−x

2/2 with Hk a polynomial1

of degree k and that
Thk = λkhk

1Hk is known as a Hermite polynomial. Its generating function and other closely related formulas can be
found in SS p. 173.
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for some λk. (Find λk explicitly.)

f) Show that the hk/‖hk‖ (with ‖ · ‖ the L2(R) norm) form a complete orthogonal system.
(Hint: Consider 〈Bkh0, B

`h0〉. Use part (c) and the commutator formula [A,Bn] = ncBn−1.
Incidentally, the Hermite polynomials can also be obtained by applying the Gram-Schmidt
process to the functions 1, x, x2, x3, etc, in L2(R, e−x2dx).)
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