18.103 Fall 2013

1. Fourier Series, Part 1.

We will consider several function spaces during our study of Fourier series. When we talk about $L^p((-\pi,\pi))$, it will be convenient to include the factor $1/2\pi$ in the norm:

$$||f||_p = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^p dx\right)^{1/p}.$$

In particular, the Lebesgue space $L^2((-\pi,\pi))$ is a Hilbert space with inner product

$$\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} \, dx \,.$$

The starting place for the theory of Fourier series is that the family of functions $\{e^{inx}\}_{n=-\infty}^{\infty}$ is orthonormal, that is

$$\langle e^{inx}, e^{imx} \rangle = 0, \ n \neq m; \quad \langle e^{inx}, e^{inx} \rangle = 1, \quad n, \ m \in \mathbf{Z}.$$

The Fourier coefficients of f are defined by

$$\hat{f}(n) = \langle f, e^{inx} \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx, \quad n \in \mathbf{Z}.$$

 $(\mathbf{Z} = \{0, \pm 1, \pm 2, \dots\})$ represents the integers.) The definition of Fourier the coefficients $\hat{f}(n)$ also makes sense for $f \in L^1((-\pi, \pi))$. The main issue is to find the ways in which the Fourier series

$$\sum \hat{f}(n)e^{inx}$$

represents the function f.

The first basic remark is that for all $f \in L^1((-\pi, \pi))$,

$$|\hat{f}(n)| \le ||f||_1$$

This is proved by putting the absolute value inside the integral:

$$|\hat{f}(n)| = \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx \right| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)| dx = ||f||_1.$$

Let $C^k(\mathbf{R})$, k = 0, 1, 2, ..., denote the complex-valued functions that are k times continuously differentiable on \mathbf{R} . $C(\mathbf{R}) = C^0(\mathbf{R})$ denotes continuous functions on \mathbf{R} , and $f \in C^k(\mathbf{R})$ if and only if $f' \in C^{k-1}(\mathbf{R})$. Denote by $C^{\infty}(\mathbf{R})$ the infinitely differentiable functions on \mathbf{R} .

If the function f is periodic of period 2π $(f(x+2\pi)=f(x))$, then f defines a function on $\mathbf{T}=\mathbf{R}/2\pi\mathbf{Z}$, the quotient space of \mathbf{R} under the equivalence relation $x\sim x'$ if $x-x'\in 2\pi\mathbf{Z}$. We will use the notation $C^k(\mathbf{T})$ for C^k functions on \mathbf{T} , which are identified with 2π -periodic functions in $C^k(\mathbf{R})$. We will identify functions in $L^p((-\pi,\pi))$ with 2π periodic functions on \mathbf{R} and write $L^p(\mathbf{T})$.

The proof in the preceding set of lecture notes that $C_0^{\infty}(\mathbf{R})$ is dense in $L^p(\mathbf{R})$, $1 \leq p < \infty$, can be modified in a routine way to show that $C^{\infty}(\mathbf{T})$ is dense in $L^p(\mathbf{T})$, $1 \leq p < \infty$. Indeed, the density can be proved using C^{∞} functions that are truncated to be zero in a small neighborhood of π (equivalent to $-\pi$).

Proposition 1. If $f \in C^1(\mathbf{T})$, then

$$|\hat{f}(n)| \le C/|n|$$

Proof. For $n \neq 0$,

$$\int_{-\pi}^{\pi} f(x)e^{-inx} dx = \int_{-\pi}^{\pi} f(x)\frac{d}{dx} \left(\frac{e^{-inx}}{-in}\right) dx = -\int_{-\pi}^{\pi} f'(x)\frac{e^{-inx}}{-in} dx$$

Hence,

$$|\hat{f}(n)| \le \frac{1}{2\pi |n|} \int_{-\pi}^{\pi} |f'(x)| \, dx = ||f'||_1/|n|$$

Exercise. Show that if $f \in C^k(\mathbf{T})$, then

$$|\hat{f}(n)| \le C/(1+|n|)^k$$

Lemma 1. (Riemann-Lebesgue Lemma) Suppose that $h \in L^1(\mathbf{T})$. Then

$$\hat{h}(n) \to 0$$
 as $|n| \to \infty$

Proof. Let $\epsilon > 0$, and choose $g \in C^1(\mathbf{T})$ so that

$$||h-g||_{L^1(\mathbf{T})} \le \epsilon.$$

By Proposition 1 $\hat{g}(n) \to 0$ as $|n| \to \infty$. Therefore,

$$\limsup_{n\to\infty}|\hat{h}(n)|\leq \limsup_{n\to\infty}(|\hat{h}(n)-\hat{g}(n)|+|\hat{g}(n)|)=\limsup_{n\to\infty}|\hat{h}(n)-\hat{g}(n)|.$$

Next note that using (1),

$$|\hat{h}(n) - \hat{g}(n)| \le \|h - g\|_{L^1(\mathbf{T})} \le \epsilon.$$

Thus we have shown

$$\limsup_{n \to \infty} |\hat{h}(n)| \le \epsilon.$$

And taking the limit as $\epsilon \to 0$ finishes the proof.

For any $f \in L^1(\mathbf{T})$, we define the partial sum of the Fourier series by

$$s_N(x) = \sum_{n=-N}^{N} \hat{f}(n)e^{inx}.$$

Substituting the formula for $\hat{f}(n)$ into this formula, we find

$$s_N(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) \sum_{n=-N}^{N} e^{in(x-y)} dy,$$

which we also write

$$s_N(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) D_N(x-y) \, dy$$
 with $D_N(t) = \sum_{n=-N}^{N} e^{int}$.

The formula for s_N can be written in more compact form using an important operation * known as convolution.

$$(2) s_N(x) = f * D_N(x)$$

Convolution. In general, for f and g in $L^1(\mathbf{T})$, we define the operation of convolution by

$$f * g(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)g(x-y) \, dy = \frac{1}{2\pi} \int_{0}^{a+2\pi} f(y)g(x-y) \, dy$$

For such f and g Fubini's theorem implies that f * g defines an integrable function. In particular, f * g(x) is defined and finite for almost every x (and periodic of period 2π). It's easy to see that convolution satisfies the distributive law, f * (g+h) = f * g + f * h. One can also confirm, using a change of variable, that the operation is commutative. In other words,

$$f * g(x) = g * f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(y)f(x - y) dy$$

There will be more about convolution later.

Theorem 1. (Dini Test) If $f \in L^1(\mathbf{T})$, and for some fixed x

$$\int_{-\pi}^{\pi} \frac{|f(x+y) - f(x)|}{|y|} dy < \infty,$$

then $s_N(x) \to f(x)$ as $N \to \infty$.

Proof. (Note that although f is merely an L^1 function, the hypothesis specifies the value of f(x) uniquely.) To prove the theorem observe first that

$$\int_{-\pi}^{\pi} D_N(y) \, dy = \int_{-\pi}^{\pi} \left(\sum_{n=-N}^{N} e^{iny} \right) \, dy = \int_{-\pi}^{\pi} \, dy = 2\pi$$

Therefore,

$$s_N(x) - f(x) = D_N * f(x) - f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} D_N(y) f(x - y) \, dy - \frac{1}{2\pi} \int_{-\pi}^{\pi} D_N(y) f(x) \, dy$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} (f(x - y) - f(x)) D_N(y) \, dy$$

Furthermore,

$$D_N(y) = \sum_{n=-N}^{N} e^{iny} = \frac{e^{i(N+1)y} - e^{-iNy}}{e^{iy} - 1}$$

Thus

$$s_N(x) - f(x) = \hat{h}_x(N+1) - \hat{h}_x(-N)$$

with

$$h_x(y) = \frac{f(x-y) - f(x)}{e^{iy} - 1}.$$

Since $|e^{iy}-1| \ge 2|y|/\pi$ for all $|y| \le \pi$, the hypothesis implies

$$\int_{-\pi}^{\pi} |h_x(y)| \, dy \le \frac{\pi}{2} \int_{-\pi}^{\pi} \frac{|f(x-y) - f(x)|}{|y|} dy < \infty$$

Therefore, by the Riemann-Lebesgue lemma (Lemma 1)

$$\lim_{N \to \infty} \hat{h}_x(N+1) - \hat{h}_x(-N) = 0$$

and the theorem is proved.

Corollary 1. If $f \in C^1(\mathbf{T})$, then

a)
$$s_N(x) \to f(x)$$
 as $N \to \infty$ for all $x \in \mathbf{T}$.

b)
$$||s_N - f||_p \to 0$$
 as $N \to \infty$, $1 \le p < \infty$.

Proof. Let $M = \max |f'|$. Then $|f(x - y) - f(x)| \le M|y|$ so that

$$|h_x(y)| \le \left| \frac{f(x-y) - f(x)}{e^{iy} - 1} \right| \le \pi M/2$$

In particular, by the Dini test (Theorem 1), $s_N(x) \to f(x)$. Furthermore, by (1), we have

$$|s_N(x)| \le |\hat{h}_x(N+1)| + |\hat{h}_x(-N)| \le 2||h_x||_1 \le M\pi$$

so that $|s_N(x) - f(x)|^p \le (M\pi + |f(x)|)^p$ is a majorant. By the dominated convergence theorem,

$$\lim_{N \to \infty} \int_{-\pi}^{\pi} |s_N(x) - f(x)|^p \, dx = 0$$

Exercise. For each α , $0 < \alpha < 1$, define $C^{\alpha}(\mathbf{T})$ as the collection of 2π periodic functions on \mathbf{R} satisfying

$$|f(x) - f(y)| \le C|x - y|^{\alpha}$$
, for all $x, y \in \mathbf{R}$

Show that the conclusion of Corollary 1 holds for all $f \in C^{\alpha}(\mathbf{T})$.

Corollary 2. The functions e^{inx} , $n \in \mathbb{Z}$ form an orthonormal basis for $L^2(\mathbb{T})$. In particular, for all $f \in L^2(\mathbb{T})$,

$$\lim_{N \to \infty} ||s_N - f||_2 = 0, \quad and \quad ||f||_2^2 = \sum_{n \in \mathbf{Z}} |\hat{f}(n)|^2.$$

Proof. Corollary 1 shows that the closure of V in the $L^2(\mathbf{T})$ distance includes all functions in $C^1(\mathbf{T})$. Our density theorem says, in particular, that $C^1(\mathbf{T})$ is dense in $L^2(\mathbf{T})$. Thus V is dense in $L^2(\mathbf{T})$, and this is condition (a) of our theorem characterizing orthonormal bases.