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Abstract

We suggest that a candidate for dark matter is a meson with spin

one the existence of which is dictated by local scale invariance pro-

posed by Herman Weyl..
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We suggest that the dark matter is a boson with spin unity. Indeed, it is
the vector meson S first proposed by Weyl on the basis of scale invariance.
We point out that, in our theory of local scale invariance, there is an inherent
mechanism of mass generation which produces particle masses. As a result,
scale invariance is spontaneously broken and our theory does not have the
malaise of mass anomalies which plagues theories of global mass invariance.
We also show that, since the S meson does not couple with the fermions, this
theory is unitary. Besides producing particle masses, the mass generation
mechanism also produces the observed dark energy.

Since the S meson is a boson, it may form a condensate which is translu-
cent to light. The gravitational field generated by this condensate bends the
light beam that passes through it. Therefore, a translucent condensate, if it
exists, acts like a lens to light.

As colliders are being built with the creation of dark matters among the
stated goals, we wish to point out that one of the possible candidates of dark
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matter is the vector meson S first conceived by Weyl on the basis of scale
invariance1,2.

Weyl made the mistake of identifying S with the photon. Also, Weyl’s
work is incomplete, as he lacked at his time the framework of quantum elec-
trodynamics and the theory of general relativity on which our theory of scale
invariance is based. Our formulation of scale invariance yields results3 differ-
ent from those of Weyl’s. For example, we find that S does not couple with
the electron. It is well-known that Einstein argued that electrons moving
in a background of the S field would produce unobserved broading of the
atomic spectral lines. That the electron does not interact with S overrides
this objection of Einstein. Indeed, S is a kind of dark matter coupling with
neither quarks and leptons, nor any of the gauge mesons. Indeed, in our
theory, the only interactions S has are those with the graviton and scalar
mesons, the only candidate of which at the moment is the Higgs meson.

Let gµν be the metric tensor. Then the distance between two neighboring
space-time points is

ds2 = gµνdxµdxν .
Let us change the scale of distance globally, e.g., changing the unit of

length from the centimeter to the inch for every point in space. With this
change, the distance remains the same, but is measured in a different unit.
This can be done by changing the metric tensor from gµν to g′

µν, where

g′

µν = Λ2gµν, (1)
with Λ a constant. Then we have
ds′2 = Λ2ds2,
where
ds′2 ≡ g′

µνdxµdxν .
Thus, with the transformation (1), the numerical value of the distance

between two given points is changed by a constant multiple. Since gµν is the
inverse of gµν, we have from (1) that

g′µν = Λ−2gµν. (2)
We also have from (1) that
(− det g′)1/2 = Λ4(− det g)1/2, (3)

where det g is the determinant of the matrix gµν.
The tetra εa

µ satisfies

ηabε
a
µε

b
ν = gµν ,
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where ηab is the metric tensor in the Minkowski space. Thus the tetrad

transforms like
ε′aµ = Λεa

µ. (4)
From (2) and (4), we have
ε′aµ = Λ−1εaµ, (5)
where
εaµ = gµνεa

ν.
It is to be noted that many field theories found useful today are globally

scale invariant. To see this, we first mention that the action is given by
∫

d4x(− det g)1/2L,
where L is the Lagrangian density. By (3), the action is invariant under

global scale transformations provided that
L′ = Λ−4L. (6)
Consider the Lagrangian of a massless scalar field φ with a φ4 coupling

which is given by
1

2
gµν∂µφ∂νφ − λφ4, (7)

where λ is the quartic coupling constant. By (2), the Lagrangian of (7)
satisfies (6) provided that

φ′=Λ−1φ. (8)
Next consider the Lagrangion density of the electromagnetic field Aµ

−
1

4
gµρgνσFµνFρσ, (9)

where
Fµν = ∂µAν − ∂νAµ.
By (2), this Lagrangian density satisfies (6) provided that
A′

µ = Aµ. (10)
The Yang-Mills theory is also invariant under global scale transforma-

tions. This is because
F a

µν = ∂µW a
ν − ∂νW

a
µ − gf abcW b

µW c
ν

is invariant under global scale transformations provided that
W ′a

µ = W a
µ , (11)

where W a
µ is the Yang-Mills gauge meson, g is a dimensionless coupling

constant, and f abc is the structure constant of the gauge group.
The Lagrangian for the electron field Ψ coupling with the electromagetic

field and the gravitational field is
−

Ψiγcεµ
c

[

∂µ + ieAµ −
1

2
σabε

bν(∂µεa
ν − Γρ

µνε
a
ρ)

]

Ψ, (12)
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where

Γρ
µν =

gρσ

2
(∂µgσν + ∂νgσµ − ∂σgµν),

and

σab =
γaγb − γbγa

4
.

It is straightforward to find that this Lagrangian density satisfies (6)
provided that

Ψ′ = Λ−3/2Ψ. (13)
Let us see what happens if we demand the theory be scale invariant locally,

i.e., when Λ is a function of time and space. With the usual arguments we
use to deduce the existence of gauge fields, we find that all the theories above
become locally scale invariant provided that there exists a vector meson S
and we make in these Lagrangian the replacements

∂µgνρ → (∂µ + 2fSµ)gνρ, ∂µgνρ → (∂µ − 2fSµ)g
νρ,

∂µεa
ν → (∂µ + fSµ)εa

ν, ∂µεν
a → (∂µ − fSµ)ε

ν
a,

∂µφ → ( ∂µ − fSµ)φ, ∂µΨ → (∂µ −
3

2
fSµ)Ψ. (14)

In the above, f is a coupling constant which is the counterpart of e in
quantum electrodynamics.

As an example, with the replacement (14), the Lagrangian of (7) becomes
1

2
gµν(∂µ − fSµ)φ(∂ν − fSν)φ−λφ4. (15)

The Lagrangian density above satisfies (6) with
φ′ = Λ−1φ, g′µν = Λ−2gµν,
and

S ′

µ = Sµ −
1

f
∂µ ln Λ, (16)

where Λ is a function of space and time.
By (10) and (11), there is no need to alter the Lagrangian for a gauge

meson. Thus gauge mesons do not couple with S.
Neither does a fermion. The proof is straightforward but requires a little

algebra so we will give the details below. We note that, as we make the
replacement (14), the additional terms generated from

−
γc

2
σabε

bνεµ
c (∂µεa

ν − Γρ
µνε

a
ρ)

are

−
γc

2
σabε

bνεµ
c f(−Sνε

a
µ + gρσSσgµνε

a
ρ).

The expression above can be simplified into
γc

2
f(σcbε

bνSν − σacε
aσSσ) = fγcσcbε

bνSν.
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(17)
Now

γcσcb = γc γcγb − γbγc

4
=

3γb

2
.

Thus the expression in (17) is equal to
3

2
fγbεν

bSν. (18)

Also, the term generated from ∂µΨ is

−
3

2
fSµΨ. (19)

Therefore, as we make the replacement (14), the terms generated from
the Lagrangian (12) completely cancel one another. Thus we conclude that
the fermion does not couple with S.

While there are no mass terms in the Lagrangian of our theory, there is an
inherent mass generation mechanism in a locally scale invariant theory. As
we know, there are a number of mechanisms which spontaneously generate
masses4, a notable example being the Higgs model5. The mass generation
mechanism in a locally scale invariant theory is distinct from any of the
mechanisms mentioned above. For example, the potential of the scalar field
in a scale invariant theory cannot be a Higgs potential, having only a quartic
term φ4.

Consider as a simple model in which there is a real scalar meson φ, the
S meson, and a gravitational field. The Lagragian in this model3 is given by
the sum of (15) and

−
1

4
gµρgνσHµνHρσ +

1

2
βφ2

∼

R, (20)

where
Hµν = ∂µSν− ∂νSµ,

and
∼

R is equal to the scalar curvature R with the derivative replaced
by the scale covariant derivative defined in (14). Also, β is a dimensionless
constant. This theory is scale invariant, and the magnitude of φ can be
altered by making a scale change. As a side remark, we note that if φ is
equal to zero at a certain space-time point, it remains to be zero at this
point under any scale transformation. This is to say that the zeroes of φ can
never be made to disappear with a scale transformation. Thus two sets of φ
solutions having different zeroes are not equivalent.

Consider the case in which φ is positive definite at all space-time point.
Then we may make, for example,

φ(−→x , t) = 1
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for all space-time points. We may also make φ to equal to, say, 1000
at all points; but such a solution is equivalent to φ = 1. This is because
φ = 1Gev, say, is the same as φ = 1000 Mev. Clearly, the numerical value of
φ is not meaningful until we specify the unit we express it in, and we have
the freedom to choose this unit. Once the unit is specified, the scale of the
theory is set. We shall make φ be v/

√
2 at all space-time points. Then the

Lagrangian (15) becomes

−
f 2v2

4
S2 − λv4/4. (21)

The first term of (21) is a mass term of the S meson. The second term
in (21) gives an energy density λv4/4, which is the energy density of the
universe in the absence of any particles. Therefore, λv4 is the cosmological
constant, or the density of the dark energy3,7 the existence of which has been
deduced in astrophysical observations.

We mention that, in addition to having the physical consequences of
giving rise to particle masses and the dark energy, this scheme of symmetry
breaking also has the conceptual appeal that the negative quadratic term in
the Higgs potential is not required.

There is also a mass term for S coming from the second term of (20).
We have, with φ replaced by v/

√
2,

1

2
βφ2

∼

R =
1

16πG
(R + 6f 2S2 + 6fDµS

µ), (22)

where
G = (4πβv2)−1

is the gravitational constant and
DµSµ = ∂µSµ + Γµ

µνS
ν.

The last term in (22) is a surface term and can be ignored. This is because
(− det g)1/2DµSµ = ∂µ

[

(− det g)1/2Sµ
]

.
Thus the terms in the Lagrangian involving the S field is simply

−
1

4
gµρgνσHµνHρσ +

1

2
M2

s gµνSµSν ,

where MS is the S mass. This shows that the S meson couples with the
gravitatonal field through its energy-momentum tensor. Also, the equation
of motion for S is

gµρDµHρν = −M2

s Sν.
The mass term in (21) is much smaller than the mass term given in (22).

Thus MS is approximately given by

MS ' f

√

3

4πG
. (23)
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Let us now see what happens as we impose scale invariance on the stan-
dard model. We add the S field and the gravitational field to the theory
in the way described previously, and replace the Higgs potential of the iso-
doublet of scalar mesons in the standard model by a quartic potential. By
making a rotation in the iso-space, we may make the iso-doublet of scalar
meson to have a real and positive lower component with no upper compo-
nent. Assuming that this lower component does not vanish at any space-time
point, we may make a scale change to set it to equal to v/

√
2 at all points.

Thus W±, Z, quarks and leptons get masses in exactly the same way as in
the standard model. The only difference is that, with all four components
of the scalar iso-doublet eaten up by W±, Z and S,there exists no physical
Higgs meson.

This theory, with gravity incorporated, is not renormalizable. Even if we
ignore the gravitational interaction in this theory, it still appears to be not
renormalizable. This is because a massive Yang-Mills theory is known to be
not renormalizable6.

The locally scale invariant theory proposed here, with scale invariance
broken spontaneously, does not have mass anomalies which plague theories
of global scale invariance.

That the vector meson S does not couple to the electron avoids a dif-
ficulty which is different from the one raised by Einstein. This is because
the Lagrangian (12) would be complex if there were a term fSµγµ inside the
bracket of (12). On the other hand, the Lagrangian (15) is real, hence the
corresponding Hamiltonian is real. This Hamiltonian becomes a hermitian
operator after quantization, and our theory is unitary.

Nuclei are formed as protons and neutrons attract one another with strong
interactions. Solids or liquids are formed as electrons and nuclei have the
electromagnetic interaction. Since the S mesons have but gravitational in-
teractions, they cannot form the kinds of matter we see. Thus the S particles
mostly move freely in space, with nothing to reveal their existence other than
through the gravitational field they generate. On the other hand, unlike elec-
trons and nucleons, S is a boson and does not satisfy the exclusion principle.
As a result, there is no limit to how many S particles may occupy the same
spatial point at the same time. Therefore, when the density of such particles
become sufficiently high, they can be bound together by gravitational forces.
Thus it may be possible for them to form a condensation the behaviors of
which are different from those of ordinary matters. In particular, they are
translucent to light and can be heavy. The gravitational field generated from
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such a condensate bends the light that passes through it. Thus a translucent
condensate, if it exists, acts like a lens that bends light.

It is interesting to ponder if there are ways to observe the S particles if
they exist in nature.
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