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Abstract. The mathematics of thermodynamics provides an im-
portant application of the Legendre transform and techniques of
partial differentiation. This succinct account highlights the math-
ematically sophisticated notion of state space and brings out the
symmetry of the theory. The standard examples of the ideal gas
law and the ideal van der Waals fluid are worked out in detail.

1. Introduction

1.1. My motivation. In designing an advanced calculus course, it is
important to think about what parts of the vast amount of material will
actually be of use to students in later courses, especially courses outside
of the mathematics department. In 2007, I made such a study, with the
help of Dr. Janet Rankin of MIT’s Teaching and Learning Laboratory.
What emerged was that for the majority of students, comfort with
manipulating functions of several variables was more important than
“vector calculus.” Thermodynamics forms important and widespread
application of these techniques, and a key method in that subject is
the Legendre transform. (Another instance of the Legendre transform
is the relationship between Lagrangian and Hamiltonian mechanics.)

Motivated by this discovery, I looked for succinct and mathemati-
cally sensible accounts of elementary thermodynamics. Finding none,
I wrote some notes for myself, and they form the basis of this paper.
I hope that mathematics instructors find it useful as background for
designing couresware that emphasizes this aspect of advanced calcu-
lus. Most students in a calculus class will not have seen this material
in its thermodynamical context, so use of this as an example has to be
accompanied by an assurance that it will occur if they go on to take a
serious course in thermodyamics.

Conversely, I hope that a clear and unambiguous mathematical pre-
sentation may be of use to physicists, chemists, or materials scientists
tasked with teaching thermodynamics.
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1.2. State space. In addition to demonstrating the utility of manip-
ulations of functions of several variables, thermodynamics involves a
key concept that can be greatly clarified by a mathematical perspec-
tive: namely, the notion of the “state space.” This should be thought
of as a geometrical object, a “manifold” (to use the term in a loose
sense), one that exists without coordinates or parametrization. “State
variables” provide parametrizations of it, but should not be considered
intrinsic to the state space itself. The subltety of thermodynamics is
that various different sets of state variables are relevant to different
applications; but the state space itself remains the same. The range
of a set of state variables has to be regarded as distinct from the state
space itself.

Mathematically inclined instructors often complain about the use of
the symbol f(x) for a function, rather than merely f . As with many
aspects of basic undergraduate mathematics, this usage can instead
be celebrated as conveying a deep mathematical idea, embodied in the
notion of state space and state parameters. The state space D may have
a function defined on it that one chooses to regard as a coordinate; say
x : D → R. Given some function of interest on D, we may attempt to
write it in terms of the coordinate x, that is, as f ◦ x : D → R. (This
is more likely to be successful if D is “one-dimensional.”) It’s not
unreasonable to write that composite as f(x), giving real significance
to this expression as a function.

This symbolic convention suggests that we use the symbol x for the
coordinate on the target of x : D → R. Overloading notation in
this way is a cause of confusion, but it is so common that one should
encourage students to get used to it.

In the language of thermodynamics, x is a state parameter and f
is a potential or energy function. A thermodynamic system can be
described by specifying values of state variables. It seeks equilibrium,
which is identified as minimizing some potential.

1.3. The Legendre transform. If f is convex, the value of x (if
there is one) for which f ′(x) = p (for a real number p) is determined
by p. This entitles us to think of p as a new coordinate on D, a new
state parameter. The question then arises: How is the composite f(x)
expressed in terms of this new state parameter p? It turns out that
a choice leading to a pleasingly symmetrical theory is to define a new
potential g by the equation (and I choose the sign preferred in the
thermodynamics literature)

g(p) = f(x)− xp .
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Once again, this equation has a dual meaning. One can regard it
as an equality of functions on the state space D. But we also have a
copy of R2 with coordinates x, p (which I’ll denote by R2

xp), and this is
an equality of functions on it (or on a subspace of it). So f and g are
now both functions of both x and p, but f depends only on x and g
depends only on p.

With this perspective in mind, we may apply the theory of partial
differentiation: (

∂f

∂x

)
p

= p ,

(
∂g

∂p

)
x

= −x

Putting the matter more symmetrically, we may say that the “Le-
gendre package” is this (in dimension one): A domain D with two
real-valued functions defined on it, x and p. Two smooth real-valued
functions f and g, defined on an interval containing the values of x and
p respectively, are said to be Legendre conjugates of each other if (as
functions on D)

f(x)− g(p) = xp

and so

x = −g′(p) , p = f ′(x) .

To make this work out one assumes either that f is convex, f ′′(x) > 0 –
so that f ′(x) is an increasing function, and its inverse function −g′(p) is
increasing as well, and so g is concave, g′′(p) < 0 – or that g is convex,
in which case f is concave.

The utility of the Legendre transform in thermodynamics is as fol-
lows. First, some state parameters are quite easy to measure – tem-
perature and volume, for example – while others are not directly mea-
surable – entropy, for example. In the presence of an energy function,
the Legendre transform allows you relate measurable state variables
to ones that are not directly measurable, with no loss of information.
These latter are often the natural variables of the energy whose extrema
specify equilibrium states of interest.

In thermodynamics the state space is typically more than one-dimensional;
so one has several independent state parameters. In this case, one can
form the Legendre transform with respect to one variable at a time,
holding the others fixed. A beautiful, complex, symmetrical pattern of
potentials and new state functions arises. This is of interest indepen-
dent of the apparatus of thermodynamics, but we will use the notation
and names arising there.

1.4. Outline. After running through the various state variables and
potentials occurring in two-dimensional thermodynamics, we recall the
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Maxwell and Gibbs-Helmholtz equations, and point out the extremely
simple model for this system given by “quadratic thermodynamics.”
We then consider the mathematics of two somewhat more realistic
models, the ideal gas law and the ideal van der Waals fluid. As with
any mathematical model, the assumptions underlying either of these
models break down if parameters pass some threshold; there are phase
changes. For all of this a basic reference is Callen [1].

I make no attempt whatsoever to illuminate the physical significance
of the various state variables and potentials discussed here. The ac-
count is intentionally quite telegraphic. The basic story is of course
well-known, but I believe that the symmetry of this pattern of func-
tions has not been brought out sufficiently elsewhere, and I do not
know a place where either the mathematically illuminating example
of quadratic thermodynamics occurs, nor where explicit fundamental
relations for the two standard examples can be found.

I am indebted to Janet Rankin for the survey work we did long ago,
as well as many informative and enjoyable conversations about the
mathematics of thermodynamics, and for her help in improving the
utility of this paper.

2. State parameters and potentials in two dimensions

One pair of state parameters that is close to our common experience
is given by temperature T and volume V . The relevant form of energy
is the “Helmholtz free energy,” or “Helmholtz potential,” F = F (T, V ).
This function is also written A(T, V ) in the literature. So F denotes
both a function on the state space D and a function on the (T, V )
plane.

The Helmholz potential is arranged so that:

If the system is constrained to have fixed temperature
T , it selects the state that minimizes the Helmholtz free
energy F .

We will accept a notational confusion that is universal in this field.
The state parameters T and V are functions on the state space D. As
such they define together a function D → R2. But we will also use
these symbols to denote the two coordinates on R2. This lets us make
sense of expressions like (∂F/∂T )V , and regard them as new functions
on the state space D.

We assume that(
∂2F

∂T 2

)
V

< 0 ,

(
∂2F

∂V 2

)
T

> 0 .
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Let’s start with T , holding V constant. The Legendre transform
package is then

(1) U(S, V )− F (T, V ) = ST , S = −
(
∂F

∂T

)
V

, T =

(
∂U

∂S

)
V

.

The quantity S is the “entropy” of the system, and U is the “internal
energy.” The internal energy is the Legendre conjugate of Helmholtz
free energy obtained by replacing temperature with entropy as an in-
dependent variable, keeping V constant.

We claim that

(2)

(
∂F

∂V

)
T

=

(
∂U

∂V

)
S

.

This follows from the Legendre relation: differentiate with respect to
V , holding both S and T fixed.

Therefore, the condition of minimizing F for fixed T is equivalent to
the condition of minimizing U for fixed S, so:

If a system is constrained to have fixed entropy S, it
selects the state that minimizes the internal energy U .

We find that (
∂2U

∂S2

)
V

> 0 ,

(
∂2U

∂V 2

)
S

> 0 .

We can equally well swap V for a new variable, P , keeping T con-
stant:

(3) G(T, P )− F (T, V ) = PV , P = −
(
∂F

∂V

)
T

, V =

(
∂G

∂P

)
T

.

P is “pressure,” and G is the “Gibbs free energy” or “Gibbs potential.”
Differentiating (3) with respect to T , holding both V and P constant,

gives us

(4)

(
∂F

∂T

)
V

=

(
∂G

∂T

)
P

.

We find that (
∂2G

∂T 2

)
P

< 0 ,

(
∂2G

∂P 2

)
T

< 0 .

Then we can, if we want, take U and swap V for a new variable,
keeping S constant:

(5) H(S, P )− U(S, V ) = PV , P = −
(
∂U

∂V

)
S

, V =

(
∂H

∂P

)
S

.
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Identities in (2) and (3) imply that P = P . This new potential H(S, P )
is the “enthalpy” of the system.

We get a third claim, as well:

(6)

(
∂U

∂S

)
V

=

(
∂H

∂S

)
P

.

We find that (
∂2H

∂S2

)
P

> 0 ,

(
∂2H

∂P 2

)
S

< 0 .

A system subject to fixed pressure P selects the state
that minimizes enthalpy H. This is the same state as
the state that minimizes the internal energy U for fixed
volume V .

Or we could take G and swap T for a new variable, keeping P con-
stant:

(7) H(S, P )−G(T, P ) = ST , S = −
(
∂G

∂T

)
P

, T =

(
∂H

∂S

)
P

.

Identities in (4) and (1) imply that S = S. Then

H = ST + G = ST + PV + F = PV + U = H

Combining the formulas for T in (1) and (7) confirms (6). Differenti-
ating (7) with respect to P gives the identity

(8)

(
∂G

∂P

)
T

=

(
∂H

∂P

)
S

which we already know by combining the formulas for V in (3) and (5).

3. Summary

Application of the Legendre transform takes a parametrization of
the state space by two variables and a potential function of those two
variables, and produces two other parameters and three other poten-
tials. The result is that each of the parameters has two expressions as
a partial derivative of a potential.

3.1. Total differentials. The relationships between the four poten-
tials and the four state parameters can be summarized by the following
formulas for the total differentials of the various potentials:

dU = T dS − P dV

dF = −S dT − P dV

dG = −S dT + V dP
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dH = T dS + V dP

together with the relations

U(S, V )− F (T, V ) = ST = H(S, P )−G(T, P )

G(T, P )− F (T, V ) = PV = H(S, P )− U(S, V ) .

3.2. Graphic. The state space is a two-dimensional domain D. It
comes equipped with four functions on it, T , V , S, and P , called state
parameters, and four potential functions or energy functionals, F , U , G,
and H. The potentials come expressed naturally as functions of pairs of
state parameters. They are all related to each other via various maps:

RF

R3
PTV

//

��

R2
TV

OO

R3
TV S

oo

��
RG R2

PT
oo D //

OO

oo

��

R2
V S

// RU

R3
SPT

OO

// R2
SP

��

R3
V SP

oo

OO

RH

3.3. Quadratic thermodynamics. With

F (T, V ) = −T 2

2
+

V 2

2

we find

S = T , U(S, V ) =
S2

2
+

V 2

2

P = −V , G(T, P ) = −T 2

2
− P 2

2

H(S, P ) =
S2

2
− P 2

2
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4. Maxwell and Gibbs-Helmholtz

4.1. Maxwell’s relations. Using (1), commutativity of partial deriva-
tives, and (3),(

∂S

∂V

)
T

=
∂

∂V

∣∣∣∣
T

(
−∂F

∂T

)
V

=
∂

∂T

∣∣∣∣
V

(
−∂F

∂V

)
T

=

(
∂P

∂T

)
V

.

Similarly, using other pairs of odd numbered equations gives us the
other equations in:(

∂S

∂V

)
T

=

(
∂P

∂T

)
V

(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V(

∂V

∂T

)
P

= −
(
∂S

∂P

)
T

(
∂V

∂S

)
P

=

(
∂T

∂P

)
S

.

These merely express the fact that the differentials of the potentials
are closed.

4.2. Gibbs-Helmholtz equations. Calculate(
∂(FT−1)

∂T

)
V

=

(
∂F

∂T

)
V

T−1 − FT−2 = ST−1 − FT−2 = −UT−2

so that

(9) U = −T 2

(
∂(F/T )

∂T

)
V

.

Exactly similar calculations lead to seven other identities:

U = −T 2

(
∂(F/T )

∂T

)
V

F = −S2

(
∂(U/S)

∂S

)
V

G = −V 2

(
∂(F/V )

∂V

)
T

F = −P 2

(
∂(G/P )

∂P

)
T

H = −T 2

(
∂(G/T )

∂T

)
P

G = −S2

(
∂(H/S)

∂S

)
P

H = −V 2

(
∂(U/V )

∂V

)
S

U = −P 2

(
∂(H/P )

∂P

)
S

.
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5. The “ideal gas law”

A “fundamental relation” is an explicit formula for one of the poten-
tials in terms of its natural variables.

Usually one gives much less information than that. For example, the
“ideal gas law” (Clapeyron, 1834) is the relation

PV = rT

where r is constant. In standard treatments, a third state variable is
present, the molarity N , and r = RN where R is a universal constant.
A relation among system parameters, such as this, is an “equation of
state.”

This equation of state implies that(
∂P

∂T

)
V

=
r

V
.

From dU = T dS − P dV we find, using one of Maxwell’s relations,

(10)

(
∂U

∂V

)
T

= T

(
∂S

∂V

)
T

− P = T

(
∂P

∂T

)
V

− P

so in an ideal gas (
∂U

∂V

)
T

= T
r

V
− P = P − P = 0 .

This relation is known as “Joule’s law,” and (10) shows that it is equiv-
alent to the relation (

∂P

∂T

)
V

=
P

T
.

Under the hypothesis only of Joule’s law,

P = Tf ′(V )

for some function f(V ). Now

Tf ′(V ) = P = −
(
∂F

∂V

)
T

integrates to
F (T, V ) = g(T )− Tf(V )

for some function g(T ). Then

S = −
(
∂F

∂T

)
V

= f(V )− g′(T )

and U depends only on T :

(11) U(S, V ) = ST + F (T, V ) = g(T )− Tg′(T ) .
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Conversely, it is clear that if U depends only on T , then

(
∂U

∂V

)
T

= 0,

so Joule’s law is equivalent to U depending only on T .
Another relevant condition is the assumption that the “heat capacity

at constant volume,”

cV =

(
∂U

∂T

)
V

is constant. The conjunction of this condition with Joule’s law is equiv-
alent to requiring

U = a + cV T

for some constant a. Together they give g(T ) = a + bT − cV T lnT
for some a, b. We take this moment to normalize the potentials, by
choosing U so that a = 0.

Then

F (T, V ) = (cV − S)T , T =

(
∂U

∂S

)
V

, S = −
(
∂F

∂T

)
V

.

We can solve T =

(
∂cV T

∂S

)
V

to get

T = e(S/cV )−k(V )

for some function k(V ). (We’ve taken the liberty of forcing T > 0,
a natural assumption from the physical perspective.) We now have a
pretty explicit fundamental relation, depending on the function k(V ):

U(S, V ) = cV e
(S/cV )−k(V ) .

Also,
S = cV (lnT + k(V ))

so
F (T, V ) = cV T (1− lnT − k(V ))

and incidentally we have computed the two functions of interest earlier:

g(T ) = cV T (1− lnT ) , f(V ) = cV k(V ) .

So
P = Tf ′(V ) = cV Tk

′(V ) .

If the ideal gas law holds and cV is constant, then this equation
implies

r

cV

1

V
= k′(V )

so
k(V ) = c−1V (S0 + r lnV )
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for a constant S0. Then

T = V −r/cV e(S−S0)/cV , S − S0 = cV lnT + r lnV

and we get explicit fundamental relations:

U(S, V ) = cV V
−r/cV e(S−S0)/cV

F (T, V ) = cV T (1− lnT )− T (S0 + r lnV )

depending upon the parameters r, cV , and S0.
As long as V and cV are positive, the condition(

∂2U

∂S2

)
V

> 0

holds. If r is also positive then also(
∂2U

∂V 2

)
S

> 0 .

6. The ideal van der Waals fluid

The van der Waals ansatz (1873) modifies the ideal gas law, and its
companion assumption that cV is constant, to accommodate interaction
between particles in the fluid. The ideal gas law gets replaced by the
equation of state

P =
rT

V − V0

− a

V 2

and the hypothesis that U = cV T with cV constant gets replaced by

U = cV T −
a

V
.

We can integrate(
∂F

∂V

)
T

= −P = − rT

V − V0

+
a

V 2

to
F (T, V ) = −rT ln(V − V0)−

a

V
+ f(T )

for some function f(T ). Then

S = −
(
∂F

∂T

)
V

= r ln(V − V0)− f ′(T )

so

F = U − ST = cV T −
a

V
− ST = cV T −

a

V
− rT ln(V − V0) + Tf ′(T ) .

Comparing these two expressions for F gives a differential equation for
f(T ):

Tf ′(T ) = f(T )− cV T .
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The solution is

f(T ) = kT − cV T lnT

for a constant k. Thus

F (T, V ) = −rT ln(V − V0)−
a

V
− cV T lnT + kT

and

S − S0 = r ln(V − V0) + cr lnT

where we write S0 = cV − k. Solving for T :

T =
e(S−S0)/cV

(V − V0)r/cV
.

Plugging this into the hypothesized form for U gives the fundamental
relation

U(S, V ) = cV
e(S−S0)/cV

(V − V0)r/cV
− a

V
.

7. Higher dimensional thermodynamics

Suppose that the state space D has dimension n. For example, we
may add the quantity of material involved (in moles, for example) as
a state variable, to get a 3-dimensional theory. The standard form of
the ideal gas law

PV = RNT

is naturally an equation of state of a 3-dimensional thermodynamic
system; the molarity N is just another state variable, and R is a uni-
versal constant. If there are several species of matter involved, the
dimensionality goes up accordingly.

Given a choice of n state parameters coordinatizing the state space
and a potential expressed as a function of them, we can swap each one
out for a Legendre conjugate variable while holding others constant.
Here “the others” can be Legendre conjugates of the originals; you’ll
get the same result. So there is a bigger family of 2n state parameters
– the original n, and their Legendre conjugates. There are 2n potential
functions, one for each set of choices between a state parameter and its
conjugate.

Note that when n = 1, the Legendre conjugate of g(p) is f(−x)
and the Legendre conjugate of p is −x: so (up to these signs) you
get two potentials, namely f(x) and g(p). In general it’s probably
better to revert to the mathematician’s signless version of the Legendre
transform here.
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