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The Legendre transform is a useful device for producing new state
functions from old ones. In thermodynamics, it is usual to employ a
slight variant, differing by a sign from the usual Legendre transform.
So the package is

f(x)− g(p) = xp , x = −g′(p) , p = f ′(x) .

The second and third relations imply the first one up to a constant,
and the first one fixes the constant. One says that f(x) is the Legendre
conjugate of g(p), and x is the Legendre conjugate of p. To make this
work out one assumes that g′′(p) < 0—so that −g′(p) is an increasing
function, and its inverse function f ′(x) is increasing as well, and so
f ′′(x) > 0—or that g′′(p) > 0, in which case f ′′(x) < 0.

In thermodynamics one often has more than one independent vari-
able. In this case, one can form the Legendre transform with respect to
one variable at a time, holding the others fixed. A beautiful, complex,
symmetrical pattern of potentials and new state functions arises. This
is of interest independent of the apparatus of thermodynamics, but we
will use the notation and names arising there.

The conceptual framework is this: There is a space D of possi-
ble states of a thermodynamic system. It admits various coordinate
systems. In the two-dimensional case, the coordinates consist of a
pair of real-valued functions or “state parameters”; that is, a function
D → R2. Then on R2 there is defined a “potential function” that
determines the thermodynamic properties of the system.

One pair of state parameters that is close to our common experience
is given by temperature T and volume V . The relevant potential is
the “Helmholtz free energy,” or “Helmholtz potential,” F = F (T, V ).
This function is also written A(T, V ) in the literature. The Helmholz
potential is arranged so that:

If the system is constrained to have a fixed temperature T , it selects
the state which minimizes the Helmholtz free energy F .

We assume that(
∂2F

∂T 2

)
V

< 0 ,

(
∂2F

∂V 2

)
T

> 0 .

1



2

Let’s start with T , holding V constant. The Legendre transform
package is then

(1) U(S, V )− F (T, V ) = ST , S = −
(
∂F

∂T

)
V

, T =

(
∂U

∂S

)
V

.

The quantity S is the “entropy” of the system, and U is the “internal
energy.” The internal energy is the Legendre conjugate of Helmholtz
free energy obtained by replacing temperature with entropy as an in-
dependent variable, keeping V constant.

We claim that

(2)

(
∂F

∂V

)
T

=

(
∂U

∂V

)
S

.

This follows from the Legendre relation: differentiate with respect to
V , holding both S and T fixed.

Therefore, the condition of minimizing F for fixed T is equivalent to
the condition of minimizing U for fixed S, so:

If a system is constrained to have fixed entropy S, it selects the state
which minimizes the internal energy U .

We find that (
∂2U

∂S2

)
V

> 0 ,

(
∂2U

∂V 2

)
S

> 0 .

We can also swap V for a new variable, P , keeping T constant:

(3) G(T, P )− F (T, V ) = PV , P = −
(
∂F

∂V

)
T

, V =

(
∂G

∂P

)
T

.

P is “pressure,” and G is the “Gibbs free energy” or “Gibbs potential.”
Differentiating (3) with respect to T , holding both V and T constant,

gives us

(4)

(
∂F

∂T

)
V

=

(
∂G

∂T

)
P

.

We find that (
∂2G

∂T 2

)
P

< 0 ,

(
∂2G

∂P 2

)
T

< 0 .

Then we can, if we want, take U and swap V for a new variable,
keeping S constant:

(5) H(S, P )− U(S, V ) = PV , P = −
(
∂U

∂V

)
S

, V =

(
∂H

∂P

)
S

.

The identity (2) implies that P = P . This new potential H(S, P ) is
the “enthalpy” of the system.
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We get a third claim, as well:

(6)

(
∂U

∂S

)
V

=

(
∂H

∂S

)
P

.

We find that (
∂2H

∂S2

)
P

> 0 ,

(
∂2H

∂P 2

)
S

< 0 .

A system subject to fixed pressure P selects the state which minimizes
enthalpy H. This is the same state as that which minimizes the internal
energy U for fixed volume V .

Or we could take G and swap T for a new variable, keeping P con-
stant:
(7)

H(S, P )−G(T, P ) = ST , S = −
(
∂G

∂T

)
P

, T =

(
∂H

∂S

)
P

.

The identity (4) implies that S = S. Then

H = ST + G = ST + PV + F = PV + U = H

Combining the formulas for T in (1) and (7) confirms (6). Differenti-
ating (7) with respect to P gives the identity

(8)

(
∂G

∂P

)
T

=

(
∂H

∂P

)
S

which we already know by combining the formulas for V in (3) and (5).

Summary: Application of the Legendre transform takes a parametriza-
tion of the state space by two variables and a potential function of those
two variables, and produces two other parameters and three other po-
tentials. The result is that each of the parameters has two expressions
as a partial derivative of a potential.

The relationships between the four potentials and the four state pa-
rameters can be summarized by the following formulas for the total
differentials of the various potentials:

dF = −S dT − P dV

dG = −S dT + V dP

dU = T dS − P dV

dH = T dS + V dP

together with the relations

U(S, V )− F (T, V ) = ST = H(S, P )−G(T, P )

G(T, P )− F (T, V ) = PV = H(S, P )− U(S, V ) .
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Maxwell’s relations: Using (1), commutativity of partial derivatives,
and (3),(

∂S

∂V

)
T

=
∂

∂V

∣∣∣∣
T

(
−∂F

∂T

)
V

=
∂

∂T

∣∣∣∣
V

(
−∂F

∂V

)
T

=

(
∂P

∂T

)
V

.

Similarly, using other pairs of odd numbered equations gives us the
other equations in:(

∂S

∂V

)
T

=

(
∂P

∂T

)
V

(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V(

∂V

∂T

)
P

= −
(
∂S

∂P

)
T

(
∂V

∂S

)
P

=

(
∂T

∂P

)
S

.

These merely express the fact that the differentials of the potentials
are closed.

Gibbs-Helmholtz equations: Calculate(
∂(FT−1)

∂T

)
V

=

(
∂F

∂T

)
V

T−1 − FT−2 = ST−1 − FT−2 = −UT−2

so that

(9) U = −T 2

(
∂(F/T )

∂T

)
V

.

Exactly similar calculations lead to seven other identities:

F = −P 2

(
∂(G/P )

∂P

)
T

F = −S2

(
∂(U/S)

∂S

)
V

G = −S2

(
∂(H/S)

∂S

)
P

G = −V 2

(
∂(F/V )

∂V

)
T

H = −V 2

(
∂(U/V )

∂V

)
S

H = −T 2

(
∂(G/T )

∂T

)
P

U = −T 2

(
∂(F/T )

∂T

)
V

U = −P 2

(
∂(H/P )

∂P

)
S

Quadratic thermodynamics: With

F (T, V ) = −T 2

2
+

V 2

2
we find

S = T , U(S, V ) =
S2

2
+

V 2

2

P = −V , G(T, P ) = −T 2

2
− P 2

2
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H(S, P ) =
S2

2
− P 2

2

The “ideal gas law”: A “fundamental relation” is an explicit formula
for one of the potentials in terms of its natural variables.

Usually one gives much less information than that. For example, the
“ideal gas law” (Clapeyron, 1834) is the relation

PV = RT

where R is constant. A relation among system parameters, such as
this, is an “equation of state.”

This implies that (
∂P

∂T

)
V

=
R

V
.

From dU = T dS − P dV we find, using one of Maxwell’s relations,

(10)

(
∂U

∂V

)
T

= T

(
∂S

∂V

)
T

− P = T

(
∂P

∂T

)
V

− P

so in an ideal gas (
∂U

∂V

)
T

= T
R

V
− P = P − P = 0 .

This relation is known as “Joule’s law,” and (10) shows that it is equiv-
alent to the relation (

∂P

∂T

)
V

=
P

T
.

Under the hypothesis only of Joule’s law,

P = Tf ′(V )

for some function f(V ). Now

Tf ′(V ) = P = −
(
∂F

∂V

)
T

integrates to

F (T, V ) = g(T )− Tf(V )

for some function g(T ). Then

S = −
(
∂F

∂T

)
V

= f(V )− g′(T )

and U depends only on T :

(11) U(S, V ) = ST + F (T, V ) = g(T )− Tg′(T ) .
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Conversely, it is clear that if U depends only on T , then

(
∂U

∂V

)
T

= 0,

so Joule’s law is equivalent to U depending only on T .
Another relevant condition is the assumption that the “heat capacity

at constant volume,”

cV =

(
∂U

∂T

)
V

is constant. The conjunction of this condition with Joule’s law is equiv-
alent to requiring

U = a + cV T

They give g(T ) = a+bT−cV T lnT for some a, b. We take this moment
to normalize the potentials, by choosing U so that a = 0.

Then

F (T, V ) = (cV − S)T , T =

(
∂U

∂S

)
V

, S = −
(
∂F

∂T

)
V

.

We can solve T =

(
∂cV T

∂S

)
V

to get

T = e(S/cV )−k(V )

for some function k(V ). (We’ve taken the liberty of forcing T > 0.)
We now have a pretty explicit fundamental relation, depending on the
function k(V ):

U(S, V ) = cV e
(S/cV )−k(V ) .

Also,
S = cV (lnT + k(V ))

so
F (T, V ) = cV T (1− lnT − k(V ))

and incidentally we have computed the two functions of interest earlier:

g(T ) = cV T (1− lnT ) , f(V ) = cV k(V ) .

So
P = Tf ′(V ) = cV Tk

′(V ) .

If the ideal gas law holds and cV is constant, then this equation
implies

R

cV

1

V
= k′(V )

so
k(V ) = c−1V (S0 + R lnV )

for a constant S0. Then

T = V −R/cV e(S−S0)/cV , S − S0 = cV lnT + R lnV
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and we get explicit fundamental relations:

U(S, V ) = cV V
−R/cV e(S−S0)/cV

F (T, V ) = cV T (1− lnT )− T (S0 + R lnV )

depending upon the parameters R, cV , and S0.
As long as V and cV are positive, the condition(

∂2U

∂S2

)
V

> 0

holds. If R is also positive then also(
∂2U

∂V 2

)
S

> 0 .

The “ideal van der Waals fluid”: The van der Waals ansatz (1873)
modifies the ideal gas law, and its companion assumption that cV is
constant, to accomodate interaction between particles in the fluid. Ref-
erence: Herbert B. Callen, Thermodynamics and an Introduction to
Thermostatistics. The ideal gas law gets replaced by the equation of
state

P =
RT

V − V0

− a

V 2

and the hypothesis that U = cV T with cV constant gets replaced by

U = cRT − a

V
.

We can integrate(
∂F

∂V

)
T

= −P = − RT

V − V0

+
a

V 2

to
F (T, V ) = −RT ln(V − V0)−

a

V
+ f(T )

for some function f(T ). Then

S = −
(
∂F

∂T

)
V

= R ln(V − V0)− f ′(T )

so

F = U −ST = cRT − a

V
−ST = cRT − a

V
−RT ln(V −V0) +Tf ′(T ) .

Comparing these two expressions for F gives a differential equation for
f(T ):

Tf ′(T ) = f(T )− cRT .

The solution is
f(T ) = kT − cRT lnT
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for a constant k. Thus

F (T, V ) = −RT ln(V − V0)−
a

V
− cRT lnT + kT

and
S − S0 = R ln(V − V0) + cR lnT

where we write S0 = cR− k. Solving for T :

T =
e(S−S0)/cR

(V − V0)1/c
.

Plugging this into the hypothesized form for U gives the fundamental
relation

U(S, V ) = cR
e(S−S0)/cR

(V − V0)1/c
− a

V
.

Higher dimensional thermodynamics. Suppose that the state
space D has dimension n. Given a choice of n state parameters co-
ordinatizing it and a potential function of them, we can swap each one
out for a Legendre conjugate variable while holding others constant.
Here “the others” can be Legendre conjugates of the originals; you’ll
get the same result. So there is a bigger family of 2n state parameters
– the original n, and their Legendre conjugates. There are 2n potential
functions, one for each set of choices between a state parameter and its
conjugate.

Note that when n = 1, the Legendre conjugate of g(p) is f(−x)
and the Legendre conjugate of p is −x: so (up to these signs) you
get two potentials, namely f(x) and g(p). In general it’s probably
better to revert to the mathematician’s signless version of the Legendre
transform here.


