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0. Preface

This packet collects notes I have produced while teaching 18.03, Or-
dinary Differential Equations, at MIT in 1996, 1999, 2002, 2004, 2006,
2008, 2010, and 2012. They are intended to serve several rather differ-
ent purposes, supplementing but not replacing the course textbook.

In part they try to increase the focus of the course on topics and
perspectives which will be found useful by engineering students, while
maintaining a level of abstraction, or breadth of perspective, sufficient
to bring into play the added value that a mathematical treatment offers.

For example, in this course we use complex numbers, and in partic-
ular the complex exponential function, more intensively than Edwards
and Penney do, and several of the sections discuss aspects of them.
This ties in with the “Exponential Response Formula,” which seems to
me to be a linchpin for the course. It leads directly to an understanding
of amplitude and phase response curves. It has a beautiful extension
covering the phenomenon of resonance. It links the elementary theory
of linear differential equations with the use of Fourier series to study
LTI system responses to periodic signals, and to the weight function
appearing in Laplace transform techniques. It allows a direct path
to the solution of sinusoidally driven LTI equations which are often
solved by a form of undetermined coefficients, and to the expression of
the sinusoidal solution in terms of gain and phase lag, more useful and
enlightening than the expression as a linear combination of sines and
cosines.

As a second example, I feel that the standard treatments of Laplace
transform in ODE textbooks are wrong to sacrifice the conceptual con-
tent of the transformed function, as captured by its pole diagram, and I
discuss that topic. The relationship between the modulus of the trans-
fer function and the amplitude response curve is the conceptual core
of the course. Similarly, standard treatments of generalized functions,
impulse response, and convolution, typically all occur entirely within
the context of the Laplace transform, whereas I try to present them
as useful additions to the student’s set of tools by which to represent
natural events.

In fact, a further purpose of these notes is to try to uproot some
aspects of standard textbook treatments which I feel are downright
misleading. All textbooks give an account of beats which is mathe-
matically artificial and nonsensical from an engineering perspective. I
give a derivation of the beat envelope in general, a simple and revealing



use of the complex exponential. Textbooks stress silly applications of
the Wronskian, and I try to illustrate what its real utility is. Text-
books typically make the theory of first order linear equations seem
quite unrelated to the second order theory; I try to present the first or-
der theory using standard linear methods. Textbooks generally give an
inconsistent treatment of the lower limit of integration in the definition
of the one-sided Laplace transform, and I try at least to be consistent.

A final objective of these notes is to give introductions to a few top-
ics which lie just beyond the limits of this course: damping ratio and
logarithmic decrement; the L2 or root mean square distance in the the-
ory of Fourier series; the exponential expression of Fourier series; the
Gibbs phenomenon; the Wronskian; a discussion of the ZSR/ZIR de-
composition; the Laplace transform approach to more general systems
in mechanical engineering; and an introduction to a treatment of “gen-
eralized functions,” which, while artificially restrictive from a math-
ematical perspective, is sufficient for all engineering applications and
which can be understood directly, without recourse to distributions.
These essays are not formally part of the curriculum of the course, but
they are written from the perspective developed in the course, and I
hope that when students encounter them later on, as many will, they
will think to look back to see how these topics appear from the 18.03
perspective.

I want to thank my colleagues at MIT, especially the engineering fac-
ulty, who patiently tutored me in the rudiments of engineering: Steve
Hall, Neville Hogan, Jeff Lang, Kent Lundberg, David Trumper, and
Karen Willcox, were always on call. Arthur Mattuck, Jean Lu, and
Lindsay Howie read early versions of this manuscript and offered frank
advice which I have tried to follow. I am particularly indebted to
Arthur Mattuck, who established the basic syllabus of this course. He
also showed me the approach to the Gibbs phenomenon included here.
My thinking about teaching ODEs has also been influenced by the the
pedagogical wisdom and computer design expertise of Hu Hohn, who
built the computer manipulatives (“Mathlets”) used in this course.
They can be found at http://math.mit.edu/mathlets. Assorted er-
rors and infelicities were caught by students in 18.03 and by Professor
Sridhar Chitta of MIST, Hyderabad, India, and I am grateful to them
all. I am indebted to Jeremy Orloff for many recent discussions and
much technical assistance. Finally, I am happy to record my indebted-
ness to the Brit and Alex d’Arbeloff Fund for Excellence, which pro-
vided the stimulus and the support over several years to rethink the
contents of this course, and to produce new curricular material.
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1. Notation and language

1.1. Dependent and independent variables. Most of what we do
will involve ordinary differential equations. This means that we will
have only one independent variable. We may have several quantities
depending upon that one variable, and we may wish to represent them
together as a vector-valued function.

Differential equations arise from many sources, and the independent
variable can signify many different things. Nonetheless, very often it
represents time, and the dependent variable is some dynamical quantity
which depends upon time. For this reason, in these notes we will
pretty systematically use t for the independent variable and x for the
dependent variable.

Often we will write simply x, to denote the entire function. The
symbols x and x(t) are synonymous, when t is regarded as a variable.

We generally denote the derivative with respect to t by a dot:

ẋ =
dx

dt
,

and reserve the prime for differentiation with respect to a spatial vari-
able. Similarly,

ẍ =
d2x

dt2
.

1.2. Equations and Parametrizations. In analytic geometry one
learns how to pass back and forth between a description of a set by
means of an equation and by means of a parametrization.

For example, the unit circle, that is, the circle with radius 1 and
center at the origin, is defined by the equation

x2 + y2 = 1 .

A solution of this equation is a value of (x, y) which satisfies the equa-
tion; the set of solutions of this equation is the unit circle.

This solution set is the same as the set parametrized by

x = cos θ , y = sin θ , 0 ≤ θ < 2π .

The set of solutions of the equation is the set of values of the parametriza-
tion. The angle θ is the parameter which specifies a solution.

An equation is a criterion, by which one can decide whether a
point lies in the set or not. (2, 0) does not lie on the circle, because it
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doesn’t satisfy the equation, but (1, 0) does, because it does satisfy the
equation.

A parametrization is an enumeration, a listing, of all the elements
of the set. Usually we try to list every element only once. Sometimes
we only succeed in picking out some of the elements of the set; for
example

y =
√

1− x2 , −1 ≤ x ≤ 1

picks out the upper semicircle. For emphasis we may say that some
enumeration gives a complete parametrization if every element of the
set in question is named; for example

y =
√

1− x2 , −1 ≤ x ≤ 1 , or y = −
√

1− x2 , −1 < x < 1 ,

is a complete parametrization of the unit circle, different from the one
given above in terms of cosine and sine.

Usually the process of “solving” and equation amounts to finding a
parametrization for the set defined by the equation. You could call a
parametrization of the solution set of an equation the “general solution”
of the equation. This is the language used in Differential Equations.

1.3. Parametrizing the set of solutions of a differential equa-
tion. A differential equation is a stated relationship between a function
and its derivatives. A solution is a function satisfying this relationship.
(We’ll amend this slightly at the end of this section.)

For a very simple example, consider the differential equation

ẍ = 0 .

A solution is a function which satisfies the equation. It’s easy to write
down many such functions: any function whose graph is a straight line
satisfies this ODE.

We can enumerate all such functions: they are

x(t) = mt+ b

form and b arbitrary real constants. This expression gives a parametriza-
tion of the set of solutions of ẍ = 0. The constants m and b are the
parameters. In our parametrization of the circle we could choose θ ar-
bitrarily, and analogously now we can choose m and b arbitrarily; for
any choice, the function mt+ b is a solution.

Warning: If we fix m and b, say m = 1, b = 2, we have a specific line
in the (t, x) plane, with equation x = t + 2. One can parametrize this
line easily enough; for example t itself serves as a parameter, so the
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points (t, t+2) run through the points on the line as t runs over all real
numbers. This is an entirely different issue from the parametrization
of solutions of ẍ = 0. Be sure you understand this point.

1.4. Solutions of ODEs. The basic existence and uniqueness theo-
rem for ODEs is the following. Suppose that f(t, x) is continuous in
the vicinity of a point (a, b). Then there exists a solution to ẋ = f(t, x)
defined in some interval containing a, and it’s unique provided ∂f/∂x
exists.

Here an interval is a collection I of real numbers such that if a and
b are in I then so is every number between a and b.

There are certainly subtleties here. But some things are obvious.
The “uniqueness” part of this theorem says that knowing x(t) for one
value t = a is enough to pick out a single solution: there’s supposed
to be only one solution with a given “initial value.” Well, look at
the ODE ẋ = 1/t. The solutions can be found by simply integrating:
x = ln |t| + c. This formula makes it look as though the solution with
x(1) = 0 is x = ln |t|. But in fact there is no reason to prefer this
to the following function, which is also a solution to this initial value
problem, for any value of c:

x(t) =

{
ln t for t > 0 ,
ln(−t) + c for t < 0 .

The gap at t = 0 means that the values of x(t) for t > 0 have no power
to determine the values for t < 0.

For this reason it’s best to declare that a solution to an ODE must be
defined on an entire interval. The graph has to be a connected curve.

Thus it is more proper to say that the solutions to ẋ = 1/t are

ln(t) + c for t > 0

and
ln(−t) + c for t < 0 .

The single formula ln |t| + c actually describes two solutions for each
value of c, one defined for t > 0 and the other for t < 0. The solution
with x(1) = 0 is x(t) = ln t, with domain of definition the interval
consisting of the positive real numbers.
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2. Modeling by first order linear ODEs

2.1. The savings account model. Modeling a savings account gives
a good way to visualize the significance of many of the features of a
general first order linear ordinary differential equation.

Write x(t) for the number of dollars in the account at time t. It
accrues interest at an interest rate I. This means that at the end of an
interest period (say ∆t years—perhaps ∆t = 1/12, or ∆t = 1/365) the
bank adds I · x(t) ·∆t dollars to your account:

x(t+ ∆t) = x(t) + Ix(t)∆t .

I has units (years)−1. Unlike bankers, mathematicians like to take
things to the limit: rewrite our equation as

x(t+ ∆t)− x(t)

∆t
= Ix(t) ,

and suppose that the interest period is made to get smaller and smaller.
In the limit as ∆t→ 0, we get

ẋ = Ix

—a differential equation.

In this computation, there was no assumption that the interest rate
was constant in time; it could well be a function of time, I(t). In fact
it could have been a function of both time and the existing balance,
I(x, t). Banks often do make such a dependence—you get a better in-
terest rate if you have a bigger bank account. If x is involved, however,
the equation is no longer “linear,” and we will not consider that case
further here.

Now suppose we make contributions to this savings account. We’ll
record this by giving the rate of savings, q. This rate has units dollars
per year. Later we will find ways to model this rate even if you make
lump sum contributions (or withdrawals), but for now suppose that
the rate is continuous: perhaps my employer deposits my salary at a
constant rate throughout the year. Over a small time span between t
and t + ∆t, the rate q(t) doesn’t change much, so the addition to the
account is close to q(t)∆t. This payment also adds to your account,
so, when we divide by ∆t and take the limit, we get

ẋ = Ix+ q.

Once again, your rate of savings may not be constant in time; we might
have a function q(t). Also, you may withdraw money from the bank, at
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some rate measured in dollars per year; this will contribute a negative
term to q(t), and exert a downward pressure on your bank account.

What we have, then, is the general first order linear ODE:

(1) ẋ− I(t)x = q(t).

2.2. Linear insulation. Here is another example of a linear ODE. The
linear model here is not as precise as in the bank account example.

A cooler insulates my lunchtime rootbeer against the warmth of the
day, but ultimately heat penetrates. Let’s see how you might come up
with a mathematical model for this process. You can jump right to
(2) if you want, but I would like to spend a minute talking about how
one might get there, so that you can carry out the analogous process
to model other situations.

The first thing to do is to identify relevant parameters and give
them names. Let’s write t for the time variable (measured in hours
after noon, say), x(t) for the temperature inside the cooler (measured
in degrees centigrade, say) and y(t) for the temperature outside (also
in centigrade).

Let’s assume (a) that the insulating properties of the cooler don’t
change over time—we’re not going to watch this process for so long that
the aging of the cooler itself becomes important! These insulating prop-
erties probably do depend upon the inside and outside temperatures
themselves. Insulation affects the rate of change of the temperature:
the rate of change at time t of temperature inside depends upon the
temperatures inside and outside at time t. This gives us a first order
differential equation of the form

ẋ = F (x, y)

Time for the next simplifying assumption: (b) that this rate of
change depends only on the difference y−x between the temperatures,
and not on the temperatures themselves. This means that

ẋ = f(y − x)

for some function f of one variable. If the temperature inside the cooler
equals the temperature outside, we expect no change. This means that
f(0) = 0.

Now, any reasonable function has a “tangent line approximation,”
and since f(0) = 0 we have

f(z) ' kz .
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When |z| is fairly small, f(z) is fairly close to kz. (From calculus you
know that k = f ′(0), but we won’t use that here.) When we replace
f(y−x) by k(y−x) in the differential equation, we are “linearizing”
the equation. We get the ODE

ẋ = k(y − x) ,

which is a linear equation (first order, inhomogeneous, constant coef-
ficient). The new assumption we are making, in justifying this final
simplification, is (c) that we will only use the equation when z = y−x
is reasonably small—small enough so that the tangent line approxima-
tion is reasonably good.

We can write this equation as

(2) ẋ+ kx = ky.

The system—the cooler—is represented by the left hand side, and
the input signal—the outside temperature—is represented by the right
hand side. This is Newton’s law of cooling.

The constant k is the coupling constant mediating between the
two temperatures. It will be large if the insulation is poor, and small
if it’s good. If the insulation is perfect, then k = 0. The factor of k
on the right might seem odd, but it you can see that it is forced on us
by checking units: the left hand side is measured in degrees per hour,
so k is measured in units of (hours)−1. It is the same whether we use
Fahrenheit or Celsius or Kelvin.

We can see some general features of insulating behavior from this
equation. For example, the times at which the inside and outside tem-
peratures coincide are the times at which the inside temperature is at
a critical point:

(3) ẋ(t1) = 0 exactly when x(t1) = y(t1).

2.3. System, signal, system response. A first order linear ODE is
in standard form when it’s written as

(4) ẋ+ p(t)x = q(t).

In the bank account example, p(t) = −I(t); in the cooler example,
p(t) = k. This way of writing it reflects a useful “systems and signals”
perspective on differential equations, one which you should develop.

There are three parts to this language: the input signal, the system,
and the output signal.
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In the bank example, the input signal is the function given by your
rate of deposit and withdrawal; the system is the bank itself; and the
output signal is the balance in your account.

In the cooler example, the input signal is the ambient temperature;
the system is the cooler; and the output signal is the temperature inside
the cooler.

The left hand side of (4) describes the system—the bank, or the
cooler—as it operates on the output signal. Operating without outside
influence (that is, without deposits or withdrawals, or with ambient
temperature zero), the system is described by the homogeneous linear
equation

ẋ+ p(t)x = 0.

The right hand side of (4) describes the outside influences. The sys-
tem is being “driven” by deposits and withdrawals in the bank model,
and by the external temperature in the cooler model.

Notice that the right hand side of (4) may not be precisely the input
signal! In the bank example it is; but in the cooler example it is k
times the input signal.

The standard form puts the system as it operates on the input signal
on the left, and an expression capturing the input signal on the right.

This way of thinking takes some getting used to. After all, in these
terms the ODE (4) says: the system response x determines the input
signal (namely, the input signal equals ẋ+ p(t)x). The ODE (or more
properly the differential operator) that represents the system takes the
system response and gives you back the input signal (or something
built from it—the reverse of what you might have expected. But that
is the way it works; the equation gives you conditions on x which make
it a response of the system. In a way, the whole objective of solving an
ODE is to “invert the system” (or the operator that represents it).

For more detail on this perspective, see Sections 8, 16 and 29.

We might as well mention some other bits of terminology. In the
equation (4), the function p(t) is a coefficient of the equation (the only
one in this instance—higher order linear equations have more), and the
equation is said to have “constant coefficients” if p(t) is constant. In
different but equivalent terminology, if p(t) is a constant then we have
a linear time-invariant, or LTI, system.



10

3. Solutions of first order linear ODEs

3.1. The homogeneous equation and its solutions. A first order
linear equation is homogeneous if the right hand side is zero:

(1) ẋ+ p(t)x = 0 .

Homogeneous linear equations are separable, and so the solution can
be expressed in terms of an integral. The general solution is

(2) x = ± e−
∫
p(t)dt or x = 0 .

Question: Where’s the constant of integration here? Answer: The in-
definite integral is only defined up to adding a constant, which becomes
a positive factor when it is exponentiated.

We also have the option of replacing the indefinite integral with a
definite integral. The lower bound will be some value of t at which the
ODE is defined, say a, while the upper limit should be t, in order to
define a function of t. This means that I have to use a different symbol
for the variable inside the integral—say τ , the Greek letter “tau.” The
general solution can then be written as

(3) x = c e−
∫ t
a p(τ)dτ , c ∈ R .

This expression for the general solution to (1) will often prove useful,
even when it can’t be integrated in elementary functions. Note that
the constant of integration is also an initial value: c = x(a).

I am not requiring p(t) to be constant here. If it is, then we can
evaluate the integral. With a = 0 find the familiar solution x = ce−pt.

These formulas imply a striking feature of any function x = x(t)
which satisfies (1): either x(t) = 0 for all t, or x(t) 6= 0 for all t: either
x is the zero function, or it’s never zero. This is a consequence of the
fact that the exponential function never takes on the value zero.

Even without solving it, we can observe an important feature of the
solutions of (1): If x is a solution, so is cx for any constant c. After

all, if
dx

dt
= −px then

d(cx)

dx
= c

dx

dt
= −cpx = −p · cx.

Conversely, if xh is any nonzero solution, then the general solution is
cxh: every solution is a multiple of xh. This is because of the uniqueness
theorem for solutions: for any choice of initial value x(a), I can find c
so that cxh(a) = x(a) (namely, c = x(a)/xh(a)), and so by uniqueness
x = cxh for this value of c.

To repeat this important lesson:
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If xh is any nonzero solution of (1),
then the general solution is given by x = cxh.

For example if p is constant, we can take xh = e−pt, and the general
solution is x = ce−pt.

3.2. Solutions to inhomogeneous equations: Superposition. Now
suppose the input signal is nonzero, so our equation is

(4) ẋ+ p(t)x = q(t) .

Suppose that in one way or another we have found a solution xp to
(4). Any single solution will do. We will call it a “particular” solution.
Keeping the notation xh for a nonzero solution to the corresponding
homogeneous equation (1), we can calculate that xp + cxh is again a
solution to (4).

Exercise 3.2.1. Verify this.

In fact,

(5) The general solution to (4) is xp + cxh

since any initial condition can be achieved by judicious choice of c.

This formula shows how the constant of integration, c, occurs in the
general solution of a linear equation. It tends to show up in a more
complicated way if the equation is nonlinear.

I want to emphasize that despite being called “particular,” the so-
lution xp can be any solution of (4); it need not be special in any way
for it to serve in (5).

There’s a slight generalization: suppose x1 is a solution to

ẋ+ p(t)x = q1(t)

and x2 is a solution to

ẋ+ p(t)x = q2(t)

—same coefficient p(t), so the same system, but two different input
signals. Then (for any constants c1, c2) c1x1 + c2x2 is a solution to

ẋ+ p(t)x = c1q1(t) + c2q2(t) .

In our banking example, if we have two bank accounts with the same
interest rate, and contribute to them separately, the sum of the ac-
counts will be the same as if we combined them into one account and
contributed the sum to the combined account. This is the principle
of superposition.
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The principle of superposition lets us break up the input signal into
bitesized pieces, solve the corresponding equations, and add the solu-
tions back together to get a solution to the original equation.

3.3. Variation of parameters. Now we try to solve the general first
order linear equation,

(6) ẋ+ p(t)x = q(t) .

As we presented it above, the procedure for solving this breaks into
two parts. We first find a nonzero solution, say xh, of the associated
homogeneous equation (1). The second step is to somehow find some
single solution to (6) itself. We have not addressed this problem yet.

One idea is to hope for a solution of the form vxh, where v now is
not a constant (which would just give a solution to the homogeneous
equation), but rather some function of t, which we will write as v(t) or
just v.

So let’s make the substitution x = vxh and study the consequences.
When we make this substitution in (6) and use the product rule we
find

v̇xh + vẋh + pvxh = q .

The second and third terms sum to zero, since xh is a solution to (1),
so we are left with a differential equation for v:

(7) v̇ = x−1
h q .

This can be solved by direct integration once again. Write vp for a
particular solution to (7). A particular solution to our original equation
(6) is then given by xp = vpxh.

Many people like to remember this in the following form: the general
solution to (6) is

(8) x = xh

∫
x−1
h q dt

since the general solution to (7) is v =

∫
x−1
h q dt. Others just make

the substitution x = vxh and do the calculation.

Example. Let’s find the general solution of

ẋ+ tx = (1 + t)et .

The associated homogeneous equation is

ẋ+ tx = 0,
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which is separable and easily leads to the nonzero solution xh = e−t
2/2.

So we’ll try for a solution of the original equation of the form x =
ve−t

2/2. Substituting this into the equation and using the product rule
gives us

v̇e−t
2/2 − vte−t2/2 + vte−t

2/2 = (1 + t)et .

The second and third terms cancel, as expected, leaving us with

v̇ = (1 + t)et+t
2/2 .

Luckily, the derivative of the exponent here occurs as a factor, so this is
easy to integrate: vp = et+t

2/2 (plus a constant, which we might as well
take to be zero since we are interested only in finding one solution).
Thus a particular solution to the original equation is xp = vpxh = et.
It’s easy to check that this is indeed a solution! By (5) the general

solution is x = et + ce−t
2/2.

This method is called “variation of parameter.” The “parameter”
is the constant c in the expression cxh for the general solution of the
associated homogeneous equation. It is allowed to vary with time in an
effort to come up with a solution of the given inhomogeneous equation.

The method of variation of parameter is equivalent to the method
of integrating factors described in Edwards and Penney; in fact x−1

h

is an integrating factor for (6). Either way, we have broken the origi-
nal problem into two problems each of which can be solved by direct
integration.

3.4. Continuation of solutions. There is an important theoretical
outcome of the method of Variation of Parameters. To see the point,
consider first the nonlinear ODE ẋ = x2. This is separable, with general
solution x = 1/(c− t). There is also a “missing solution” x = 0 (which
corresponds to c =∞).

As we pointed out in Section 1, the statement that x = 1/(c− t) is
a solution is somewhat imprecise. This equation actually defines two
solutions: One is defined for t < c but not for t ≥ c, and another is
defined for t > c but not for t ≤ c. These are different solutions. One
becomes asymptotic to t = c as t ↑ c; the other becomes asymptotic to
t = c as t ↓ c. Neither of these solutions can be extended to a solution
defined at t = c; both solutions “blow up” at t = c. This pathological
behavior occurs despite the fact that the ODE itself doesn’t exhibit
any special pathology at t = c for any value of c.
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With the exception of the constant solution, no solution can be de-
fined for all time, despite the fact that the equation is perfectly well
defined for all time.

Another thing that may happen to solutions of nonlinear equations

is illustrated by the equation
dy

dx
= −x/y. This is separable, and in

implicit form the general solution is x2+y2 = c2, c > 0: circles centered
at the origin. To get a function as a solution, one must restrict to the
upper half plane or to the lower half plane: y = ±

√
c2 − x2. In any

case, these solutions can’t be extended to all time, once again, but now
for a different reason: they come up to a point at which the tangent
line becomes vertical (at x = ±c), and the solution function doesn’t
extend past that point.

The situation for linear equations is quite different. The fact that
continuous functions are integrable (from calculus) shows that if f(t)
is defined and continuous on an interval, then all solutions to ẋ = f(t)
extend over the same interval. Because the solution to (6) is achieved
by two direct integrations, we obtain the following result, which stands
in contrast to the situation typical of nonlinear equations.

Theorem: If p and q are defined (and reasonably well-behaved) for
all t between a and b, then any solution to ẋ + p(t)x = q(t) defined
somewhere between a and b extends to a solution defined on the entire
interval from a to b.

3.5. Final comments on the bank account model. Let us solve
(1) in the special case in which I and q are both constant. In this case
the equation

ẋ− Ix = q

is separable; we do not need to use the method of variation of param-
eters or integrating factors. Separating,

dx

x+ q/I
= I dt

so integrating and exponentiating,

x = −q/I + ceIt , c ∈ R .

Let’s look at this formula for a moment. There is a constant solution,
namely x = −q/I. I call this the credit card solution. I owe the
bank q/I dollars. They “give” me interest, at the rate of I times the
value of the bank account. Since that value is negative, what they are
doing is charging me: I am using the bank account as a loan, and my
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“contributions” amount to interest payments on the loan, and exactly
balance the interest charges. The bank balance never changes. This
steady state solution has large magnitude if my rate of payments is
large, or if the interest is small.

In calling this the credit card solution, I am assuming that q > 0.
If q < 0, then the constant solution x = −q/I is positive. What does
this signify?

If c < 0, I owe the bank more than can be balanced by my pay-
ments, and my debt increases exponentially. Let’s not dwell on this
unfortunate scenario, but pass quickly to the case c > 0, when some
of my payments are used to pay off the principal, and ultimately to
add to a positive bank balance. That balance then proceeds to grow
approximately exponentially.

In terms of the initial condition x(0) = x0, the solution is

x = −q/I + (x0 + q/I)eIt .
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4. Sinusoidal solutions

Many things in nature are periodic, even sinusoidal. We will begin
by reviewing terms surrounding periodic functions. If an LTI system
is fed a periodic input signal, we have a right to hope for a periodic
solution. Usually there is exactly one periodic solution, and often all
other solutions differ from it by a “transient,” a function that dies off
exponentially. This section begins by setting out terms and facts about
periodic and sinusoidal functions, and then studies the response of a
first order LTI system to a sinusoidal signal. This is a special case of a
general theory described in Sections 10 and 16.

4.1. Periodic and sinusoidal functions. A function f(t) is peri-
odic if there is a number a > 0 such that

f(t+ a) = f(t)

for all t. It repeats itself over and over, and has done since the world
began. The number a is a period. Notice that if a is a period then so
is 2a, and 3a, and so in fact is any positive integral multiple of a. If
f(t) is continuous and not constant, there is a smallest period, called
the minimal period or simply the period, and is often denoted by P . If
the independent variable t is a distance rather than a time, the period
is also called the wavelength, and denoted in physics by the Greek letter
“lambda,” λ.

A periodic function of time has a frequency, too, often denoted by f
or by the Greek letter “nu,” ν. The frequency is the reciprocal of the
minimal period:

ν = 1/P.

This is the number of cycles per unit time, and its units are, for exam-
ple, (sec)−1.

Since many periodic functions are closely related to sine and cosines,
it is common to use the angular frequency denoted by the Greek
letter “omega,” ω. This is 2π times the frequency:

ω = 2πν.

If ν is the number of cycles per second, then ω is the number of radians
per second. In terms of the angular frequency, the period is

P =
2π

ω
.

The sinusoidal functions make up a particular class of periodic
functions, namely, those which can be expressed as a cosine function
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which as been amplified, shifted and compressed:

(1) f(t) = A cos(ωt− φ)

The function (1) is periodic of period 2π/ω, frequency ω/2π, and
angular frequency ω.

The parameter A (or, better, |A|) is the amplitude of (1). By
replacing φ by φ + π if necessary, we may always assume A ≥ 0, and
we will usually make this assumption.

The number φ is the phase lag (relative to the cosine). It is mea-
sured in radians or degrees. The phase shift is −φ. In many applica-
tions, f(t) represents the response of a system to a signal of the form
B cos(ωt). The phase lag is then usually positive—the system response
lags behind the signal—and this is one reason why we choose to favor
the lag and not the shift by assigning a notation to it. Some engineers
prefer to use φ for the phase shift, i.e. the negative of our φ. You will
just have to check and see which convention is in use.

The phase lag can be chosen to lie between 0 and 2π. The ratio φ/2π
is the fraction of a full period by which the function (1) is shifted to
the right relative to cos(ωt): f(t) is φ/2π radians behind cos(ωt).

Here are the instructions for building the graph of (1) from the graph
of cos t. First amplify, or vertically expand, the graph by a factor of
A; then shift the result to the right by φ units; and finally compress it
horizontally by a factor of ω.

One can also write (1) as

f(t) = A cos(ω(t− t0)),

where ωt0 = φ, or

(2) t0 =
φ

2π
P

t0 is the time lag. It is measured in the same units as t, and repre-
sents the amount of time f(t) lags behind the compressed cosine signal
cos(ωt). Equation (2) expresses the fact that t0 makes up the same
fraction of the period P as the phase lag φ does of the period of the
cosine function.

Sinusoidal functions observe an amazing closure property: Any linear
combination of sinusoids with the same frequency is another sinusoid
with that frequency.
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Figure 1. Parameters of a sinusoidal function

As one case, the linear combination a cos(ωt)+ b sin(ωt) can be writ-
ten as A cos(ωt− φ) for some amplitude A and phase lag φ:

(3) A cos(ωt− φ) = a cos(ωt) + b sin(ωt)

where A and φ are the polar coordinates of the point with rectangular
coordinates (a, b); that is,

a = A cos(φ) , b = A sin(φ)

This is the familiar formula for the cosine of a difference. Geometrically:

�
��

�
��

�
��

�
(a, b)

φ

A

(0, 0) (a, 0)q
q
q

In (3) either or both of a and b can be negative; (a, b) can be any
point in the plane. This identity is well illustrated by the Mathlet
Trigonometric Identity.

I want to stress the importance of this simple observation. Remem-
ber:

In (3), A and φ are the polar coordinates of (a, b)
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If we replace ωt by −ωt+φ in (3), then ωt−φ gets replaced by −ωt
and the identity becomes A cos(−ωt) = a cos(−ωt+φ)+b sin(−ωt+φ).
Since the cosine is even and the sine is odd, this is equivalent to

(4) A cos(ωt) = a cos(ωt− φ)− b sin(ωt− φ)

which is sometimes useful as well. The relationship between a, b, A,
and φ is always the same.

4.2. Periodic solutions and transients. Let’s return to the model
of the cooler, described in Section 2.2: x(t) is the temperature inside
the cooler, y(t) the temperature outside, and we model the cooler by
the first order linear equation with constant coefficient:

ẋ+ kx = ky.

Let’s suppose the outside temperature varies sinusoidally (warmer in
the day, cooler at night). (This involves choosing units for temperature
so that the average temperature is zero.) By setting our clock so that
the highest temperature occurs at t = 0, we can thus model y(t) by

y(t) = y0 cos(ωt)

where y0 = y(0) is the daily high temperature. So our model is

(5) ẋ+ kx = ky0 cos(ωt).

The equation (5) can be solved by the standard method for solving
first order linear ODEs (integrating factors, or variation of parameter).
In fact, we will see in Section 10 that since the right hand side is
sinusoidal there is an explicit and direct way to write down the solution
using complex numbers. Here’s a different approach, which one might
call the “method of optimism.”

Let’s look for a periodic solution; not unreasonable since the driving
function is periodic. Even more optimistically, let’s hope for a sinu-
soidal function. At first you might hope that A cos(ωt) would work,
for suitable constant A, but that turns out to be too much to ask, and
doesn’t reflect what we already know from our experience with tem-
perature: The temperature inside the cooler tends to lag behind the
ambient temperature. This lag can be accommodated by means of the
formula:

(6) xp = gy0 cos(ωt− φ).

We have chosen to write the amplitude here as a multiple of the ambient
high temperature y0. The multiplier g and the phase lag φ are numbers
which we will try to choose so that xp is indeed a solution. We use the
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subscript p to indicate that this is a Particular solution. It is also a
Periodic solution, and generally will turn out to be the only periodic
solution.

We can and will take φ between 0 and 2π, and g ≥ 0; so gy0 is the
amplitude of the temperature oscillation in the cooler. The number g
is the ratio of the maximum temperature in the cooler to the maximum
ambient temperature; it is called the gain of the system. The angle φ
is the phase lag. Both of these quantities depend upon the coupling
constant k and the angular frequency of the input signal ω.

To see what g and φ must be in order for xp to be a solution, we will
use the alternate form (4) of the trigonometric identity. The important
thing here is that there is only one pair of numbers (a, b) for which this
identity holds: They are the rectangular coordinates of the point with
polar coordinates (A, φ).

If x = gy0 cos(ωt−φ), then ẋ = −gy0ω sin(ωt−φ). Substitute these
values into the ODE:

gy0k cos(ωt− φ)− gy0ω sin(ωt− φ) = ky0 cos(ωt).

I have switched the order of the terms on the left hand side, to make
comparison with the trig identity (4) easier. Cancel the y0. Comparing
this with (4), we get the triangle

��
��

�
��

�
��

(gk, gω)

φ

k

(0, 0) (gk, 0)q
q
q

From this we read off

(7) tanφ = ω/k

and

(8) g =
k√

k2 + ω2
=

1√
1 + (ω/k)2

.

Our work shows that with these values for g and φ the function xp
given by (6) is a solution to (5).

Incidentally, the triangle shows that the gain g and the phase lag φ
in this first order equation are related by

(9) g = cosφ.
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According to the principle of superposition, the general solution is

(10) x = xp + ce−kt,

since e−kt is a nonzero solution of the homogeneous equation ẋ+kx = 0.

You can see why you need the extra term ce−kt. Putting t = 0 in
(6) gives a specific value for x(0). We have to do something to build a
solution for initial value problems specifying different values for x(0),
and this is what the additional term ce−kt is for. But this term dies
off exponentially with time, and leaves us, for large t, with the same
solution, xp, independent of the initial conditions. In terms of the
model, the cooler did start out at refrigerator temperature, far from
the “steady state.” In fact the periodic system response has average
value zero, equal to the average value of the signal. No matter what the
initial temperature x(0) in the cooler, as time goes by the temperature
function will converge to xp(t). This long-term lack of dependence on
initial conditions confirms an intuition. The exponential term ce−kt is
called a transient. The general solution, in this case and in many
others, is a periodic solution plus a transient.

I stress that any solution can serve as a “particular solution.” The
solution xp we came up with here is special not because it’s a particular
solution, but rather because it’s a periodic solution. In fact (assuming
k > 0) it’s the only periodic solution.

4.3. Amplitude and phase response. There is a lot more to learn
from the formula (6) and the values for g and φ given in (7) and (8). The
terminology applied below to solutions of the first order equation (5)
applies equally well to solutions of second and higher order equations.
See Section 16 for further discussion, and the Mathlet Amplitude and

Phase: First Order for a dynamic illustration.

Let’s fix the coupling constant k and think about how g and φ vary
as we vary ω, the angular frequency of the signal. Thus we will re-
gard them as functions of ω, and we may write g(ω) and φ(ω) in order
to emphasize this perspective. We are supposing that the system is
constant, and watching its response to a variety of different input sig-
nals. Graphs of g(ω) and −φ(ω) for values of the coupling constant
k = .25, .5, .75, 1, 1.25, 1.5 is displayed in Figure 2.

These graphs are essentially Bode plots. Technically, the Bode
plots displays log g(ω) and −φ(ω) against logω.
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5. The algebra of complex numbers

We use complex numbers for more purposes in this course than the
textbook does. This chapter tries to fill some gaps.

5.1. Complex algebra. A “complex number” is an element (a, b) of
the plane.

Special notation is used for vectors in the plane when they are
thought of as complex numbers. We think of the real numbers as
lying in the plane as the horizontal axis: the real number a is identified
with the vector (a, 0). In particular 1 is the basis vector (1, 0).

The vector (0, 1) is given the symbol i. Every element of the plane
is a linear combination of these two vectors, 1 and i:

(a, b) = a+ bi.

When we think of a point in the plane as a complex number, we always
write a+ bi rather than (a, b).

1 2

i

2i

i

2i

12
Real axis

Imaginary
  axis

The real number a is called the real part of a + bi, and the real
number b is the imaginary part of a+ bi. Notation:

Re (a+ bi) = a , Im (a+ bi) = b.

A complex number is purely imaginary if it lies on the vertical or
imaginary axis. It is a real multiple of the complex number i. A
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complex number is real if it lies on the horizontal or real axis. It is a
real multiple of the complex number 1.

The only complex number which is both real and purely imaginary
is 0, the origin.

Complex numbers are added by vector addition. Complex numbers
are multiplied by the rule

i2 = −1

and the standard rules of arithmetic.

This means we “FOIL” out products. For example,

(1 + 2i)(3 + 4i) = 1 · 3 + 1 · 4i+ (2i) · 3 + (2i) · (4i) = · · ·

—and then use commutativity and the rule i2 = −1—

· · · = 3 + 4i+ 6i− 8 = −5 + 10i.

The real part of the product is the product of real parts minus the
product of imaginary parts. The imaginary part of the product is the
sum of the crossterms.

We will write the set of all real numbers as R and the set of all
complex numbers as C. Often the letters z, w, v, and s, and r are
used to denote complex numbers. The operations on complex numbers
satisfy the usual rules:

Theorem. If v, w, and z are complex numbers then

z + 0 = z , v + (w + z) = (v + w) + z , w + z = z + w,

z · 1 = z , v(wz) = (vw)z , wz = zw

(v + w)z = vz + wz.

This is easy to check. The vector negative gives an additive inverse,
and, as we will see below, every complex number except 0 has a mul-
tiplicative inverse.

Unlike the real numbers, the set of complex numbers doesn’t come
with a notion of greater than or less than.

Exercise 5.1.1. Rewrite ((1+
√

3i)/2)3 and (1+ i)4 in the form a+bi.
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5.2. Conjugation and modulus. The complex conjugate of a com-
plex number a+ bi is the complex number a− bi. Geometrically, com-
plex conjugation reflects a complex number across the real axis. The
complex conjugate of z is written z̄:

a+ bi = a− bi

Theorem. Complex conjugation satisfies:

¯̄z = z, w + z = w̄ + z̄, wz = w̄z̄.

A complex number z is real exactly when z̄ = z and is purely imaginary
exactly when z̄ = −z. The real and imaginary parts of a complex
number z can be written using complex conjugation as

(1) Re z =
z + z̄

2
, Im z =

z − z̄
2i

.

Again this is easy to check.

Exercise 5.2.1. Show that if z = a+ bi then

zz̄ = a2 + b2.

This is the square of the distance from the origin, and so is a nonneg-
ative real number, nonzero as long as z 6= 0. Its nonnegative square
root is the absolute value or modulus or magnitude of z, written

|z| =
√
zz̄ =

√
a2 + b2.

Thus

(2) zz̄ = |z|2

Exercise 5.2.2. Show that |wz| = |w||z|. Since this notation clearly
extends its meaning on real numbers, it follows that if r is a positive
real number then |rz| = r|z|, in keeping with the interpretation of
absolute value as distance from the origin.

Any nonzero complex number has a multiplicative inverse: as zz̄ =
|z|2, z−1 = z̄/|z|2. If z = a+ bi, this says

1

(a+ bi)
=

a− bi
a2 + b2

This is “rationalizing the denominator.”

Exercise 5.2.3. Compute i−1, (1 + i)−1, and
1 + i

2− i
. What is |z−1| in

terms of |z|?
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Exercise 5.2.4. Since rules of algebra hold for complex numbers as
well as for real numbers, the quadratic formula correctly gives the roots
of a quadratic equation x2 + bx+ c = 0 even when the “discriminant”
b2−4c is negative. What are the roots of x2 +x+1? Of x2 +x+2? The
quadratic formula even works if b and c are not real. Solve x2 +ix+1 =
0.

The modulus or magnitude of |z| of a complex number is part of the
polar coordinate description of the point z. The other polar coordinate—
the polar angle—has a name too; it is the argument or angle of z,
and is written Arg(z). Trigonometry shows that

(3) tan(Arg(z)) =
Im z

Re z
As usual, the argument is well defined only up to adding multiples of
2π, and it’s not defined at all for the complex number 0.

5.3. The fundamental theorem of algebra. Complex numbers rem-
edy a defect of real numbers, by providing a solution for the quadratic
equation x2 + 1 = 0. It turns out that you don’t have to worry that
someday you’ll come across a weird equation that requires numbers
even more complex than complex numbers:

Fundamental Theorem of Algebra. Any nonconstant polynomial
(even one with complex coefficients) has a complex root.

Once you have a single root, say r, for a polynomial p(x), you can
divide through by (x − r) and get a polynomial of smaller degree as
quotient, which then also has a complex root, and so on. The result
is that a polynomial p(x) = axn + · · · of degree n (so a 6= 0) factors
completely into linear factors over the complex numbers:

p(x) = a(x− r1)(x− r2) · · · (x− rn).
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6. The complex exponential

The exponential function is a basic building block for solutions of
ODEs. Complex numbers expand the scope of the exponential function,
and bring trigonometric functions under its sway.

6.1. Exponential solutions. The function et is defined to be the so-
lution of the initial value problem ẋ = x, x(0) = 1. More generally, the
chain rule implies the

Exponential Principle:

For any constant w, ewt is the solution of ẋ = wx, x(0) = 1.

Now look at a more general constant coefficient homogeneous linear
ODE, such as the second order equation

(1) ẍ+ cẋ+ kx = 0.

It turns out that there is always a solution of (1) of the form x = ert,
for an appropriate constant r.

To see what r should be, take x = ert for an as yet to be determined
constant r, substitute it into (1), and apply the Exponential Principle.
We find

(r2 + cr + k)ert = 0.

Cancel the exponential (which, conveniently, can never be zero), and
discover that r must be a root of the polynomial p(s) = s2+cs+k. This
is the characteristic polynomial of the equation. The characteristic
polynomial of the linear equation with constant coefficients

an
dnx

dtn
+ · · ·+ a1

dx

dt
+ a0x = 0

is
p(s) = ans

n + · · ·+ a1s+ a0 .

Its roots are the characteristic roots of the equation. We have dis-
covered the

Characteristic Roots Principle:

(2)
ert is a solution of a constant coefficient homogeneous linear
differential equation exactly when r is a root of the characteristic
polynomial.

Since most quadratic polynomials have two distinct roots, this nor-
mally gives us two linearly independent solutions, er1t and er2t. The
general solution is then the linear combination c1e

r1t + c2e
r2t.
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This is fine if the roots are real, but suppose we have the equation

(3) ẍ+ 2ẋ+ 2x = 0

for example. By the quadratic formula, the roots of the characteristic
polynomial s2 + 2s+ 2 are the complex conjugate pair −1± i. We had
better figure out what is meant by e(−1+i)t, for our use of exponentials
as solutions to work.

6.2. The complex exponential. We don’t yet have a definition of
eit. Let’s hope that we can define it so that the Exponential Principle
holds. This means that it should be the solution of the initial value
problem

ż = iz , z(0) = 1 .

We will probably have to allow it to be a complex valued function, in
view of the i in the equation. In fact, I can produce such a function:

z = cos t+ i sin t .

Check: ż = − sin t+ i cos t, while iz = i(cos t+ i sin t) = i cos t− sin t,
using i2 = −1; and z(0) = 1 since cos(0) = 1 and sin(0) = 0.

We have now justified the following definition, which is known as

Euler’s formula:

(4) eit = cos t+ i sin t

In this formula, the left hand side is by definition the solution to ż = iz
such that z(0) = 1. The right hand side writes this function in more
familiar terms.

We can reverse this process as well, and express the trigonometric
functions in terms of the exponential function. First replace t by −t in
(4) to see that

e−it = eit .

Then put z = eit into the formulas (5.1) to see that

(5) cos t =
eit + e−it

2
, sin t =

eit − e−it

2i

We can express the solution to

ż = (a+ bi)z , z(0) = 1

in familiar terms as well: I leave it to you to check that it is

z = eat(cos(bt) + i sin(bt)).
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We have discovered what ewt must be, if the Exponential principle is
to hold true, for any complex constant w = a+ bi:

(6) e(a+bi)t = eat(cos bt+ i sin bt)

The complex number

eiθ = cos θ + i sin θ

is the point on the unit circle with polar angle θ.

Taking t = 1 in (6), we have

ea+ib = ea(cos b+ i sin b) .

This is the complex number with polar coordinates ea and b: its modu-
lus is ea and its argument is b. You can regard the complex exponential
as nothing more than a notation for a complex number in terms of its
polar coordinates. If the polar coordinates of z are r and θ, then

z = eln r+iθ

Exercise 6.2.1. Find expressions of 1, i, 1 + i, and (1 +
√

3i)/2, as
complex exponentials.

6.3. Real solutions. Let’s return to the example (3). The root r1 =
−1 + i leads to

e(−1+i)t = e−t(cos t+ i sin t)

and r2 = −1− i leads to

e(−1−i)t = e−t(cos t− i sin t) .

We probably really wanted a real solution to (3), however. For this
we have the

Reality Principle:

(7)
If z is a solution to a homogeneous linear equation with real
coefficients, then the real and imaginary parts of z are too.

We’ll explain why this is true in a minute, but first let’s look at our
example (3). The real part of e(−1+i)t is e−t cos t, and the imaginary
part is e−t sin t. Both are solutions to (3), and the general real solution
is a linear combination of these two.

In practice, you should just use the following consequence of what
we’ve done:
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Real solutions from complex roots:

If r1 = a + bi is a root of the characteristic polynomial of a
homogeneous linear ODE whose coefficients are constant and
real, then

eat cos(bt) and eat sin(bt)

are solutions. If b 6= 0, they are independent solutions.

To see why the Reality Principle holds, suppose z is a solution to a
homogeneous linear equation with real coefficients, say

(8) z̈ + pż + qz = 0

for example. Let’s write x for the real part of z and y for the imaginary
part of z, so z = x+ iy. Since q is real,

Re (qz) = qx and Im (qz) = qy.

Derivatives are computed by differentiating real and imaginary parts
separately, so (since p is also real)

Re (pż) = pẋ and Im (pż) = pẏ.

Finally,
Re z̈ = ẍ and Im z̈ = ÿ

so when we break down (8) into real and imaginary parts we get

ẍ+ pẋ+ qx = 0 , ÿ + pẏ + qy = 0

—that is, x and y are solutions of the same equation (8).

6.4. Multiplication. Multiplication of complex numbers is expressed
very beautifully in these polar terms. We already know that

(9) Magnitudes Multiply: |wz| = |w||z|.

To understand what happens to arguments we have to think about
the product eres, where r and s are two complex numbers. This is
a major test of the reasonableness of our definition of the complex
exponential, since we know what this product ought to be (and what
it is for r and s real). It turns out that the notation is well chosen:

Exponential Law:

(10) For any complex numbers r and s, er+s = eres

This fact comes out of the uniqueness of solutions of ODEs. To get
an ODE, let’s put t into the picture: we claim that

(11) er+st = erest.
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If we can show this, then the Exponential Law as stated is the case
t = 1. Differentiate each side of (11), using the chain rule for the left
hand side and the product rule for the right hand side:

d

dt
er+st =

d(r + st)

dt
er+st = ser+st ,

d

dt
(erest) = er · sest.

Both sides of (11) thus satisfy the IVP

ż = sz , z(0) = er,

so they are equal.

In particular, we can let r = iα and s = iβ:

(12) eiαeiβ = ei(α+β).

In terms of polar coordinates, this says that

(13) Angles Add: Arg(wz) = Arg(w) + Arg(z).

Exercise 6.4.1. Compute ((1+
√

3i)/2)3 and (1+i)4 afresh using these
polar considerations.

Exercise 6.4.2. Derive the addition laws for cosine and sine from
Euler’s formula and (12). Understand this exercise and you’ll never
have to remember those formulas again.

6.5. Roots of unity and other numbers. The polar expression of
multiplication is useful in finding roots of complex numbers. Begin with
the sixth roots of 1, for example. We are looking for complex numbers
z such that z6 = 1. Since moduli multiply, |z|6 = |z6| = |1| = 1, and
since moduli are nonnegative this forces |z| = 1: all the sixth roots of
1 are on the unit circle. Arguments add, so the argument of a sixth
root of 1 is an angle θ so that 6θ is a multiple of 2π (which are the
angles giving 1). Up to addition of multiples of 2π there are six such
angles: 0, π/3, 2π/3, π, 4π/3, and 5π/3. The resulting points on the
unit circle divide it into six equal arcs. From this and some geometry
or trigonometry it’s easy to write down the roots as a + bi: ±1 and
(±1 ±

√
3i)/2. In general, the nth roots of 1 break the circle evenly

into n parts.

Exercise 6.5.1. Write down the eighth roots of 1 in the form a+ bi.

Now let’s take roots of numbers other than 1. Start by finding a
single nth root z of the complex number w = reiθ (where r is a positive
real number). Since magnitudes multiply, |z| = n

√
r. Since angles add,

one choice for the argument of z is θ/n: one nth of the way up from the
positive real axis. Thus for example one square root of 4i is the complex
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number with magnitude 2 and argument π/4, which is
√

2(1 + i). To
get all the nth roots of w notice that you can multiply one by any nth
root of 1 and get another nth root of w. Angles add and magnitudes
multiply, so the effect of this is just to add a multiple of 2π/n to the
angle of the first root we found. There are n distinct nth roots of any
nonzero complex number |w|, and they divide the circle with center 0
and radius n

√
r evenly into n arcs.

Exercise 6.5.2. Find all the cube roots of −8. Find all the sixth roots
of −i/64.

We can use our ability to find complex roots to solve more general
polynomial equations.

Exercise 6.5.3. Find all the roots of the polynomials x3 +1, ix2 +x+
(1 + i), and x4 − 2x2 + 1.

6.6. Spirals. As t varies, the complex-valued function

eit = cos t+ i sin t

parametrizes the unit circle in the complex plane. As t increases from
0 to 2π, the complex number cos t+ i sin t moves once counterclockwise
around the circle.

More generally, for fixed real a, b,

(14) z(t) = e(a+bi)t = eat(cos(bt) + i sin(bt)).

parametrizes a curve in the complex plane. What is it? The Complex

Exponential Mathlet illustrates this.

When t = 0 we get z(0) = 1 no matter what a and b are.

The modulus of z(t) is |z(t)| = eat. When a > 0 this is increasing
exponentially as t increases; when a < 0 it is decreasing exponentially.

Meanwhile, the other term, cos(bt) + i sin(bt), is (for b > 0) winding
counterclockwise around the unit circle with angular frequency b.

The product will thus parametrize a spiral, it runing away from the
origin exponentially if a > 0 and decaying exponentially if a < 0, and
winding counterclockwise if b > 0 and clockwise if b < 0. If a = 0
equation (14) parametrizes a circle. If b = 0, the curve lies on the
positive real axis.

Figure 3 shows a picture of the curve parametrized by e(1+2πi)t.
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Figure 3. The spiral z = e(1+2πi)t
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7. Beats

7.1. What beats are. Beats occur when two very nearby pitches are
sounded simultaneously. Musicians tune their instruments using beats.
They are also used in reconstructing an amplitude-modulated signal
from a frequency-modulated (“FM”) radio signal. The radio receiver
produces a signal at a fixed frequency ν, and adds it to the received
signal, whose frequency differs slightly from ν. The result is a beat,
and the beat frequency is the audible frequency.

We’ll make a mathematical study of this effect, using complex num-
bers.

We will study the sum of two sinusoidal functions. We might as
well take one of them to be a sin(ω0t), and adjust the phase of the
other accordingly. So the other can be written as b sin((1 + ε)ω0t− φ):
amplitude b, angular frequency written in terms of the frequency of the
first sinusoid as (1 + ε)ω0, and phase lag φ.

We will take φ = 0 for the moment, and add it back in later. So we
are studying

x = a sin(ω0t) + b sin((1 + ε)ω0t).

We think of ε as a small number, so the two frequencies are relatively
close to each other.

One case admits a simple discussion, namely when the two ampli-
tudes are equal: a = b. Then the trig identity

sin(α + β) + sin(α− β) = 2 cos(β) sin(α)

with α = (1 + ε/2)ω0t and β = εω0t/2 gives us the equation

x = a sin(ω0t) + a sin((1 + ε)ω0t) = 2a cos

(
εω0t

2

)
sin
((

1 +
ε

2

)
ω0t
)
.

(The trig identity is easy to prove using complex numbers: Compute

ei(α+β) + ei(α−β) = (eiβ + e−iβ)eiα = 2 cos(β)eiα

using (6.5); then take imaginary parts.)

We might as well take a > 0. When ε is small, the period of the cosine
factor is much longer than the period of the sine factor. This lets us
think of the product as a wave of angular frequency (1 + ε/2)ω0—that
is, the average of the angular frequences of the two constituent waves—
giving the audible tone, whose amplitude is modulated by multiplying
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it by

(1) g(t) = 2a

∣∣∣∣cos

(
εω0t

2

)∣∣∣∣ .
The function g(t) the “envelope” of x. The function x(t) oscillates
rapidly between −g(t) and +g(t).

To study the more general case, in which a and b differ, we will study
the function made of complex exponentials,

z = aeiω0t + bei(1+ε)ω0t.

The original function x is the imaginary part of z.

We can factor out eiω0t:

z = eiω0t(a+ beiεω0t).

This gives us a handle on the magnitude of z, since the magnitude of
the first factor is 1. Using the formula |w|2 = ww̄ on the second factor,
we get

|z|2 = a2 + b2 + 2ab cos(εω0t).

The imaginary part of a complex number z lies between −|z| and
+|z|, so x = Im z oscillates between −|z| and +|z|. The function
g(t) = |z(t)|, i.e.

(2) g(t) =
√
a2 + b2 + 2ab cos(εω0t),

thus serves as an “envelope,” giving the values of the peaks of the
oscillations exhibited by x(t).

This envelope shows the “beats” effect. It reaches maxima when
cos(εω0t) does, i.e. at the times t = 2kπ/εω0 for whole numbers k. A
single beat lasts from one maximum to the next: the period of the beat
is

Pb =
2π

εω0

=
P0

ε

where P0 = 2π/ω0 is the period of sin(ω0t). The maximum amplitude
is then a + b, i.e. the sum of the amplitudes of the two constituent
waves; this occurs when their phases are lined up so they reinforce.
The minimum amplitude occurs when the cosine takes on the value
−1, i.e. when t = (2k + 1)π/εω0 for whole numbers k, and is |a − b|.
This is when the two waves are perfectly out of sync, and experience
destructive interference.

Figure 4 is a plot of beats with a = 1, b = .5, ω0 = 1, ε = .1, φ = 0,
showing also the envelope.
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Figure 4. Beats, with envelope

Now let’s allow φ to be nonzero. The effect on the work done above
is to replace εω0t by εω0t− φ in the formulas (2) for the envelope g(t).
Thus the beat gets shifted by the same phase as the second signal.

If b 6= 1 it is not very meaningful to compute the pitch, i.e. the
frequency of the wave being modulated by the envelope. It lies some-
where between the two initial frequencies, and it varies periodically
with period Pb.

7.2. What beats are not. Many differential equations textbooks
present beats as a system response when a harmonic oscillator is driven
by a signal whose frequency is close to the natural frequency of the oscil-
lator. This is true as a piece of mathematics, but it is almost never the
way beats occur in nature. The reason is that if there is any damping
in the system, the “beats” die out very quickly to a steady sinusoidal
solution, and it is that solution which is observed.

Explicitly, the Exponential Response Formula (Section 14, equation
3) shows that the equation

ẍ+ ω2
nx = cos(ωt)

has the periodic solution

xp =
cos(ωt)

ω2 − ω2
n
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unless ω = ωn. If ω and ωn are close, the amplitude of the periodic
solution is large; this is “near resonance.” Adding a little damping
won’t change that solution very much, but it will convert homogeneous
solutions from sinusoids to damped sinusoids, i.e. transients, and rather
quickly any solution becomes indistinguishable from xp. So beats do
not occur this way in engineering situations.

Differential equations textbooks also always arrange initial condi-
tions in a very artificial way, so that the solution is a sum of the pe-
riodic solution xp and a homogeneous solution xh having exactly the
same amplitude as xp. They do this by imposing the initial condition
x(0) = ẋ(0) = 0. This artifice puts them into the simple situation
a = b mentioned above. For the general case one has to proceed as we
did, using complex exponentials.
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8. RLC circuits

8.1. Series RLC Circuits. Electric circuits provide an important ex-
ample of linear, time-invariant differential equations, alongside mechan-
ical systems. We will consider only the simple series circuit pictured
below.

Coil

Resistor

Capacitor

Voltage
Source

Figure 5. Series RLC Circuit

The Mathlet Series RLC Circuit exhibits the behavior of this sys-
tem, when the voltage source provides a sinusoidal signal.

Current flows through the circuit; in this simple loop circuit the cur-
rent through any two points is the same at any given moment. Current
is denoted by the letter I, or I(t) since it is generally a function of
time.

The current is created by a force, the “electromotive force,” which
is determined by voltage differences. The voltage drop across a com-
ponent of the system except for the power source will be denoted by V
with a subscript. Each is a function of time. If we orient the circuit
consistently, say clockwise, then we let

VL(t) denote the voltage drop across the coil

VR(t) denote the voltage drop across the resistor

VC(t) denote the voltage drop across the capacitor

V (t) denote the voltage increase across the power source
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“Kirchoff’s Voltage Law” then states that

(1) V = VL + VR + VC

The circuit components are characterized by the relationship be-
tween the current flowing through them and the voltage drop across
them:

(2)

Coil : VL = Lİ

Resistor : VR = RI

Capacitor : V̇C = (1/C)I

The constants here are the “inductance” L of the coil, the “resistance”
R of the resistor, and the inverse of the “capacitance” C of the capac-
itor. A very large capacitor, with C large, is almost like no capacitor
at all; electrons build up on one plate, and push out electrons on the
other, to form an uninterrupted circuit. We’ll say a word about the
actual units below.

To get the expressions (2) into comparable form, differentiate the
first two. Differentiating (1) gives V̇L + V̇R + V̇C = V̇ , and substituting
the values for V̇L, V̇R, and V̇C gives us

(3) LÏ +Rİ + (1/C)I = V̇

This equation describes how I is determined from the impressed
voltage V . It is a second order linear time invariant ODE. Comparing
it with the familiar equation

(4) mẍ+ bẋ+ kx = F

governing the displacement in a spring-mass-dashpot system reveals an
analogy between the two types of system:

Mechanical Electrical

Mass Coil

Damper Resistor

Spring Capacitor

Driving force Time derivative of
impressed voltage

Displacement Current
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8.2. A word about units. There is a standard system of units called
the International System of Units, SI, formerly known as the mks
(meter-kilogram-second) system. In terms of those units, (3) is cor-
rect when:

inductance L is measured in henries, H

resistance R is measured in ohms, Ω

capacitance C is measured in farads, F

voltgage V is measured in volts, also denoted V

current I is measured in amperes, A

Balancing units in the equation shows that

henry · ampere

sec2
=

ohm · ampere

sec
=

ampere

farad
=

volt

sec

Thus one henry is the same as one volt-second per ampere.

The analogue for mechanical units is this:

mass m is measured in kilograms, kg

damping constant b is measured in kg/sec

spring constant k is measured in kg/sec2

applied force F is measured in newtons, N

displacement x is measured in meters, m

Here

newton =
kg ·m
sec2

so another way to describe the units in which the spring constant is
measured in is as newtons per meter—the amount of force it produces
when stretched by one meter.
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9. Normalization of solutions

9.1. Initial conditions. The general solution of any homogeneous lin-
ear second order ODE

(1) ẍ+ p(t)ẋ+ q(t)x = 0

has the form c1x1 + c2x2, where c1 and c2 are constants. The solutions
x1, x2 are often called “basic,” but this is a poorly chosen name since
it is important to understand that there is absolutely nothing special
about the solutions x1, x2 in this formula, beyond the fact that neither
is a multiple of the other.

For example, the ODE ẍ = 0 has general solution at + b. We can
take x1 = t and x2 = 1 as basic solutions, and have a tendency to do
this or else list them in the reverse order, so x1 = 1 and x2 = t. But
equally well we could take a pretty randomly chosen pair of polynomials
of degree at most one, such as x1 = 4 + t and x2 = 3 − 2t, as basic
solutions. This is because for any choice of a and b we can solve for c1

and c2 in at + b = c1x1 + c2x2. The only requirement is that neither
solution is a multiple of the other. This condition is expressed by saying
that the pair {x1, x2} is linearly independent.

Given a basic pair of solutions, x1, x2, there is a solution of the initial
value problem with x(t0) = a, ẋ(t0) = b, of the form x = c1x1 + c2x2.
The constants c1 and c2 satisfy

a = x(t0) = c1x1(t0) + c2x2(t0)

b = ẋ(t0) = c1ẋ1(t0) + c2ẋ2(t0).

For instance, the ODE ẍ− x = 0 has exponential solutions et and e−t,
which we can take as x1, x2. The initial conditions x(0) = 2, ẋ(0) = 4
then lead to the solution x = c1e

t + c2e
−t as long as c1, c2 satisfy

2 = x(0) = c1e
0 + c2e

−0 = c1 + c2,

4 = ẋ(0) = c1e
0 + c2(−e−0) = c1 − c2,

This pair of linear equations has the solution c1 = 3, c2 = −1, so
x = 3et − e−t.

9.2. Normalized solutions. Very often you will have to solve the
same differential equation subject to several different initial conditions.
It turns out that one can solve for just two well chosen initial conditions,
and then the solution to any other IVP is instantly available. Here’s
how.
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Definition 9.2.1. A pair of solutions x1, x2 of (1) is normalized at t0
if

x1(t0) = 1, x2(t0) = 0,

ẋ1(t0) = 0, ẋ2(t0) = 1.

By existence and uniqueness of solutions with given initial condi-
tions, there is always exactly one pair of solutions which is normalized
at t0.

For example, the solutions of ẍ = 0 which are normalized at 0 are
x1 = 1, x2 = t. To normalize at t0 = 1, we must find solutions—
polynomials of the form at + b—with the right values and derivatives
at t = 1. These are x1 = 1, x2 = t− 1.

For another example, the “harmonic oscillator”

ẍ+ ω2
nx = 0

has basic solutions cos(ωnt) and sin(ωnt). They are normalized at 0

only if ωn = 1, since
d

dt
sin(ωnt) = ωn cos(ωnt) has value ωn at t = 0,

rather than value 1. We can fix this (as long as ωn 6= 0) by dividing by
ωn: so

(2) cos(ωnt) , ω−1
n sin(ωnt)

is the pair of solutions to ẍ+ ω2
nx = 0 which is normalized at t0 = 0.

Here is another example. The equation ẍ− x = 0 has linearly inde-
pendent solutions et, e−t, but these are not normalized at any t0 (for
example because neither is ever zero). To find x1 in a pair of solutions
normalized at t0 = 0, we take x1 = aet + be−t and find a, b such that
x1(0) = 1 and ẋ1(0) = 0. Since ẋ1 = aet − be−t, this leads to the pair
of equations a + b = 1, a − b = 0, with solution a = b = 1/2. To find
x2 = aet + be−t x2(0) = 0, ẋ2(0) = 1 imply a + b = 0, a − b = 1 or
a = 1/2, b = −1/2. Thus our normalized solutions x1 and x2 are the
hyperbolic sine and cosine functions:

cosh t =
et + e−t

2
, sinh t =

et − e−t

2
.

These functions are important precisely because they occur as nor-
malized solutions of ẍ− x = 0.

Normalized solutions are always linearly independent: x1 can’t be a
multiple of x2 because x1(t0) 6= 0 while x2(t0) = 0, and x2 can’t be a
multiple of x1 because ẋ2(t0) 6= 0 while ẋ1(t0) = 0.

Now suppose we wish to solve (1) with the general initial conditions.
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If x1 and x2 are a pair of solutions normalized at t0, then the
solution x with x(t0) = a, ẋ(t0) = b is

x = ax1 + bx2 .

The constants of integration are the initial conditions.

If I want x such that ẍ+ x = 0 and x(0) = 3, ẋ(0) = 2, for example,
we have x = 3 cos t + 2 sin t. Or, for an other example, the solution of
ẍ− x = 0 for which x(0) = 2 and ẋ(0) = 4 is x = 2 cosh(t) + 4 sinh(t).
You can check that this is the same as the solution given above.

Exercise 9.2.2. Check the identity

cosh2 t− sinh2 t = 1 .

9.3. ZSR and ZIR. There is an interesting way to decompose the
solution of a linear initial value problem which is appropriate to the
inhomogeneous case and which arises in the system/signal approach.
Two distinguishable bits of data determine the choice of solution: the
initial condition, and the input signal.

Suppose we are studying the initial value problem

(3) ẍ+ p(t)ẋ+ q(t)x = f(t) , x(t0) = x0 , ẋ(t0) = ẋ0 .

There are two related initial value problems to consider:

[ZSR] The same ODE but with rest initial conditions (or “zero state”):

ẍ+ p(t)ẋ+ q(t)x = f(t) , x(t0) = 0 , ẋ(t0) = 0 .

Its solution is called the Zero State Response or ZSR. It depends
entirely on the input signal, and assumes zero initial conditions. We’ll
write xf for it, using the notation for the input signal as subscript.

[ZIR] The associated homogeneous ODE with the given initial condi-
tions:

ẍ+ p(t)ẋ+ q(t)x = 0 , x(t0) = x0 , ẋ(t0) = ẋ0 .

Its solution is called the the Zero Input Response, or ZIR. It de-
pends entirely on the initial conditions, and assumes null input signal.
We’ll write xh for it, where h indicates “homogeneous.”

By the superposition principle, the solution to (3) is precisely

x = xf + xh.

The solution to the initial value problem (3) is the sum of a ZSR and
a ZIR, in exactly one way.
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Example 9.3.1. Drive a harmonic oscillator with a sinusoidal signal:

ẍ+ ω2
nx = a cos(ωt)

(so f(t) = a cos(ωt)) and specify initial conditions x(0) = x0, ẋ(0) =
ẋ0. Assume that the system is not in resonance with the signal, so
ω 6= ωn. Then the Exponential Response Formula (Section 10) shows
that the general solution is

x = a
cos(ωt)

ω2
n − ω2

+ b cos(ωnt) + c sin(ωnt)

where b and c are constants of integration. To find the ZSR we need
to find ẋ, and then arrange the constants of integration so that both
x(0) = 0 and ẋ(0) = 0. Differentiate to see

ẋ = −aω sin(ωt)

ω2
n − ω2

− bωn sin(ωnt) + cωn cos(ωnt)

so ẋ(0) = cωn, which can be made zero by setting c = 0. Then x(0) =
a/(ω2

n − ω2) + b, so b = −a/(ω2
n − ω2), and the ZSR is

xf = a
cos(ωt)− cos(ωnt)

ω2
n − ω2

.

The ZIR is
xh = b cos(ωnt) + c sin(ωnt)

where this time b and c are chosen so that xh(0) = x0 and ẋh(0) = ẋ0.
Thus (using (2) above)

xh = x0 cos(ωnt) + ẋ0
sin(ωnt)

ωn
.

Example 9.3.2. The same works for linear equations of any order.
For example, the solution to the bank account equation (Section 2)

ẋ− Ix = c , x(0) = x0,

(where we’ll take the interest rate I and the rate of deposit c to be
constant, and t0 = 0) can be written as

x =
c

I
(eIt − 1) + x0e

It.

The first term is the ZSR, depending on c and taking the value 0 at
t = 0. The second term is the ZIR, a solution to the homogeneous
equation depending solely on x0.
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10. Operators and the exponential response formula

10.1. Operators. Operators are to functions as functions are to num-
bers. An operator takes a function, does something to it, and returns
this modified function. There are lots of examples of operators around:

—The shift-by-a operator (where a is a number) takes as input a func-
tion f(t) and gives as output the function f(t−a). This operator shifts
graphs to the right by a units.

—The multiply-by-h(t) operator (where h(t) is a function) multiplies
by h(t): it takes as input the function f(t) and gives as output the
function h(t)f(t).

You can go on to invent many other operators. In this course the
most important operator is:

—The differentiation operator, which carries a function f(t) to its de-
rivative f ′(t).

The differentiation operator is usually denoted by the letter D; so
Df(t) is the function f ′(t). D carries f to f ′; for example, Dt3 = 3t2.
Warning: you can’t take this equation and substitute t = 2 to get
D8 = 12. The only way to interpret “8” in “D8” is as a constant
function, which of course has derivative zero: D8 = 0. The point is
that in order to know the function Df(t) at a particular value of t, say
t = a, you need to know more than just f(a); you need to know how
f(t) is changing near a as well. This is characteristic of operators; in
general you have to expect to need to know the whole function f(t) in
order to evaluate an operator on it.

The identity operator takes an input function f(t) and returns the
same function, f(t); it does nothing, but it still gets a symbol, I.

Operators can be added and multiplied by numbers or more generally
by functions. Thus tD+4I is the operator sending f(t) to tf ′(t)+4f(t).

The single most important thing associated with the concept of op-
erators is that they can be composed with each other. I can hand a
function off from one operator to another, each taking the output from
the previous and modifying it further. For example, D2 differentiates
twice: it is the second-derivative operator, sending f(t) to f ′′(t).

We have been studying ODEs of the form mẍ + bẋ + kx = q(t).
The left hand side is the effect of an operator on the function x(t),
namely, the operator mD2 + bD + kI. This operator describes the
system (composed for example of a mass, dashpot, and spring).



46

We’ll often denote an operator by a single capital letter, such as L.
If L = mD2 + bD + kI, for example, then our favorite ODE,

mẍ+ bẋ+ kx = q

can be written simply as

Lx = q.

At this point m, b, and k could be functions of t.

Note well: the operator does NOT take the signal as input and return
the system response, but rather the reverse: Lx = q, the operator takes
the response and returns the signal. In a sense the system is better
modeled by the “inverse” of the operator L. In rough terms, solving
the ODE Lx = q amounts to inverting the operator L.

Here are some definitions. A differential operator is one which
is algebraically composed of D’s and multiplication by functions. The
order of a differential operator is the highest derivative appearing in
it. mD2 +bD+kI is an example of a second order differential operator.

This example has another important feature: it is linear. An opera-
tor L is linear if

L(cf) = cLf and L(f + g) = Lf + Lg.

10.2. LTI operators and exponential signals. We will study al-
most exclusively linear differential operators. They are the operators
of the form

L = an(t)Dn + an−1(t)Dn−1 + · · ·+ a0(t)I.

The functions a0, . . . , an are the coefficients of L.

In this course we focus on the case in which the coefficients are
constant; each ak is thus a number, and we can form the characteristic
polynomial of the operator,

p(s) = ans
n + an−1s

n−1 + · · ·+ a0.

The operator is Linear and Time Invariant: an LTI operator. The
original operator is obtained from its characteristic polynomial by for-
mally replacing the indeterminate s here with the differentiation oper-
ator D, so we may write

L = p(D).

The characteristic polynomial completely determines the operator, and
many properties of the operator are conveniently described in terms of
its characteristic polynomial.
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Here is a first example of the power of the operator notation. Let
r be any constant. (You might as well get used to thinking of it as a
possibly complex constant.) Then

Dert = rert.

(A fancy expression for this is to say that r is an eigenvalue of the
operator D, with corresponding eigenfunction ert.) Iterating this we
find that

Dkert = rkert.

We can put these equations together, for varying k, and evaluate a
general LTI operator

p(D) = anD
n + an−1D

n−1 + · · ·+ a0I

on ert. The operator Dk pulls rk out as a factor, and when you add
them all up you get the value of the polynomial p(s) at s = r:

(1) p(D)ert = p(r)ert.

It is crucial here that the operator be time invariant: If the coefficients
ak are not constant, then they don’t just pull outside the differentiation;
you need to use the product rule instead, and the formulas become more
complicated—see Section 14.

Multiplying (1) by a/p(r) we find the important

Exponential Response Formula: A solution to

(2) p(D)x = aert

is given by the

(3) xp = a
ert

p(r)

provided only that p(r) 6= 0.

The Exponential Response Formula ties together many different parts
of this course. Since the most important signals are exponential, and
the most important differential operators are LTI operators, this single
formula solves most of the ODEs you are likely to face in your future.

The function xp given by (3) is the only solution to (2) which is a
multiple of an exponential function. If r has the misfortune to be a
root of p(s), so that p(r) = 0, then the formula (3) would give a zero in
the denominator. The conclusion is that there are no solutions which
are multiples of exponential functions. This is a “resonance” situation.
In this case we can still find an explicit solution; see Section 14 for this.
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Example 10.2.1. Let’s solve

(4) 2ẍ+ ẋ+ x = 1 + 2et .

This is an inhomogeneous linear equation, so the general solution as
the form xp + xh, where xp is any particular solution and xh is the
general homogeneous solution. The characteristic polynomial is p(s) =
2s2 + s+ 1, with roots (−1±

√
7 i)/4 and hence general homogeneous

solution is given by xh = e−t/4(a cos(
√

7 t/4) + b sin(
√

7 t/4)), or, in
polar expression, A cos(

√
7 t/4− φ).

The inhomogeneous equation is p(D)x = 1 + 2et. The input signal
is a linear combination of 1 and et, so, again by superposition, if x1

is a solution of p(D)x = 1 and x2 is a solution of p(D)x = et, then a
solution to (4) is given by xp = x1 + 2x2.

The constant function 1 is exponential: 1 = ert with r = 0. Thus
p(D)x = 1 has for solution 1/p(0) = 1. This is easily checked without
invoking the Exponential Response Formula! So take x1 = 1.

Similarly, we can take x2 = et/p(1) = et/4. Thus

xp = 1 + 2et/4 .

10.3. Sinusoidal signals. Being able to handle exponential signals
is even more significant than you might think at first, because of the
richness of the complex exponential. To exploit this richness, we have
to allow complex valued functions of t. The main complex valued
function we have to consider is the complex exponential function z =
ewt, where w is some fixed complex number. We know its derivative,
by the Exponential Principle (Section 6.1): ż = wewt.

Here’s how we can use this. Suppose we want to solve

(5) 2ẍ+ ẋ+ x = 2 cos(t/2).

Step 1. Find a complex valued equation with an exponential signal of
which this is the real part.

There is more than one way to do this, but the most natural one is
to view 2 cos(t/2) as the real part of 2eit/2 and write down

(6) 2z̈ + ż + z = 2eit/2 .

This is a new equation, different from the original one. Its solution
deserves a different name, and we have chosen one for it: z. This
introduction of a new variable name is an essential part of Step 1. The
real part of a solution to (6) is a solution to (5): Re z = x.
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(If the input signal is sinusoidal, it is some shift of a cosine. This can
be handled by the method described below in Section 10.5. Alterna-
tively, if it is a sine, you can write the equation as the imaginary part
of an equation with exponential input signal, and proceed as below.)

Step 2. Find a particular solution zp to the new equation.

By the Exponential Response Formula (3)

zp = 2
eit/2

p(i/2)
.

Compute:

p(i/2) = 2(i/2)2 + i/2 + 1 = (1 + i)/2

so

(7) zp = 4
eit/2

1 + i
.

Step 3. Extract the real (or imaginary) part of zp to recover xp. The
result will be a sinusoidal function, and there are good ways to get to
both rectangular and polar expressions for this sinusoidal function.

Rectangular version. Write out the real and imaginary parts of the
exponential and rationalize the denominator:

zp = 4
(1− i)(cos(t/2) + i sin(t/2))

1 + 1
.

The real part is

(8) xp = 2 cos(t/2) + 2 sin(t/2) ,

and there is our solution!

Polar version. To do this, write the factor

2

p(i/2)
=

4

1 + i

in the Exponential Response Formula in polar form:

2

p(i/2)
= ge−iφ ,

so g is the magnitude and −φ is the angle. (We use −φ instead of φ is
because we will want to wind up with a phase lag.) The magnitude is

g =
4

|1 + i|
= 2
√

2 .
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The angle φ is the argument of the denominator p(i/2) = 1 + i, which
is π/4. Thus

zp = ge−φieit/2 = 2
√

2e(t/2−(π/4))i .

The real part is now exactly

xp = 2
√

2 cos(t/2− π/4) .

These two forms of the sinusoidal solution are related to each other
by the trigonometric identity (4.3). The polar form has the advantage
of exhibiting a clear relationship between the input signal and the si-
nusoidal system response: the amplitude is multiplied by a factor of√

2—this is the gain—and there is a phase lag of π/4 behind the input
signal. In Section 10.5 we will observed that these two features persist
for any sinusoidal input signal with angular frequency 1/2.

Example 10.3.1. The harmonic oscillator with sinusoidal forcing term:

ẍ+ ω2
nx = A cos(ωt) .

This is the real part of the equation

z̈ + ω2
nz = Aeiωt ,

which we can solve directly from the Exponential Response Formula:
since p(iω) = (iω)2 + ω2

n = ω2
n − ω2,

zp = A
eiωt

ω2
n − ω2

as long as the input frequency is different from the natural frequency
of the harmonic oscillator. Since the denominator is real, the real part
of zp is easy to find:

(9) xp = A
cos(ωt)

ω2
n − ω2

.

Similarly, the sinusoidal solution to

ÿ + ω2
ny = A sin(ωt)

is the imaginary part of zp,

(10) yp = A
sin(ωt)

ω2
n − ω2

.

This solution puts in precise form some of the things we can check
from experimentation with vibrating systems. When the frequency of
the signal is smaller than the natural frequency of the system, ω < ωn,
the denominator is positive. The effect is that the system response is
a positive multiple of the signal: the vibration of the mass is “in sync”
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with the impressed force. As ω increases towards ωn, the denominator
in (9) nears zero, so the amplitude of the solution grows arbitrarily
large. When ω = ωn the system is in resonance with the signal; the
Exponential Response Formula fails, and there is no periodic (or even
bounded) solution. (We’ll see in Section 14 how to get a solution in
this case.) When ω > ωn, the denominator is negative. The system
response is a negative multiple of the signal: the vibration of the mass
is perfectly “out of sync” with the impressed force.

Since the coefficients are constant here, a time-shift of the signal
results in the same time-shift of the solution:

ẍ+ ω2
nx = A cos(ωt− φ)

has the periodic solution

xp = A
cos(ωt− φ)

ω2
n − ω2

.

The equations (9) and (10) will be very useful to us when we solve
ODEs via Fourier series.

10.4. Damped sinusoidal signals. The same procedure may be used
to solve equations of the form

Lx = eat cos(ωt− φ0)

where L = p(D) is any LTI differential operator.

Example 10.4.1. Let’s solve

2ẍ+ ẋ+ x = e−t cos t

We found the general solution of the homogeneous equation above, in
Example 10.2.1, so what remains is to find a particular solution. To
do this, replace the equation by complex-valued equation of which it is
the real part:

2ẍ+ ẋ+ x = e(−1+i)t

Then apply the Exponential Response Formula:

zp =
e(−1+i)t

p(−1 + i)

In extracting the real part of this, to get xp, we again have a choice
of rectangular or polar approaches. In the rectangular approach, we
expand

p(−1 + i) = 2(−1 + i)2 + (−1 + i) + 1 = −3i
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so zp = ie(−1+i)t/3, and the real part is

xp = −(1/3)e−t sin(ωt) .

10.5. Time invariance. The fact that the coefficients of L = p(D)
are constant leads to an important and useful relationship between
solutions to Lx = f(t) for various input signals f(t).

Translation invariance. If L is an LTI operator, and
Lx = f(t), then Ly = f(t− c) where y(t) = x(t− c).

This is the “time invariance” of L. Here is an example of its use.

Example 10.5.1. Let’s solve

(11) 2ẍ+ ẋ+ x = 3 sin(t/2− π/3)

There are many ways to deal with the phase shift in the signal. Here is
one: We saw in Section 10.3 that when the input signal was 2 cos(t/2),
the sinusoidal system response was characterized by a gain of

√
2 and

a phase lag of π/4. By time invariance, the same is true for any sinu-
soidal input with the same frequency. This is the really useful way of
expressing the sinusoidal solution, but we can also write it out:

xp = 3
√

2 sin(t/2− π/3− π/4) = 3
√

2 sin(t/2− 7π/12)
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11. Undetermined coefficients

In this section we describe now to solve the constant coefficient linear
ODE p(D)x = q(t) in case q(t) is polynomial rather than exponential.
Any function can be approximated in a suitable sense by polynomial
functions, and this makes polynomials a flexible and important tool.

A polynomial is a function of the form

q(t) = ant
n + an−1t

n−1 + · · ·+ a0.

The smallest k for which ak 6= 0 is the degree of q(t). (The zero function
is a polynomial too, but it doesn’t have a degree.)

Note that q(0) = a0 and q′(0) = a1.

Here is the basic fact about the response of an LTI system with
characteristic polynomial p(s) to polynomial signals:

Theorem. (Undetermined coefficients) If p(0) 6= 0, and q(t) is a
polynomial of degree n, then

p(D)x = q(t)

has exactly one solution which is polynomial, and it is of degree n.

The best way to see this, and to see how to compute this polynomial
particular solution, is by an example. Suppose we have

ẍ+ 2ẋ+ 3x = 4t2 + 5.

The theorem asserts that there is exactly one solution of the form

x = at2 + bt+ c,

where a, b, c are constants. To find them, just substitute this expres-
sion for x into the equation. It’s helpful to be systematic in making
this computation. Write out x, ẋ, and ẍ, and then multiply by the
coefficients, taking care to line up powers of t:

3x = 3at2 + 3bt + 3c
2ẋ = 4at + 2b
ẍ = 2a

4t2 + 5 = 3at2 + (4a+ 3b)t + (2a+ 2b+ 3c)

Now we equate coefficients of corresponding powers of t. It’s easiest to
start with the highest power of t:

4 = 3a so a = 4/3,

3b = −4a = −16/3 so b = −16/9 ,

3c = 5− 2(4/3)− 2(−16/9) so c = 53/27 .
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Our solution is thus

x = (4/3)t2 − (16/9)t+ (53/27) .

The computation in this example is about as complicated as it could
get. I planned it that way so you would see the point: since it’s an
“upper triangular” set of linear equations, you can always solve for the
coefficients one after the other.

If the constant term in the characteristic polynomial had been zero,
though, there would have been trouble: there would have been nothing
on the right and side of the table to give t2. This is why the hypothesis
in the theorem is needed.

There is a simple dodge we can use in case p(0) = 0, though. If
p(0) = 0, then p(D)x doesn’t involve x itself; it involves only ẋ and its
derivatives. So we can regard it as an ODE (of one order less) for ẋ,
solve that, and then integrate to solve for x. It may be useful to write
y = ẋ in this process, to keep your head straight.

Suppose we have
ẍ+ 2ẋ = 3t2 ,

for example. If we write y = ẋ, this is the same as

ẏ + 2y = 3t2 .

The theorem applies to this equation, now: there is exactly one solution
of the form y = at2 + bt+ c.

Exercise. Carry out the computation to show that this polynomial
solution is y = (3/2)t2 − (3/2)t+ 3/4.

Now a solution to the original problem is given by an integral of y:
x = (1/2)t3− (3/4)t2 + (3/4)t. You still get a polynomial solution, but
it is no longer the only polynomial solution—I can add any constant
to it and get another—and its degree is larger than the degree of the
input function.

These methods let you find a polynomial response to a polynomial
signal for any LTI system.

Final remark: there is overlap with the case of exponential signal,
since the constant function with value 1 is an exponential: e0t = 1. Our
earlier method gives the solution e0t/p(0) for a solution to p(D)x = 1,
provided p(0) 6= 0. This the same as the solution given by the method
of undetermined coefficients.
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12. Resonance

12.1. Resonance. When you swing your kid sister the key is to get
in synch with the natural frequency of the swing. This is called “reso-
nance.” We might model the swing-and-sister setup by a sinusoidally
driven harmonic oscillator, ẍ + ω2

n = A cos(ωt). In (10.9) we saw that
this has a periodic solution

(1) xp = A
cos(ωt)

ω2
n − ω2

provided that ω 6= ωn. Resonance occurs when the two frequencies
coincide. The model isn’t very accurate; there are no bounded solutions
to our equation when ωn = ω. But we neglected damping. . . .

From a more sophisticated perspective, resonance occurs in the equa-
tion p(D)x = ert when r is a root of the characteristic polynomial p(s);
for then the denominator in the Exponential Response Formula van-
ishes.

This occurs in the complex replacement for the harmonic oscilla-
tor, z̈ + ω2

nz = Aeiωt when ω = ±ωn, and acconts for the vanishing
denominator in (1).

It also occurs if we try to use the ERF to solve ẋ + x = e−t. The
Exponential Response Formula proposes a solution xp = e−t/p(−1),
but p(−1) = 0 so this fails. There is no solution of the form cert.

Here is a way to solve p(D)x = ert when this happens. The ERF
came from the calculation

p(D)ert = p(r)ert,

which is valid whether or not p(r) = 0. We will take this expression
and differentiate it with respect to r, keeping t constant. The result,
using the product rule and the fact that partial derivatives commute,
is

p(D)tert = p′(r)ert + p(r)tert

If p(r) = 0 this simplifies to

(2) p(D)tert = p′(r)ert .

Now if p′(r) 6= 0 we can divide through by it and see:

The Resonant Exponential Response Formula: If p(r) = 0 then
a solution to p(D)x = aert is given by

(3) xp = a
tert

p′(r)
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provided that p′(r) 6= 0.

In our example above, p(s) = s + 1 and r = 1, so p′(r) = 1 and
xp = te−t is a solution.

This example exhibits a characteristic feature of resonance: the solu-
tions grow faster than you might expect. The characteristic polynomial
leads you to expect a solution of the order of e−t. In fact the solution
is t times this. It still decays to zero as t grows, but not as fast as e−t

does.

Example 12.1.1. Let’s return to the harmonic oscillator represented
by ẍ+ ω2

nx, or by the operator D2 + ω2
nI = p(D), driven by the signal

A cos(ωt). This ODE is the real part of

z̈ + ω2
nz = Aeiωt ,

so the Exponential Response Formula gives us the periodic solution

zp = A
eiωnt

p(iω)
.

This is fine unless ω = ωn, in which case p(iωn) = (iωn)2 + ω2
n = 0; so

the amplitude of the proposed sinusoidal response should be infinite.
The fact is that there is no periodic system response; the system is in
resonance with the signal.

To circumvent this problem, let’s apply the Resonance Exponential
Response Formula: since p(s) = s2 +ω2

n, p′(s) = 2s and p′(iωn) = 2iω0,
so

zp = A
teiωnt

2iωn
.

The real part is

xp =
A

2ωn
t sin(ωnt) .

The general solution is thus

x =
A

2ωn
t sin(ωnt) + b cos(ωnt− φ) .

In words, all solutions oscillate with pseudoperiod 2π/ωn, and grow in
amplitude like At/(2ωn). When ωn is large—high frequency—this rate
of growth is small.
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12.2. Higher order resonance. It may happen that both p(r) = 0
and p′(r) = 0. The general picture is this: Suppose that k is such
that p(j)(r) = 0 for j < k and p(k)(r) 6= 0. Then p(D)x = aert has as
solution

(4) xp = a
tkert

p(k)(r)
.

For instance, if ω = ω0 = 0 in Example 12.1.1, p′(iω) = 0. The signal
is now just the constant function a, and the ODE is ẍ = a. Integrating
twice gives xp = at2/2 as a solution, which is a special case of (4), since
ert = 1 and p′′(s) = 2.

You can see (4) in the same way we saw the Resonant Exponential
Response Formula. So take (2) and differentiate again with respect to
r:

p(D)t2ert = p′′(r)ert + p′(r)tert

If p′(r) = 0, the second term drops out and if we suppose p′′(r) 6= 0
and divide through by it we get

p(D)

(
t2ert

p′(r)

)
= ert

which the case k = 2 of (4). Continuing, we get to higher values of k
as well.
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13. Time invariance

As we have seen, systems can be represented by differential operators.
A system, or a differential operator, is time invariant if it doesn’t
change over time. A general n-th order differential operator has the
form

(1) L = an(t)Dn + · · ·+ a1(t)D + a0(t)I

where each coefficent may depend upon t. It is time invariant pre-
cisely when all the coefficents are constant. In that case we have a
characteristic polynomial p(s), and L = p(D).

The abbreviation LTI refers to the combination of the properties
of linearity—that is, obeying the principle of superposition—and time
invariance. These two properties in combination are very powerful. In
this section we will investigate two implications of the LTI condition.

13.1. Differentiating input and output signals. A basic rule of

differentiation is that if c is constant then
d

dt
(cu) = c

du

dt
; that is, D(cu) =

cDu.

The time invariance of p(D) implies that as operators

(2) Dp(D) = p(D)D.

We can see this directly, using D(cu) = cDu:

D(anD
n + · · ·+ a0I) = anD

n+1 + · · ·+ a0D = (anD
n + · · ·+ a0I)D .

In fact the converse holds also; (2) is equivalent to time invariance.

Example. Suppose we know that x(t) is a solution of the equation

Lx = 2
d4x

dt4
+ 3ẋ+ 4x = 2 cos t. (I would not want to try to find x(t)

explicitly, though it an be done by the methods described earlier.)
Problem: Write down a solution of Ly = sin t in terms of x.

Well, up to multiplying by a constant sin t is the derivative of the
right hand side of the original equation. So try y = Dx: LDx =
DLx = D(2 cos t) = −2 sin t. By linearity, we can get to the right
place by multiplying by −1

2
: we can take y = −1

2
Dx = −1

2
ẋ.

13.2. Time-shifting. Let a be a constant and f(t) a function. Define
a new function fa(t) by shifting the graph of f(t) to the right by a
units:

(3) fa(t) = f(t− a)
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For example, sinπ(t) = cos(t). In terms of the language of signals, the
signal fa(t) is just f(t) but delayed by a time units.

Here is the meaning of time invariance:

If a system doesn’t change with time, then the system
response to a signal which has been delayed by a seconds
is just the a-second delay of the system response to the
original signal.

In terms of operators, we can say: for an LTI operator L,

(Lx)a = L(xa)

Example. Let’s solve the previous example using this principle. We
have sin t = cos(t− π/2), so we can take y = 1

2
x(t− π/2).

Can you reconcile the two expressions we now have for y?
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14. The exponential shift law

This section explains a method by which an LTI equation with input
signal of the form ertq(t) can be replaced by a simpler equation in which
the input signal is just q(t).

14.1. Exponential shift. The calculation (10.1)

(1) p(D)ert = p(r)ert

extends to a formula for the effect of the operator p(D) on a product
of the form ertu, where u is a general function. This is useful in solving
p(D)x = f(t) when the input signal is of the form f(t) = ertq(t).

The formula arises from the product rule for differentiation, which
can be written in terms of operators as

D(vu) = v Du+ (Dv)u.

If we take v = ert this becomes

D(ertu) = ertDu+ rertu = ert(Du+ ru) .

Using the notation I for the identity operator, we can write this as

(2) D(ertu) = ert(D + rI)u.

If we apply D to this equation again,

D2(ertu) = D(ert(D + rI)u) = ert(D + rI)2u ,

where in the second step we have applied (2) with u replaced by (D +
rI)u. This generalizes to

Dk(ertu) = ert(D + rI)ku.

The final step is to take a linear combination of Dk’s, to form a
general LTI operator p(D). The result is the

Exponential Shift Law:

(3) p(D)(ertu) = ertp(D + rI)u

The effect is that we have pulled the exponential outside the differential
operator, at the expense of changing the operator in a specified way.
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14.2. Product signals. We can exploit this effect to solve equations
of the form

p(D)x = ertq(t) ,

by a version of the method of variation of parameter: write x = ertu,
apply p(D), use (3) to pull the exponential out to the left of the op-
erator, and then cancel the exponential from both sides. The result
is

p(D + rI)u = q(t) ,

a new LTI ODE for the function u, one from which the exponential
factor has been eliminated.

Example 14.2.1. Find a particular solution to ẍ+ ẋ+ x = t2e3t.

With p(s) = s2 + s+ 1 and x = e3tu, we have

ẍ+ ẋ+ x = p(D)x = p(D)(e3tu) = e3tp(D + 3I)u .

Set this equal to t2e3t and cancel the exponential, to find

p(D + 3I)u = t2

This is a good target for the method of undetermined coefficients (Sec-
tion 11). The first step is to compute

p(s+ 3) = (s+ 3)2 + (s+ 3) + 1 = s2 + 7s+ 13 ,

so we have ü + 7u̇ + 13u = t2. There is a solution of the form up =
at2 + bt+ c, and we find it is

up = (1/13)t2 − (14/132)t+ (85/133) .

Thus a particular solution for the original problem is

xp = e3t((1/13)t2 − (14/132)t+ (85/133)) .

Example 14.2.2. Find a particular solution to ẋ+ x = te−t sin t.

The signal is the imaginary part of te(−1+i)t, so, following the method
of Section 10, we consider the ODE

ż + z = te(−1+i)t .

If we can find a solution zp for this, then xp = Im zp will be a solution
to the original problem.

We will look for z of the form e(−1+i)tu. The Exponential Shift Law
(3) with p(s) = s+ 1 gives

ż + z = (D + I)(e(−1+i)tu) = e(−1+i)t((D + (−1 + i)I) + I)u

= e(−1+i)t(D + iI)u.
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When we set this equal to the right hand side we can cancel the expo-
nential:

(D + iI)u = t

or u̇ + iu = t. While this is now an ODE with complex coefficients,
it’s easy to solve by the method of undetermined coefficients: there
is a solution of the form up = at + b. Computing the coefficients,
up = −it+ 1; so zp = e(−1+i)t(−it+ 1).

Finally, extract the imaginary part to obtain xp:

zp = e−t(cos t+ i sin t)(−it+ 1)

has imaginary part

xp = e−t(−t cos t+ sin t).

14.3. Summary. The work of this section and the previous two can
be summarized as follows: Among the responses by an LTI system to a
signal which is polynomial times exponential (or a linear combination
of such) there is always one which is again a linear combination of
functions which are polynomial times exponential. By the magic of the
complex exponential, sinusoidal factors are included in this.



63

15. Natural frequency and damping ratio

There is a standard, and useful, normalization of the second order
homogeneous linear constant coefficient ODE

mẍ+ bẋ+ kx = 0

under the assumption that both the “mass” m and the “spring con-
stant” k are positive. It is illustrated in the Mathlet Damping Ratio.

In the absence of a damping term, the ratio k/m would be the square
of the angular frequency of a solution, so we will write k/m = ω2

n with
ωn > 0, and call ωn the natural angular frequency of the system.

Divide the equation through by m: ẍ + (b/m)ẋ + ω2
nx = 0. Critical

damping occurs when the coefficient of ẋ is 2ωn. The damping ratio ζ
is the ratio of b/m to the critical damping constant: ζ = (b/m)/(2ωn).
The ODE then has the form

(1) ẍ+ 2ζωnẋ+ ω2
nx = 0

Note that if x has dimensions of cm and t of sec, then ωn had dimen-
sions sec−1, and the damping ratio ζ is “dimensionless.” This implies
that it is a number which is the same no matter what units of distance
or time are chosen. Critical damping occurs precisely when ζ = 1: then
the characteristic polynomial has a repeated root: p(s) = (s+ ωn)2.

In general the characteristic polynomial is s2 + 2ζωns + ω2
n, and it

has as roots

−ζωn ±
√
ζ2ω2

n − ω2
n = ωn(−ζ ±

√
ζ2 − 1).

These are real when |ζ| ≥ 1, equal when ζ = ±1, and nonreal when
|ζ| < 1. When |ζ| ≤ 1, the roots are

−ζωn ± iωd
where

(2) ωd =
√

1− ζ2 ωn

is the damped angular frequency of the system. Recall that if r1 and
r2 are the roots of the quadratic s2 + bs+ c then r1r2 = c and r1 + r2 =
−b. In our case, the roots are complex conjugates, so their product is
the square of their modulus, which is thus ωn. Their sum is twice their
common real part, which is thus −ζωn. The real part of a complex
number z is |z| cos(Arg(z)), so we find that the arguments of the roots
are ±θ, where −ζ = cos θ. Note that the presence of a damping term
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decreases the frequency of a solution to the undamped equation—the
natural frequency ωn—by the factor

√
1− ζ2. The general solution is

(3) x = Ae−ζωnt cos(ωdt− φ)

Suppose we have such a system, but don’t know the values of ωn or
ζ. At least when the system is underdamped, we can discover them by
a couple of simple measurements of the system response. Let’s displace
the mass and watch it vibrate freely. If the mass oscillates, we are in
the underdamped case.

We can find ωd by measuring the times at which x achieves its max-
ima. These occur when the derivative vanishes, and

ẋ = Ae−ζωnt (−ζωn cos(ωdt− φ)− ωd sin(ωdt− φ)) .

The factor in parentheses is sinusoidal with angular frequency ωd, so
successive zeros are separated from each other by a time lapse of π/ωd.
If t1 and t2 are the times of neighboring maxima of x (which occur at
every other extremum) then t2− t1 = 2π/ωd, so we have discovered the
damped natural frequency:

(4) ωd =
2π

t2 − t1
.

Here are two ways to measure the damping ratio ζ.

1. We can measure the ratio of the value of x at two successive maxima.
Write x1 = x(t1) and x2 = x(t2). The difference of their natural
logarithms is the logarithmic decrement:

∆ = ln x1 − lnx2 = ln

(
x1

x2

)
.

Then

x2 = e−∆x1.

The logarithmic decrement turns out to depend only on the damping
ratio, and to determine the damping ratio. To see this, note that the
values of cos(ωdt−φ) at two points of time differing by 2π/ωd are equal.
Using (3) we find

x1

x2

=
e−ζωnt1

e−ζωnt2
= eζωn(t2−t1).

Thus, using (4) and (2),

∆ = ln

(
x1

x2

)
= ζωn(t2 − t1) = ζωn

2π

ωd
=

2πζ√
1− ζ2

.
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From the quantities ωd and ∆, which are directly measurable charac-
teristics of the unforced system response, we can calculate the system
parameters ωn and ζ:

(5) ζ =
∆/2π√

1 + (∆/2π)2
, ωn =

ωd√
1− ζ2

=

√
1 +

(
∆

2π

)2

ωd .

2. Another way to determine the damping ratio, at least if it’s rea-
sonably small, is to count the number of cycles it takes for the system
response to decay to half its original amplitude. Write n1/2 for this
number. We know that the amplitude has decayed to half its value at
t = 0 when t = t1/2, where

e−ζωnt1/2 = 1/2

or ζωnt1/2 = ln 2. The pseudoperiod is 2π/ωd, so

2π

ωd
n1/2 = t1/2 =

ln 2

ζωn
or

ζ =
ln 2

2π

ωd
ωn

1

n1/2

.

When ζ is small, ωd/ωn is quite close to 1, and
ln 2

2π
' 0.110. So to a

good approximation

ζ ' 0.11

n1/2

.
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16. Frequency response

In Section 3 we discussed the frequency response of a first order LTI
operator. In Section 10 we used the Exponential Response Formula to
understand the response of an LTI operator to a sinusoidal input signal.
Here we will study this in more detail, and understand how gain and
phase lag vary with the driving frequency. We’ll focus on second order
equations, but the methods are quite general.

A differential equation relates input signal to system response. What
constitutes the “input signal” and what constitutes the “system re-
sponse” are matters of convenience for the user, and are not determined
by the differential equation. We saw this already in connection with
Newtonian cooling in Section 2, and here we will illustrate this in a
couple of second order examples. The case of sinusoidal input signal
and system response are particularly important. The question is then:
what is the ratio of amplitude of the system response to that of the
input signal, and what is the phase lag of the system response relative
to the input signal?

We will carry this analysis out three times: first for two specific
examples of mechanical (or electrical) systems, and then in general
using the notation of the damping ratio.

16.1. Driving through the spring. The Mathlet Amplitude and

Phase: Second order I illustrates a spring/mass/dashpot system that
is driven through the spring. Suppose that y denotes the displacement
of the plunger at the top of the spring, and x(t) denotes the position of
the mass, arranged so that x = y when the spring is unstretched and
uncompressed. There are two forces acting on the mass: the spring
exerts a force force given by k(y− x) (where k is the spring constant),
and the dashpot exerts a force given by −bẋ (against the motion of the
mass, with damping coefficient b). Newton’s law gives

mẍ = k(y − x)− bẋ

or, putting the system on the left and the driving term on the right,

(1) mẍ+ bẋ+ kx = ky .

In this example it is natural to regard y, rather than ky, as the input
signal, and the mass position x as the system response.

Another system leading to the same equation is a series RLC cir-
cuit, discussed in Section 8 and illustrated in the Mathlet Series RLC

Circuit. We consider the impressed voltage as the input signal, and
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Figure 6. Spring-driven system

the voltage drop across the capacitor as the system response. The
equation is then

LV̈C +RV̇C + (1/C)VC = (1/C)V

Again, we want to think of V as the input signal, but it is (1/C)V that
occurs on the right side of the equation. We will favor the mechani-
cal system notation, but the mathematics is exactly the same in both
systems.

When y is sinusoidal, say

y = A cos(ωt) ,

then (putting aside the possibility of resonance) we expect a sinusoidal
solution, one of the form

x = B cos(ωt− φ)

The ratio of the amplitude of the system response to that of the input
signal, B/A, is called the gain of the system. We think of the system
as fixed, while the frequency ω of the input signal can be varied, so the
gain is a function of ω, g(ω). Similarly, the phase lag φ is a function
of ω. The entire story of the steady state system response to sinusoidal
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input signals is encoded in those to functions of ω, the gain and the
phase lag.

There is a systematic way to work out what g and φ are. The
equation (1) is the real part of a complex-valued differential equation:

mz̈ + bż + kz = Akest

with s = iω. The Exponential Response Formula gives the solution

zp =
Ak

p(s)
est

where

p(s) = ms2 + bs+ k

(as long as p(s) 6= 0).

Our choice of input signal and system response correspond in the
complex equation to regarding Aest as the input signal and zp as the
exponential system response. The transfer function is the ratio be-
tween the two:

W (s) =
k

p(s)
so

zp = W (s)Aest .

Now take s = iω. The complex gain for this system is

(2) W (iω) =
k

k −mω2 + ibω
.

The complex gain is a wonderful thing! I claim that

(3) g(ω) = |W (iω)| and φ(ω) = −Arg(W (iω))

That is, the polar expression of W (iω) contains both the gain g and
the phase lag φ as follows:

(4) W (iω) = ge−iφ

To verify this, substitute this expression into the formula for zp—

zp = g e−iφAeiωt = gAei(ωt−φ)

—and extract the real part, to get the sinusoidal solution to (1):

yp = gA cos(ωt− φ) .

This verifies (3).
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The system response to a sinusoidal input signal is another sinusoidal
signal, but the amplitude has been multiplied by the gain, which is in
this case

(5) g(ω) = |W (iω)| = k√
k2 + (b2 − 2mk)ω2 +m2ω4

The phase lag of the system response, relative to the input signal, is
φ = −Arg(W (iω)). In our spring system, φ is the argument of the
denominator in (2), since Arg(1/z) = −Arg(z), The tangent of the
argument of a complex number is the ratio of the imaginary part by
the real part, so

tanφ =
bω

k −mω2

The Amplitude and Phase: Second order I Mathlet shows how
the gain varies with ω. Often there is a choice of frequency ω for which
the gain is maximal: this is “near resonance.” To compute what this
frequency is, we can try to minimize the denominator in (5). That
minimum occurs when k2 +(b2−2mk)ω2 +m2ω4 is minimized. Setting
the derivative of this expression to zero shows that the minima occur
when ω is either 0 or the resonant frequency

ωr =

√
k

m
− b2

2m2

When b = 0, this is the natural frequency ωn =
√
k/m and we have true

resonance; the gain becomes infinite. As we increase b, the resonant
frequency decreases, till when b =

√
2mk we find ωr = 0. For b less

than this, practical resonance occurs only for ω = 0.

16.2. Driving through the dashpot. Now suppose instead that we
fix the top of the spring and drive the system by moving the bot-
tom of the dashpot instead. This is illustrated in Amplitude and

Phase: Second order II.

Suppose that the position of the bottom of the dashpot is given by
y(t), and again the mass is at x(t), arranged so that x = 0 when the
spring is relaxed. Then the force on the mass is given by

mẍ = −kx+ b
d

dt
(y − x)

since the force exerted by a dashpot is supposed to be proportional to
the speed of the piston moving through it. This can be rewritten

(6) mẍ+ bẋ+ kx = bẏ .
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Figure 7. Dashpot-driven system

Again we will consider x as the system response, and the position
of the back end of the dashpot, y, as the input signal. Note that the
derivative of the input signal (multiplied by b) occurs on the right hand
side of the equation. Another system leading to the same mathematics
is the series RLC circuit shown in the Mathlet Series RLC Circuit,
in which the impressed voltage is the input variable and the voltage
drop across the resistor is the system response. The equation is

LV̈R +RV̇R + (1/C)VR = RV̇

Here’s a frequency response analysis of this problem. We suppose
that the input signal is sinusoidal:

y = B cos(ωt) .

Then ẏ = −ωB sin(ωt) so our equation is

(7) mẍ+ bẋ+ kx = −bωB sin(ωt) .

The periodic system response will be of the form

xp = gB cos(ωt− φ)

for some gain g and phase lag φ, which we now determine by making
a complex replacement.
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The right hand side of (7) involves the sine function, so one natural
choice would be to regard it as the imaginary part of a complex equa-
tion. This would work, but we should also keep in mind that the input
signal is B cos(ωt). For that reason, we will write (7) as the real part
of a complex equation, using the identity Re (ieiωt) = − sin(ωt). The
equation (7) is thus the real part of

(8) mz̈ + bż + kz = biωBeiωt .

and the complex input signal isBeiωt (since this has real partB cos(ωt)).

The sinusoidal system response xp of (7) is the real part of the expo-
nential system response zp of (8). The Exponential Response Formula
gives

zp =
biω

p(iω)
Beiωt

where
p(s) = ms2 + bs+ k

is the characteristic polynomial.

The complex gain is the complex number W (iω) by which you have
to multiply the complex input signal to get the exponential system
response. Comparing zp with Beiωt, we see that

W (iω) =
biω

p(iω)
.

As usual, write
W (iω) = ge−iφ

so that
zp = W (iω)Beiωt = gBei(ωt−φ)

Thus
xp = Re (zp) = gB cos(ωt− φ)

—the amplitude of the sinusoidal system response is g times that of
the input signal, and lags behind the input signal by φ radians.

We can make this more explicit. For notational convenience, let’s
use the natural frequency ωn =

√
k/m. Then

p(iω) = m(iω)2 + biω +mω2
n = m(ω2

n − ω2) + biω ,

so

W (iω) =
biω

m(ω2
n − ω2) + biω

.

Thus the gain g(ω) = |W (iω)| and the phase lag φ = −Arg(W (iω))
are determined as the polar coordinates of the complex function of ω
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given by W (iω). As ω varies, W (iω) traces out a curve in the complex
plane, shown by invoking the [Nyquist plot] in the applet. To under-
stand this curve, divide numerator and denominator in the expression
for W (iω) by biω, and rearrange:

W (iω) =

(
1− i

b/m

ω2
n − ω2

ω

)−1

.

As ω goes from 0 to ∞, (ω2
n − ω2)/ω goes from +∞ to −∞, so the

expression inside the brackets follows the vertical straight line in the
complex plane with real part 1, moving upwards. As z follows this line,
1/z follows a circle of radius 1/2 and center 1/2, traversed clockwise
(exercise!). It crosses the real axis when ω = ωn.

This circle is the “Nyquist plot.” It shows that the gain starts small,
grows to a maximum value of 1 exactly when ω = ωn (in contrast to the
spring-driven situation, where the resonant peak is not exactly at ωn
and can be either very large or non-existent depending on the strength
of the damping), and then falls back to zero. Near resonance occurs at
ωr = ωn.

The Nyquist plot also shows that −φ = Arg(W (iω)) moves from
near π/2 when ω is small, through 0 when ω = ωn, to near −π/2 when
ω is large.

And it shows that these two effects are linked to each other. Thus a
narrow resonant peak corresponds to a rapid sweep across the far edge
of the circle, which in turn corresponds to an abrupt phase transition
from −φ near π/2 to −φ near −π/2.

16.3. Second order frequency response using damping ratio.
As explained in Section 15, it is useful to write a second order system
with sinusoidal driving term as

(9) ẍ+ 2ζωnẋ+ ω2
nx = a cos(ωt) .

The constant ωn is the “natural frequency” of the system and ζ is the
“damping ratio.” In this abstract situation, we regard the right hand
side, a cos(ωt), as the input signal, and x as the system response. This
corresponds to the spring-mass-dashpot system in which a force is ap-
plied directly to the mass, and is illustrated in the Mathlet Amplitude
and Phase: Second Order IV.

The best path to the solution of (9) is to view it as the real part of
the complex equation

(10) z̈ + 2ζωnż + ω2
nz = aeiωt.
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The Exponential Response Formula of Section 10 tells us that unless
ζ = 0 and ω = ωn (in which case the equation exhibits resonance, and
has no periodic solutions), this has the particular solution

(11) zp = a
eiωt

p(iω)

where p(s) = s2 + 2ζωns + ω2
n is the characteristic polynomial of the

system. In Section 10 we wrote W (s) = 1/p(s), so this solution can be
written

zp = aW (iω)eiωt .

The complex valued function of ω given by W (iω) is the complex
gain. We will see now how, for fixed ω, this function contains exactly
what is needed to write down a sinusoidal solution to (9).

As in Section 10 we can go directly to the expression in terms of
amplitude and phase lag for the particular solution to (9) given by the
real part of zp as follows. Write the polar expression (as in Section 6)
for the complex gain as

(12) W (iω) =
1

p(iω)
= ge−iφ .

so that
g(ω) = |W (iω)| , −φ(ω) = Arg(W (iω))

Then
zp = ag ei(ωt−φ), xp = ag cos(ωt− φ),

The particular solution xp is the only periodic solution to (9), and,
assuming ζ > 0, any other solution differs from it by a transient. This
solution is therefore the most important one; it is the “steady state”
solution. It is sinusoidal, and hence determined by just a few parame-
ters: its angular frequency, which is the angular frequency of the input
signal; its amplitude, which is g times the amplitude a of the input
signal; and its phase lag φ relative to the input signal.

We want to understand how g and φ depend upon the driving fre-
quency ω. The gain is given by

(13) g(ω) =
1

|p(iω)|
=

1√
(ω2

n − ω2)2 + 4ζ2ω2
nω

2
.

Figure 8 shows the graphs of gain against the angular frequency
of the signal for ωn = 1 and several values of the damping ratio ζ
(namely ζ = 1/(4

√
2), 1/4, 1/(2

√
2), 1/2, 1/

√
2, 1,
√

2, 2.) As you can
see, the gain may achieve a maximum. This occurs when the square
of the denominator in (13) is minimal, and we can discover where this
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Figure 8. Second order frequency response curves

is by differentiating with respect to ω and setting the result equal to
zero:

(14)
d

dω

(
(ω2

n − ω2)2 + 4ζ2ω2
nω

2
)

= −2(ω2
n − ω2)2ω + 8ζ2ω2

nω,

and this becomes zero when ω equals the resonant frequency

(15) ωr = ωn
√

1− 2ζ2.
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When ζ = 0 the gain becomes infinite at ω = ωn: this is true res-
onance. As ζ increases from zero, the maximal gain of the system
occurs at smaller and smaller frequencies, till when ζ = 1/

√
2 the max-

imum occurs at ω = 0. For still larger values of ζ, the only maximum
in the gain curve occurs at ω = 0. When ω takes on a value at which
the gain is a local maximum we have practical resonance.

We also have the phase lag to consider: the periodic solution to (9)
is

xp = ga cos(ωt− φ).

Returning to (12), φ is given by the argument of the complex number

p(iω) = (ω2
n − ω2) + 2iζωnω .

This is the angle counterclockwise from the positive x axis of the ray
through the point (ω2

n − ω2, 2ζωnω). Since ζ and ω are nonnegative,
this point is always in the upper half plane, and 0 ≤ φ ≤ π. The phase
response graphs for ωn = 1 and several values of ζ are shown in the
second figure.

When ω = 0, there is no phase lag, and when ω is small, φ is approx-
imately 2ζω/ωn. φ = π/2 when ω = ωn, independent of the damping
rato ζ: when the signal is tuned to the natural frequency of the system,
the phase lag is π/2, which is to say that the time lag is one-quarter of
a period. As ω gets large, the phase lag tends towards π: strange as it
may seem, the sign of the system response tends to be opposite to the
sign of the signal.

Engineers typically have to deal with a very wide range of frequen-
cies. In order to accommodate this, and to show the behavior of the
frequency response more clearly, they tend to plot log10 |1/p(iω)| and
the argument of 1/p(iω) against log10 ω. These are the so-called Bode
plots.

The expression 1/p(iω), as a complex-valued function of ω, contains
complete information about the system response to periodic input sig-
nals. If you let ω run from −∞ to ∞ you get a curve in the complex
plane called the Nyquist plot. In cases that concern us we may re-
strict attention to the portion parametrized by ω > 0. For one thing,
the characteristic polynomial p(s) has real coefficients, which means

that p(−iω) = p(iω) = p(iω) and so 1/p(−iω) is the complex conju-
gate of 1/p(iω). The curve parametrized by ω < 0 is thus the reflection
of the curve parametrized by ω > 0 across the real axis.
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17. The Tacoma Narrows bridge

On July 1, 1940, a bridge spanning the Tacoma Narrows opened
to great celebration. It dramatically shortened the trip from Seattle
to the Kitsap Peninsula. It was an elegant suspension bridge, a mile
long (third longest in the US at the time) but just 39 feet across.
Through the summer and early fall, drivers noticed that it tended to
oscillate vertically, quite dramatically. It came to be known as “Gal-
loping Gertie.” “Motorists crossing the bridge sometimes experienced
“roller-coaster like” travel as they watched cars ahead almost disappear
vertically from sight, then reappear.” (Quoted from Billah-Scanlon.)

During the first fall storm, on November 7, 1940, with steady winds
above 40 mph, the bridge began to exhibit a different behavior. It
twisted, part of one edge rising while the opposing edge fell, and then
the reverse. At 10:00 AM the bridge was closed. The torsional os-
cillations continued to grow in amplitude, till, at just after 11:00, the
central span of the bridge collapsed and fell into the water below. One
car and a dog were lost.

Why did this collapse occur? Were the earlier oscillations a warning
sign? Many differential equations textbooks announce that this is an
example of resonance: the gusts of wind just happened to match the
natural frequency of the bridge.

The problem with this explanation is that the wind was not gusting—
certainly not at anything like the natural frequency of the bridge. This
explanation is worthless.

Structural engineers have studied this question in great detail. They
had determined already before the bridge collapsed that the vertical
oscillation was self-limiting, and not likely to lead to a problem. The
torsional oscillation was different. To model it, pick a portion of the
bridge far from the support towers. Let θ(t) denote its angle off of hor-
izontal, as a function of time. The torsional dynamics can be modeled
by a second order differential equation of the form

θ̈ + b0θ̇ + k0θ = F

where k0 is the square of the natural angular frequency of the torsional
oscillation and b0 is a damping term. The forcing term F depends upon
θ itself, and its derivatives, and on the wind velocity v. To a reasonable
approximation we can write

F = −k(v)θ − b(v)θ̇
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where k(v) and b(v) are functions of v which are determined by the
bridge characteristics.

This equation can be rewritten as

(1) θ̈ + (b0 + b(v))θ̇ + (k0 + k(v))θ = 0

In our situation, the wind velocity changes slowly relative to the time
scale of the oscillation, so this is a second order linear differential equa-
tion with constant coefficients in which the damping constant and the
spring constant depend upon the wind velocity.

It turns out that in the case of the Tacoma Narrows bridge the value
of k(v) is small relative to k0; the effect is to slightly alter the effective
natural frequency of torsional oscillation.

The function b(v) reflects mainly turbulence effects. The technical
term for this effect is flutter. The same mechanism makes flags flap
and snap in the wind. It turns out that the graph of b(v) has a shape
somewhat like the curve displayed in Figure 9.

Figure 9. b(v)

When |v| is small, b(v) > 0: the wind actually increases the damping
of the bridge; it becomes more stable. When |v| is somewhat larger,
b(v) = 0, and the wind has no damping effect. When |v| increases
still more, b(v) becomes negative and it starts to erode the damping
of the bridge, till, when it hits a certain critical value, it overwhelms
the intrinsic damping of the bridge. The result is anti-damping, a
negative effective damping constant. For the Tacoma Narrows Bridge,
the critical value of velocity was discovered, on that day in November,
1940, to be around 40 miles per hour.
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In more detail, solutions to (1) are linear combinations of functions
of the form ert where r is a root of the characteristic polynomial p(s) =
s2 + (b0 + b(v))s+ (k0 + k(v)):

r = −b0 + b(v)

2
±
√

(b0 + b(v))2

4
− (k0 + k(v))

As long as |b0 + b(v)| isn’t too big, the contents of the square root
will be negative: the roots have nonzero imaginary parts, indicating
oscillation. The real part of each root is a = −(b0 + b(v))/2, which is
positive if v is such that b(v) < −b0. If we write r = a± iω, the general
solution is

θ = Aeat cos(ωt− φ)

Its peaks grow in magnitude, exponentially.

This spells disaster. There are compensating influences which slow
down the rate of growth of the maxima, but in the end the system
will—and did—break down.

Reference:

K. Y. Billah and R. H. Scanlan, Resonance, Tacoma Narrows bridge
failure, and undergraduate physics textbooks, Am. J. Phys. 59 (1991)
118–124.
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18. Linearization: the phugoid equation as example

“Linearization” is one of the most important and widely used math-
ematical terms in applications to Science and Engineering. In the con-
text of Differential Equations, the word has two somewhat different
meanings.

On the one hand, it may refer to the procedure of analyzing solutions
of a nonlinear differential equation near a critical point by studying an
approximating linear equation. This is linearizing an equation.

On the other hand, it may refer to the process of systematically
dropping negligibly small terms in the mathematical expression of the
model itself, under the assumption that one is near an equilibrium. The
result is that you obtain a linear differential equation directly, without
passing through a nonlinear differential equation. This is linearizing a
model.

A virtue of the second process is that it avoids the need to work out
the full nonlinear equation. This may be a challenging problem, often
requiring clever changes of coordinates; while, in contrast, it is always
quite straightforward to write down the linearization near equilibrium,
by using a few general ideas. We will describe some of these ideas in
this section.

Most of the time, the linearization contains all the information about
the behavior of the system near equilibrium, and we have a pretty
complete understanding of how linear systems behave, at least in two
dimensions. There aren’t too many behaviors possible. The ques-
tions to ask are: is the system stable or unstable? If it’s stable, is
it underdamped (so the solution spirals towards the critical point) or
overdamped (so it decays exponentially without oscillation)? If it’s un-
derdamped, what is the period of oscillation? In either case, what is
the damping ratio?

One textbook example of this process is the analysis of the linear
pendulum. In this section we will describe a slightly more complicated
example, the “phugoid equation” of airfoil flight.

18.1. The airplane system near equilibrium. If you have ever
flown a light aircraft, you know about “dolphining” or “phugoid os-
cillation.” This is precisely the return of the aircraft to the equilibrium
state of steady horizontal flight. We’ll analyze this effect by lineariz-
ing the model near to this equilibrium. To repeat, the questions to
ask are: Is this equilibrium stable or unstable? (Experience suggests
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it’s stable!) Is it overdamped or underdamped? What is the damping
ratio? If it’s underdamped, what is the period (or, more properly, the
quasiperiod)?

There are four forces at work: thrust F , lift L, drag D, and weight
W = mg. At equilibrium the forces cancel. Here’s a diagram. In it the
airplane is aligned with the thrust vector, since the engines provide a
force pointing parallel with the body of the airplane.

Thrust

Weight

Drag

Lift

Figure 10. Forces on an airfoil

I’ll make the following simplifying assumptions: (1) the air is still
relative to the ground (or, more generally, the ambient air is moving
uniformly and we use a coordinate frame moving with the air); (2) the
weight and the thrust are both constant.

Lift and the drag are more complicated than weight and thrust.
They are components of a “frictional” force exerted on the plane by
the surrounding air. The drag is, by definition, the component of that
force in the direction of the thrust (directed backwards), and the lift
is the perpendicular component, directed towards the “up” side of the
airfoil.

When we call this force “frictional,” what we mean is that it depends
upon the velocity of the plane (through the air) and on nothing else.

Friction is a complex process, and it shows up differently in different
regimes. Let’s first think about friction of a particle moving along the x
axis. It is then a force φ(v) dependent upon v = ẋ. It always takes the
value zero when the velocity is zero and is directed against the direction
of motion. The tangent line approximation then lets us approximate
φ(v) by a multiple of v when |v| is small. This is “linear damping,” and
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it plays a big role in our study of second order LTI systems. When the
velocity is relatively large, consideration of the nonlinear dependence
of friction on velocity becomes unavoidable. Often, for v in a range of
values the frictional force is reasonably well approximated by a power
law:

(1) φ(v) =

{
−c|v|p for v ≥ 0
c|v|p for v < 0

where c > 0 is a constant. This rather complicated looking expression
guarantees that the force acts against the direction of motion. The
magnitude is |φ(v)| = c|v|p.

Often the power involved is p = 2, so φ(v) = −cv2 when v > 0.
(Since squares are automatically positive we can drop the absolute
values and the division into cases in (1).) To analyze motion near a
given velocity v0, the tangent line approximation indicates that we need
only study the rate of change of φ(v) near the velocity v0, and when
p = 2 and v0 > 0,

(2) φ′(v0) = −2cv0 =
2φ(v0)

v0

.

We rewrote the derivative in terms of φ(v0) because doing so eliminates
the constant c.

Now let’s go back to the airfoil. Our last assumption is that near
equilibrium velocity v0, drag and lift depend quadratically on speed.
Stated in terms of (2) we have our next assumption: (3) the drag D(v)
and the lift L(v) are quadratic, so by (2) they satisfy

D′(v0) =
2D(v0)

v0

, L′(v0) =
2L(v0)

v0

.

There is an equilibrium velocity at which the forces are in balance:
cruising velocity v0. Our final assumption is that at cruising velocity
the pitch of the airplane is small: so (4) the horizontal component of
lift is small. The effect is that to a good approximation, lift balances
weight and thrust balances drag:

D(v0) = F , L(v0) = mg .

This lets us rewrite the equations for the derivatives can be rewritten

(3) D′(v0) =
2F

v0

, L′(v0) =
2mg

v0

.

This is all we need to know about the dynamics of airfoil flight.
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There are several steps in our analysis of this situation from this
point. A preliminary observation is that in the phugoid situation the
airplane has no contact with the ground, so everything is invariant
under space translation. After all, the situation is the same for
all altitudes (within a range over which atmospheric conditions and
gravity are reasonably constant) and for all geographical locations. The
implication is that Newton’s Law can be written entirely in terms of
velocity and its derivative, acceleration. Newton’s Law is a second
order equation for position, but if the forces involved don’t depend
upon position it can be rewritten as a first order equation for velocity.
This reasoning is known as reduction of order.

18.2. Deriving the linearized equation of motion. The funda-
mental decision of linearization is this:

Study the situation near the equilibrium we care about, and
systematically use the tangent line approximation at that equi-
librium to simplify expressions.

The process of replacing a function by its tangent line approximation
is referred to as “working to first order.”

Let’s see how this principle works out in the phugoid situation.

One of the first steps in any mathematical analysis is to identify and
give symbols for relevant parameters of the system, and perhaps to set
up a well-adapted coordinate system. Here, we are certainly interested
in the velocity. We have already introduced v0 for the equilibrium
velocity, which by assumption (4) is horizontal. We write the actual
velocity as equilibrium plus a correction term: Write

w for the vertical component of velocity, and

v0 + u for the horizontal component,

and suppose the axes are arranged so that the plane is moving in the
direction of the positive x axis. We are assuming that the plane is not
too far from equilibrium, so we are assuming that w and u are both
small.

We will want to approximate the actual speed in terms of v0, u,
and w. To do this, and for other reasons too, we will use a geometric
principle which arises very often in linearization of physical systems.

If a vector makes a small angle with the positive x axis, then to
first order its x component is its length and its y component is
its length times the slope.
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x ~ c

c
(x,y)

y ~ mc

This is geometrically obvious, and equivalent to the facts that cos′(0) =
0 and sin′(0) = 1.

If we take x = v0 + u, y = w, and c = v, the estimate x ∼ c says
that the speed is approximately v0 +u; the normal component w makes
only a “second order” contribution and we will ignore it.

Now we use the linearization principle again: we plug this estimate
of the speed into the tangent line approximation for D(v) and L(v) and
use (3) and the values D(v0) = F and L(v0) = mg to find

D ' F +
2F

v0

u , L ' mg +
2mg

v0

u .

Subscript L, W , T , and D by h and v to denote their horizontal and
vertical components. Writing down similar triangles, we find (to first
order, always—ignoring terms like u2, uw, and w2):

Lv ' L ' mg +
2mg

v0

u , Lh '
w

v0

L ' w

v0

mg

Wv = mg , Wh = 0 , Tv =
w

v0

F , Th ' F

Dv '
w

v0

D ' w

v0

F , Dh ' D ' F +
2F

v0

u.

In words, to first order the vertical components of thrust and drag
still cancel and the vertical component of the lift in excess of the weight
is given by (2mg/v0)u, so, by Newton’s law,

(4) mẇ =
2mg

v0

u.

Also, to first order, the horizontal component of the excess of drag
over thrust is (2F/v0)u, and the horizontal component of the lift is
−mg(w/v0): so

(5) mu̇ = −2F

v0

u− mg

v0

w.
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We can package these findings in matrix terms:

(6)
d

dt

[
u
w

]
=

[
−2F/mv0 −g/v0

2g/v0 0

] [
u
w

]
.

and we could go on to use the methods of linear systems to solve it.
Instead, though, we will solve the equations (4), (5) by elimination.
Differentiating the equation for ẇ and substituting the value for u̇
from the other equation gives the homogeneous second order constant
coefficient linear differential equation

(7) ẅ +
2F

mv0

ẇ +
2g2

v2
0

w = 0

18.3. Implications. From this (or from the system (6)) we can read
off the essential characteristics of motion near equilibrium. We have in
(7) a second order homogeneous linear ODE with constant coefficients;
it is of the form

ẅ + 2ζωnẇ + ω2
nw = 0,

where ωn is the natural angular frequency and ζ is the damping ratio
(for which see Section 15). Comparing coefficients,

ωn =

√
2 g

v0

, ζ =
F√
2mg

.

We have learned the interesting fact that the period

P =
2π

ωn
=

√
2 π

g
v0

of phugoid oscillation depends only on the equilibrium velocity v0. In
units of meters and seconds, P is about 0.45 v0. The nominal equilib-
rium speeds v0 for a Boeing 747 and an F15 are 260 m/sec and 838
m/sec, respectively. The corresponding phugoid periods are about 118
sec and 380 sec.

We have also discovered that the phugoid damping ratio depends only
on the “thrust/weight ratio,” a standard tabulated index for aircraft.
Both ζ and F/mg are dimensionless ratios, and ζ is about .707(F/mg),
independent of units. F/mg is about 0.27 for a Boeing 747, and about
0.67 for an F15.

The system is underdamped as long as ζ < 1, i.e. (F/mg) <
√

2.
Even an F15 doesn’t come close to having a thrust/weight approaching
1.414.
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To see a little more detail about these solutions, let’s begin by sup-
posing that the damping ratio is negligible. The equation (7) is then
simply a harmonic oscillator with angular frequency ωn, with general
solution of the form

w = w0 cos(ωnt− φ) .

Equation (4) then shows that u = (v0/2g)ẇ = −(v0/2g)ωnw0 sin(ωnt−
φ). But ωn =

√
2g/v0, so this is

u = −(w0/
√

2) sin(ωnt− φ) .

That is: The vertical amplitude is
√

2 times as great as the horizontal
amplitude.

Integrate once more to get the motion in space:

x = x0 + v0t+ a cos(ωnt− φ)

where a = v0w0/g—as a check, note that a does have units of length!—
and

y = y0 +
√

2 a sin(ωnt− φ) ,

for appropriate constants of integration x0 (which is the value of x at
t = 0) and y0 (which is the average altitude). Relative to the frame of
equilibrium motion, the plane executes an ellipse whose vertical axis
is
√

2 times its horizontal axis, moving counterclockwise. (Remember,
the plane is moving to the right.)

Relative to the frame of the ambient air, the plane follows a roughly
sinusoidal path. The horizontal deviation u from equilibrium velocity
is small and would be hard to detect in the flightpath.

Reintroducing the damping, the plane spirals back to equilibrium.

We can paraphrase the behavior in physics terms like this: Something
jars the airplane off of equilibrium; suppose it is hit by a downdraft and
the vertical component of its velocity, w, acquires a negative value. This
puts us on the leftmost point on the loop. The result is a decrease in
altitude, and the loss in potential energy translates to a gain in kinetic
energy. The plane speeds up, increasing the lift, which counteracts
the negative w. We are now at the bottom of the loop. The excess
velocity continues to produce excess lift, which raises the plane past
equilibrium (at the rightmost point on the loop). The plane now has
w > 0, and rises above its original altitude. Kinetic energy is converted
to potential energy, the plane slows down, passes through the top of
the loop; the lowered speed results in less lift, and the plane returns to
where it was just after the downdraft hit (in the frame of equilibrium
motion).
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A typical severe downdraft has speed on the order of 15 m/sec, so we
might take c = 10 m/sec. With the 747 flying at 260 m/sec, this results
in a vertical amplitude of 265 meters; the F15 flying at 838 m/sec gives
a vertical amplitude of 855 meters, which could pose a problem if you
are near the ground!

Historical note: The term phugoid was coined by F. W. Lanchester in
his 1908 book Aerodonetics to refer to the equations of airfoil flight. He
based this neologism on the Greek φυγή, which does mean flight, but
in the sense of the English word fugitive, not in the sense of movement
through the air. Evidently Greek was not his strong suit.

Question: Assumption (3) is the most suspect part of this analysis.
Suppose instead of quadratic dependence we assume some other power
law, for lift and drag. What is the analogue of (3), and how does this
alter our analysis?
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19. The Wronskian

We know that a general second order homogeneous linear ODE,

(1) y′′ + p(x)y′ + q(x)y = 0,

has a pair of independent solutions; and that if y1, y2 is any pair of
independent solutions then the general solution is

(2) y = c1y1 + c2y2.

Suppose we wish to solve the initial value problem with

y(x0) = a , y′(x0) = b.

To solve for the constants c1 and c2 in (2), we get one equation by
substituting x = x0 into this expression. We get another equation by
first differentiating (2) and then setting x = x0 and using the value
y′(x0) = b. We end up with the system of linear equations

(3) y1(x0)c1 + y2(x0)c2 = a , y′1(x0)c1 + y′2(x0)c2 = b

When you solve for the coefficients of these equations, you get (“Cramer’s
rule”)

c1 =
y′2(x0)a− y2(x0)b

W (x0)
, c2 =

−y′1(x0)a+ y1(x0)b

W (x0)

where W (x0) is the value at x0 of the Wronskian function

(4) W (x) = y1y
′
2 − y2y

′
1 = det

[
y1 y2

y′1 y′2

]
determined by the pair of solutions y1, y2.

You generally wouldn’t want to use these formulas for the coefficients;
it’s better to compute them directly from (3) in the particular case
you are looking at. But this calculation does draw attention to the
Wronskian function. We can find a linear combination of y1 and y2

which solves the IVP for any given choice of initial conditions exactly
when W (x0) 6= 0.

On the other hand it’s a theorem that one can solve the initial value
problem at any x value using a linear combination of any linearly inde-
pendent pair of solutions. A little thought then leads to the following
conclusion:

Theorem. Let y1, y2 be solutions of (1) and let W be the Wronskian
formed from y1, y2. Either W is the zero function and one solution is a
multiple of the other, or the Wronskian is nowhere zero, neither solution
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is a multiple of the other, and any solution is a linear combination of
y1, y2.

For example, if we compute the Wronskian of the pair of solutions
{cosx, sinx} of y′′ + y = 0, we get the constant function 1, while
the Wronskian of {cosx, 2 cosx} is the constant function 0. One can
show (as most ODE textbooks do) that if W is the Wronskian of some
linearly independent pair of solutions, then the Wronskian of any pair
of solutions is a constant multiple of W . (That multiple is zero if the
new pair happens to be linearly dependent.)

Many references, including Edwards and Penney, encourage the im-
pression that computing the Wronskian of a pair of functions is a good
way to check whether or not they are linearly independent. This is
silly. Two functions are linearly dependent if one is a multiple of the
other; otherwise they are linearly independent. This is always easy to
see by inspection.

Nevertheless the Wronskian can teach us important things. To illus-
trate one, let’s consider an example of a second order linear homoge-
neous system with nonconstant coefficient: the Airy equation

(5) y′′ + xy = 0.

At least for x > 0, this is like the harmonic oscillator y′′ + ω2
ny = 0,

except that the natural angular frequency ωn keeps increasing with x:
the x sits in the position where we expect to see ω2

n, so near to a given
value of x we expect solutions to behave like cos(

√
xx) and sin(

√
xx).

I emphasize that these functions are not solutions to (5), but they give
us a hint of what to expect. In fact the normalized pair (see Section 9)
of solutions to (5), the “Airy cosine and sine functions,” have graphs
as illustrated in Figure 11

One of the features this picture has in common with the graphs of
cosine and sine is the following fact, which we state as a theorem.

Theorem. Let {y1, y2} be any linearly independent pair of solutions
of the second order linear ODE (1), and suppose that x0 and x1 are
numbers such that x0 6= x1 and y1(x0) = 0 = y1(x1). Then y2 becomes
zero somewhere between x0 and x1.

This fact, that zeros of independent solutions interleave, is thus a
completely general feature of second order linear equations. It doesn’t
depend upon the solutions being normalized, and it doesn’t depend
upon the coefficients being constant.
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Figure 11. Airy cosine and sine

You can see why this must be true using the Wronskian. We might
as well assume that y1 is not zero anywhere between x0 and x1. Since
the two solutions are independent the associated Wronskian is nowhere
zero, and thus has the same sign everywhere. Suppose first that the
sign is positive. Then y1y

′
2 > y′1y2 everywhere. At x0 this says that

y′1(x0) and y2(x0) have opposite signs, since y1(x0) = 0. Similarly,
y′1(x1) and y2(x1) have opposite signs. But y′1(x0) and y′1(x1) must
have opposite signs as well, since x0 and x1 are neighboring zeros of y1.
(These derivatives can’t be zero, since if they were both terms in the
definition of the Wronskian would be zero, but W (x0) and W (x1) are
nonzero.) It follows that y2(x0) and y2(x1) have opposite signs, and so
y2 must vanish somewhere in between. The argument is very similar if
the sign of the Wronskian is negative.
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20. More on Fourier series

The Mathlet Fourier Coefficients displays many of the effects
described in this section.

20.1. Symmetry and Fourier series. A function g(t) is even if
g(t) = g(−t), and odd if g(t) = −g(−t).
Fact: Any function f(t) is a sum of an even function and an odd
function, and this can be done in only one way.

The even part of f(t) is

f+(t) =
f(t) + f(−t)

2
.

and the odd part is

f−(t) =
f(t)− f(−t)

2
.

It’s easy to check that f+(t) is even, f−(t) is odd, and that

f(t) = f+(t) + f−(t).

We can apply this to a periodic function. We know that any periodic
function f(t), with period 2π, say, has a Fourier expansion of the form

a0

2
+
∞∑
n=1

(an cos(nt) + bn sin(nt)).

If f(t) is even then all the bn’s vanish and the Fourier series is simply

a0

2
+
∞∑
n=1

an cos(nt).

If f(t) is odd then all the an’s vanish and the Fourier series is

∞∑
n=1

bn sin(nt).

Most of the time one is faced with a function which is either even or
odd. If f(t) is neither even nor odd, we can still compute its Fourier
series by computing the Fourier series for f+(t) and f−(t) separately
and adding the results.
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20.2. Symmetry about other points. More general symmetries are
often present and useful. A function may exhibit symmetry about
any fixed value of t, say t = a. We say that f(t) is even about a if
f(a + t) = f(a− t) for all t. It is odd about a if f(a + t) = −f(a− t).
f(t) is even about a if it behaves the same as you move away from a
whether to the left or the right; f(t) is odd about a if its values to the
right of a are the negatives of its values to the left. The usual notions
of even and odd refer to a = 0.

Suppose f(t) is periodic of period 2π, and is even (about 0). f(t)
is then entirely determined by its values for t between 0 and π. When
we focus attention on this range of values, f(t) may have some further
symmetry with respect to the midpoint π/2: it may be even about π/2
or odd about π/2, or it may be neither. For example, cos(nt) is even
about π/2 exactly when n is even, and odd about π/2 exactly when
n is odd. It follows that if f(t) is even and even about π/2 then its
Fourier series involves only even cosines:

f(t) =
a0

2
+
∑
n even

an cos(nt).

If f(t) is even about 0 but odd about π/2 then its Fourier series involves
only odd cosines:

f(t) =
∑
n odd

an cos(nt).

Similarly, the odd function sin(nt) is even about π/2 exactly when n
is odd, and odd about π/2 exactly when n is even. Thus if f(t) is odd
about 0 but even about π/2, its Fourier series involves only odd sines:

f(t) =
∑
n odd

bn sin(nt).

If it is odd about both 0 and π/2, its Fourier series involves only even
sines:

f(t) =
∑
n even

an sin(nt).

20.3. The Gibbs effect. The Fourier series for the odd function of
period 2π with

F (x) =
π − x

2
for 0 < x < π

is

F (x) =
∞∑
k=1

sin(kx)

k
.
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In Figure 12 we show the partial sum

Fn(x) =
n∑
k=1

sin(kx)

k

with n = 20 and in Figure 13 we show it with n = 100. The horizontal
lines of height ±π/2 are also drawn.

8 6 4 2 0 2 4 6 8
2

1.5

1

0.5

0

0.5

1

1.5

2

Figure 12. Fourier sum through sin(20x)
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Figure 13. Fourier sum through sin(100x)

Notice the “overshoot” near the discontinuities. If you graph Fn(t)
for n = 1000 or n = 106, you will get a similar picture. The spike near
x = 0 will move in closer to x = 0, but won’t get any shorter. This is
the “Gibbs phenomenon.” We have F (0+) = π/2, but it seems that
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for any n the partial sum Fn overshoots this value by a factor of 18%
or so.

A little experimentation with Matlab shows that the spike in Fn(x)
occurs at around x = x0/n for some value of x0 independent of n. It
turns out that we can compute the limiting value of Fn(x0/n) for any
x0:

Claim. For any x0,

lim
n→∞

Fn

(x0

n

)
=

∫ x0

0

sin t

t
dt.

To see this, rewrite the sum as

Fn

(x0

n

)
=

n∑
k=1

sin(kx0/n)

kx0/n
· x0

n
.

Using the notation

f(t) =
sin t

t
this is

Fn

(x0

n

)
=

n∑
k=1

f

(
kx0

n

)
· x0

n

You will recognize the right hand side as a Riemann sum for the func-
tion f(t), between t = 0 and t = x0. In the limit we get the integral,
and this proves the claim.

To find the largest overshoot, we should look for the maximal value

of

∫ x0

0

sin t

t
dt. Figure 14 shows a graph of

sin t

t
:

The integral hits a maximum when x0 = π, and the later humps are
smaller so it never regains this size again. We now know that

lim
n→∞

Fn

(π
n

)
=

∫ π

0

sin t

t
dt.

The actual value of this definite integral can be estimated in various
ways. For example, the power series for sin t is

sin t = t− t3

3!
+
t5

5!
− · · · .

Dividing by t and integrating term by term,∫ x0

0

sin t

t
dt = x0 −

x3
0

3 · 3!
+

x5
0

5 · 5!
− · · · .
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sin t
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Take x0 = π. Pull out a factor of π/2, to compare with F (0+) = π/2:∫ π

0

sin t

t
dt =

π

2
·G,

where

G = 2

(
1− π2

3 · 3!
+

π4

5 · 5!
− · · ·

)
.

The sum converges quickly and gives

G = 1.17897974447216727 . . . .

We have found, on the graphs of the Fourier partial sums, a sequence
of points which converges to the observed overshoot:(π

n
, Fn

(π
n

))
→
(

0, (1.1789 . . .) · π
2

)
,

that is, about 18% too large. As a proportion of the gap between
F (0−) = −π/2 and F (0+) = +π/2, this is (G − 1)/2 = 0.0894 . . . or
about 9%. It can be shown that this is the highest overshoot.

The Gibbs overshoot occurs at every discontinuity of a piecewise
continuous periodic function F (x). Suppose that F (x) is discontinuous
at x = a. The overshoot comes to the same 9% of the gap, F (a+) −
F (a−), in every case.

Compare this effect to the basic convergence theorem for Fourier
series:
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Theorem. If F (x) is piecewise continuous and periodic, then for any
fixed number a the Fourier series evaluated at x = a converges to

F (a) if F (x) is continuous at a, and to the average
F (a+) + F (a−)

2
in

general.

The Gibbs effect does not conflict with this, because the point at
which the overshoot occurs moves (it gets closer to the point of discon-
tinuity) as n increases.

The Gibbs effect was first noticed by a British mathematician named
Wilbraham in 1848, but then forgotten about till it was observed in the
output of a computational machine built by the physicist A. A. Michel-
son (known mainly for the Michelson-Morey experiment, which proved
that light moved at the same speed in every direction, despite the mo-
tion of the earth through the ether). Michelson wrote to J. Willard
Gibbs, the best American physical mathematician of his age and Pro-
fessor of Mathematics at Yale, who quickly wrote a paper explaining
the effect.

20.4. Fourier distance. One can usefully regard the Fourier coeffi-
cients of a function f(t) as the “coordinates” of f(t) with respect to a
certain coordinate system.

Imagine a vector v in 3-space. We can compute its x coordinate
in the following way: move along the x axis till you get to the point
closest to v. The value of x you find yourself at is the x-coordinate of
the vector v.

Similarly, move about in the (x, y) plane till you get to the point
which is closest to v. This point is the orthogonal projection of v into
the (x, y) plane, and its coordinates are the x and y coordinates of v.

Just so, one way to think of the component an cos(nt) in the Fourier
series for f(t) is this: it is the multiple of cos(nt) which is “closest” to
f(t).

The “distance” between functions intended here is hinted at by the
Pythagorean theorem. To find the distance between two points in
Euclidean space, we take the square root of the sum of squares of
differences of the coordinates. When we are dealing with functions
(say on the interval between −π and π), the analogue is

(1) dist(f(t), g(t)) =

(
1

2π

∫ π

−π
(f(t)− g(t))2 dt

)1/2

.
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This number is the root mean square distance between f(t) and
g(t). The fraction 1/2π is inserted so that dist(1, 0) = 1 (rather than√

2π) and the calculations on p. 560 of Edwards and Penney show that
for n > 0

dist(cos(nt), 0) =
1√
2
, dist(sin(nt), 0) =

1√
2
.

The root mean square distance between f(t) and the zero function is
called the norm of f(t), and is a kind of mean amplitude. The norm
of the periodic system response is recorded as “RMS” in the Mathlets
Harmonic Frequency Response and Harmonic Frequency Response

II.

One may then try to approximate a function f(t) by a linear combi-
nation of cos(nt)’s and sin(nt)’s, by adjusting the coefficients so as to
minimize the “distance” from the finite Fourier sum and the function
f(t). The Fourier coefficients give the best possible multiples.

Here is an amazing fact. Choose coefficients an and bn randomly to
produce a function g(t). Then vary one of them, say a7, and watch
the distance between f(t) and this varying function g(t). This distance
achieves a minimum precisely when a7 equals the coefficient of cos(7t)
in the Fourier series for f(t). This effect is entirely independent of the
other coefficients you have used. You can fix up one at a time, ignoring
all the others till later. You can adjust the coefficients to progressively
minimize the distance to f(t) in any order, and you will never have to
go back and fix up your earlier work. It turns out that this is a reflection
of the “orthogonality” of the cos(nt)’s and sin(nt)’s, expressed in the
fact, presented on p. 560 of Edwards and Penney, that the integrals of
products of distinct sines and cosines are always zero.

20.5. Harmonic response. One of the main uses of Fourier series is
to express periodic system responses to general periodic signals. For
example, if we drive an undamped spring with a plunger at the end of
the spring, the equation is given by

mẍ+ kx = kf(t)

where f(t) is the position of the plunger, and the x coordinate is ar-
ranged so that x = 0 when the spring is relaxed and f(t) = 0. The

natural frequency of the spring/mass system is ω =
√
k/m, and divid-

ing the equation through by m gives

(2) ẍ+ ω2x = ω2f(t) .
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This equation is illustrated in the Mathlet Harmonic Frequency

Response.

An example is given by taking for f(t) the squarewave sq(t), the
function which is periodic of period 2π and such that

sq(t) =

{
1 for 0 < t < π
−1 for −π < t < 0

Its Fourier series is

(3) sq(t) =
4

π

(
sin(t) +

sin(3t)

3
+

sin(5t)

5
+ · · ·

)
.

The periodic system response to the term in the Fourier series for
ω2sq(t)

4ω2

πn
sin(nt)

(where n is an odd integer) is, by the Exponential Reponse Formula
(10.10),

4ω2

πn
· sin(nt)

ω2 − n2
.

Thus the periodic system response to f(t) = sq(t) is given by the
Fourier series

(4) xp(t) =
4ω2

π

(
sin t

ω2 − 1
+

sin(3t)

3(ω2 − 9)
+ · · ·

)
as long as ω isn’t one of the frequencies of the Fourier modes of the
signal, i.e. the odd integers.

This expression explains important general features of the periodic
solution. When the natural frequency of the system, ω, is near to one of
the frequencies present in the Fourier series for the signal (odd integers
in this example), the periodic system response xp is dominated by the
near resonant response to that mode in the signal. When ω is slightly
larger than (2k + 1) the system response is in phase; as ω decreases
though the value (2k + 1), the system passes through resonance with
the signal (and when ω = 2k + 1 there is no periodic solution), and
comes out on the other side in anti-phase.

In this example, and many others, however, the same solution can
be obtained quite easily using standard methods of linear ODEs, using
some simple features of the solution. These features can be seen directly
from the equation, but from our present perspective it’s easier to see
them from (4). They are:

xp(0) = 0 , xp(π) = 0 .
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I claim that as long as ω isn’t an integer, (2) has just one solution with
these properties. That solution is given as a Fourier series by (4), but
we can write it out differently using our older methods.

In the interval [0, π], the equation is simply

ẍ+ ω2x = ω2 .

We know very well how to solve this! A particular solution is given
by a constant, namely 1, and the general solution of the homogeneous
equation is given by a cos(ωt) + b sin(ωt). So

xp = 1 + a cos(ωt) + b sin(ωt)

for some constants a, b.

Substituting t = 0 gives a = −1, so

(5) xp = 1− cos(ωt) + b sin(ωt) , 0 < t < π.

Substituting t = π gives the value for b, depending upon ω:

b =
cos(πω)− 1

sin(πω)
.

In the interval [−π, 0], the complete signal is −ω2, so exactly the
same calculation gives the negative of the function just written down.
Therefore the solution xp is the odd function of period 2π extending

(6) xp = 1− cos(ωt) +

(
cos(πω)− 1

sin(πω)

)
sin(ωt) , 0 < t < π .

The Fourier series of this function is given by (4), but I for one would
never have guessed that the expression (4) summed up to such a simple
function.

Let’s finish up our analysis of this example by thinking about the sit-
uation in which the natural frequency ω equals the angular frequency of
one of the potential Fourier components of the signal—i.e., an integer,
in this case.

In case ω is an even integer, the expression for b is indeterminate
since both numerator and denominator are zero. However, in this case
the function xp = 1 − cos(ωt) already satisfies xp(π) = 0, so we can
(and must!) take b = 0. Thus xp is the odd extension of 1 − cos(ωt).
In this case, however, notice that this is not the only periodic solution;
indeed, in this case all solutions are periodic, since the general solution
is (writing ω = 2k)

xp + c1 cos(2kt) + c2 sin(2kt)
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and all these are periodic of period 2π.

In case ω is an odd integer, ω = 2k + 1, there are no periodic solu-
tions; the system is in resonance with the Fourier mode sin((2k + 1)t)
present in the signal. We can’t solve for the constant b; the zero in
its denominator is not canceled by a zero in its numerator. It is not
hard to write down a particular solution in this case too, using the
Resonance Exponential Response Formula, Section 14.

We have used the undamped harmonic oscillator for this example,
but the same methods work in the presence of damping. In that case it
is much easier to use the complex form of the Fourier series (Section 20.6
below) since the denominator in the Exponential Response Formula is
no longer real.

20.6. Complex Fourier series. With all the sines and cosines in the
Fourier series, there must be a complex exponential expression for it.
There is, and it looks like this:

(7) f(t) =
∞∑

n=−∞

cne
int

The power and convenience we have come to appreciate in the com-
plex exponential is at work here too, making computations much eas-
ier. Complex Fourier series are illustrated in the Mathlet Fourier

Coefficients: Complex with Sound.

To obtain an integral expression for one of these coefficients, say cm,
the first step is to multiply the expression (7) by e−imt and integrate:

(8)

∫ π

−π
f(t)e−imtdt =

∞∑
n=−∞

cn

∫ π

−π
ei(n−m)tdt

Now ∫ π

−π
ei(n−m)tdt =


2π if m = n

ei(n−m)t

i(n−m)

∣∣∣∣π
−π

= 0 if m 6= n,
.

The top case holds because then the integrand is the constant function
1. The second case follows from ei(n−m)π = (−1)n−m = ei(n−m)(−π).
Thus only one term in (8) is nonzero, and we conclude that

(9) cm =
1

2π

∫ π

−π
f(t)e−imt dt
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This works perfectly well even if f(t) is complex valued. When f(t)

is in fact real valued, so that f(t) = f(t), (9) implies first that c0 is
real; it’s the average value of f(t), that is, in the older notation for
Fourier coefficients, c0 = a0/2. Also, c−n = cn because

c−n =
1

2π

∫ π

−π
f(t)e−i(−n)tdt =

1

2π

∫ π

−π
f(t)eintdt = cn.

Since also e−int = eint, the nth and (−n)th terms in the sum (7) are
conjugate to each other. We will group them together. The numbers
will come out nicely if we choose to write

(10) cn = (an − ibn)/2

with an and bn real. Then c−n = (an + ibn)/2, and we compute that

cne
int + c−ne

−int = 2Re (cne
int) = an cos(nt) + bn sin(nt).

(I told you the numbers would work out well, didn’t I?) The series (7)
then becomes the usual series

f(t) =
a0

2
+
∞∑
n=1

(an cos(nt) + bn sin(nt)) .

Moreover, taking real and imaginary parts of the integral (9) (and
continuing to assume f(t) is real valued) we get the usual formulas

am =
1

π

∫ π

−π
f(t) cos(nt)dt, bm =

1

π

∫ π

−π
f(t) sin(nt)dt.
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21. Steps, impulses, and generalized functions

In calculus you learn how to model varying quantities using func-
tions. Functions have their limitations, though. By themselves, they
are not convenient for modeling some important processes and events,
especially those involving sudden changes. In this section we explain
how the function concept can be extended to model such processes.

21.1. Turning on a light: u(t). When we flick the switch, the light
goes on. It seems instantaneous (if it’s an old fashioned incandescent
bulb, at least). It might be modeled by the Heaviside step function

u(t) =

{
0 for t < 0
1 for t > 0

For t < 0, it’s off; for t > 0, it’s on.

But of course nothing in life is really instantaneous. The current
starts to flow, the filament starts to glow. A high-speed camera would
show this. It’s a matter of time-scale: the time-scale of the lighting-up
process is much shorter than the time-scale that our eye can detect.
It’s a good idea to think of the step-function as a nice differentiable
function, but one which switches value from 0 to 1 over a time-scale
much smaller than the one we are working with.

A consequence of this perspective is that you should not assign any
value for u(0). Depending on exactly what happens when the light
goes on, it could be anything at t = 0. It just doesn’t matter. We will
leave the value of u(0) undefined. Nothing will depend upon it.

21.2. Home run: δ(t). We all know the satisfying “crack” of bat
against ball. It looks instantaneous: the ball bounces off the bat and
heads into the bleachers. But of course it’s not instantaneous. The
ball remains in contact with the bat for about one millisecond, during
which it deforms quite dramatically and experiences very high (but not
infinite!) acceleration. If the ball arrives at 40 m/sec and departs in
the opposite direction at the same speed, the velocity changes by 80
m/sec in the course of one millisecond. If this happens at t = 0, the
velocity can be modeled using the step function as

v(t) = 40(2u(t)− 1) .

The behavior in the millisecond around t = 0 may be very interesting,
but it’s not relevant to modeling what we see without slow motion
cameras.
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The word “impulse” is used in physics for a change in momentum,
usually abrupt. A baseball weighs about .143 kg, so the interaction
with the bat provides an impulse of .143× 80 kg-m/sec to the ball.

Over that millisecond, the ball experiences very high acceleration.
The acceleration grows from zero (before the impact) to a very high
value and then tapers off again to zero (when the ball leaves the bat).
Without much more investigation we don’t know very much about the
shape of the acceleration graph. But the details don’t matter to us;
all that matters is that the area under that graph, the integral, is the
change in velocity, i.e. 80 (measured in m/sec).

We modeled the velocity using the Heaviside step function. Its de-
rivative, the acceleration, can be modeled too, in terms of the Dirac
delta function δ(t). The delta function can be defined as the deriva-
tive of the step function,

(1) δ(t) =
du

dt
.

We are thinking of u(t) as a smooth function which transitions from
value 0 to value 1 very quickly. So its derivative will have value zero
except very near to t = 0, but in a small interval near zero δ(t) grows
to very large values and then falls again. It may even become negative
somewhere in that small interval; all that matters to us is that its
integral equals 1.

The derivative of v(t) = 40(2u(t) − 1) is a(t) = 40(2δ(t)) = 80δ(t);
this represents the acceleration experienced by the ball on contact with
the bat.

21.3. Bank deposits: x(a+), x(a−). The step function and the delta
function help us model a bank account (2.1). The reality is that I don’t
get paid continuously; I get paid a lump sum (say two kilodollars, for
the sake of argument) at the start of every month, starting, say, at
t = 0.

Suppose I have ten kilodollars in the bank just before t = 0. What is
my balance x(t) at t = 0? It seems to have two values, differing by two
kilodollars. Or, better, its value at exactly t = 0 is undefined; what
we know is the value just before t = 0 (namely, 10) and the value just
after t = 0 (namely, 12).

There is notation to handle this. For any time a, we write x(a−) for
the balance at t = 0 as estimated from knowledge of the balance just
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before t = a; mathematically,

(2) x(a−) = lim
t↑a

x(t).

Similarly, x(a+) is the balance at t = a from the perspective of later
times; mathematically,

(3) x(a+) = lim
t↓a

x(t).

The actual value we assign as x(a) is unimportant and can be left
undeclared. In my bank account, x(0−) = 10, x(0+) = 12.

21.4. Bank deposits: rate and cumulative total. In (2.1) deposits
were recorded using the rate of deposit (minus the rate of withdrawal),
which we denoted by q(t). We will do that here too, but first think of
the cumulative total deposit. Write Q(t) for this function. The rate of
deposit is the derivative of the cumulative total.

We have to decide on a starting point for Q(t); say t = 0. We have to
be a little careful, though; I can’t really give meaning to Q(0) because
I get paid two kilodollars at t = 0. What we want is to start just before
t = 0: so

Q′(t) = q(t) , Q(0−) = 0 .

Now we can model my cumulative total paycheck deposits using shifts
of the step function:

Q(t) = 2u(t) + 2u(t− 1
12

) + 2u(t− 2
12

) + · · · .
Sketch a graph of this function!

Using shifts of the delta function, we can also write a formula for the
rate of paycheck deposit:

q(t) = 2δ(t) + 2δ(t− 1
12

) + 2δ(t− 2
12

) + · .

21.5. Generalized functions. When these shifted and scaled delta
functions are added to “ordinary” functions you get a “generalized
function.” I’ll describe a little part of the theory of generalized func-
tions. The next few paragraphs will sound technical. I hope they don’t
obscure the simplicity of the idea of generalized functions as a model
for abrupt changes.

I will use the following extensions of a definition from Edwards and
Penney (p. 271 in the sixth edition). To prepare for it let me call a
collection of real numbers a1, a2, . . ., sparse if for any r > 0 there are
only finitely many of k such that |ak| < r. So any finite collection of
numbers is sparse; the collection of whole numbers is sparse; but the



104

collection of numbers 1, 1/2, 1/3, . . ., is not sparse. Sparse sets don’t
bunch up. The empty set is sparse.

When I describe a function (on an interval) I typically won’t insist
on knowing its values for all points in the interval. I’ll allow a sparse
collection of points at which the value is undefined. We already saw
this in the definition of u(t) above.

A function f(t) (on an interval) is piecewise continuous if (1) it is
continuous everywhere (in its interval of definition) except at a sparse
collection of points; and (2) for every a, both f(a+) and f(a−) exist.
(They are equal exactly when f(t) is continuous at t = a.)

A function f(t) is piecewise differentiable if (1) it is piecewise con-
tinuous, (2) it is differentiable everywhere except at a sparse collection
of points, and its derivative is piecewise continuous.

We now want to extend this by including delta functions. A gener-
alized function is a piecewise continuous function fr(t) plus a linear
combination of delta functions,

(4) fs(t) =
∑
k

bkδ(t− ak),

where the ak’s form a sparse set.

Write f(t) for the sum:

f(t) = fr(t) + fs(t).

fr(t) is the “regular part” of f(t), and fs(t) is the “singular part.” We
define f(a−) to be fr(a−) and f(a+) to be fr(a+). Since the actual
value of f(t) at t = a is not used to compute these limits, this is a good
definition even if a is one of the ak’s.

We will use a “harpoon” to denote a delta function in a graph. The
harpoon should be thought to be very high, and resting on the hori-
zontal axis. This notation by itself does not include the information
of the area under the graph. To deal with this we will decorate the
barb of the harpoon representing kδ(t− a) with the number k. k may
be negative, in which case the harpoon might better be thought of as
extending downward. We will denote the same function, kδ(t − a),
equally by a downward harpoon decorated with −k:



105

-
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For example, 1− 3δ(t− 2) can be denoted by either of the following
graphs.

-

6 �@−3

2

1

or -

6

@� 3

2

1

A harpoon with k = 0 is the same thing as no harpoon at all:
0δ(t − a) = 0. We’ll call the term bkδ(t − ak) occurring in fs(t) the
singularity of f(t) at t = ak. If a is not among the ak’s (or if a = ak
but bk = 0) then there is no singularity in f(t) at t = a.

21.6. Integrating generalized functions. Generalized functions are
set up so they can be integrated. δ(t − a) = u′(t − a), so by the
fundamental theorem of calculus∫ c

b

δ(t− a) dt = u(c− a)− u(b− a).

If b < a < c, this is 1. If a is not between b and c, this is 0. If
a = b or a = c then this integral involves the expression u(0), which is
undefined; so the integral is undefined. We can however define∫ c+

b−
f(t) dt = lim

b′↑b
lim
c′↓c

∫ c′

b′
f(t) dt,

and this gives a well defined result when f(t) = δ(t − a): Assuming
b ≤ c, ∫ c+

b−
δ(t− a) dt = 1 if b ≤ a ≤ c,
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and zero otherwise. In particular,∫ a+

a−
δ(t− a) dt = 1.

Now if f(t) is any generalized function, we can define the integral∫ c+

b−
f(t) dt

by integrating the regular part of f(t) in the usual way, and adding the
sum of the bk’s over k for which b ≤ ak ≤ c (using the notation of (4)).

21.7. The generalized derivative. Generalized functions let us make
sense of the derivative of a function which is merely piecewise differen-
tiable.

For example, we began by saying that the “derivative” of the piece-
wise differentiable function u(t−a) is the generalized function δ(t−a).
This understanding lets us define the generalized derivative of any
piecewise continuously differentiable function f(t). It is a generalized
function and we denote it by f ′(t). Its regular part, (f ′)r(t), is the
usual derivative of f(t) (which is defined except where the graph of
f(t) has breaks or corners), and its singular part is given by the sum
of terms

(f(a+)− f(a−))δ(t− a),

summed over the values a of t where the graph of f(t) has breaks. Each
shifted and scaled δ function records the instantaneous velocity needed
to accomplish a sudden jump in the value of f(t). When the graph
of f(t) has a corner at t = a, the graph of f ′(t) has a jump at t = a
and isn’t defined at t = a itself; this is a discontinuity in the piecewise
continuous function (f ′)r(t).

With this definition, the “fundamental theorem of calculus”

(5)

∫ c+

b−
f ′(t) dt = f(c+)− f(b−)

holds for generalized functions.

For further material on this approach to generalized functions the
reader may consult the article “Initial conditions, generalized functions,
and the Laplace transform,” IEEE Control Systems Magazine 27 (2007)
22–35, by Kent Lundberg, Haynes Miller, and David Trumper. http:

//math.mit.edu/~hrm/papers/lmt.pdf.

http://math.mit.edu/~hrm/papers/lmt.pdf
http://math.mit.edu/~hrm/papers/lmt.pdf
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22. Generalized functions and differential equations

Now that we know how to express the derivative of a function with
a gap in its graph (using the delta function), we can incorporate dis-
continuous functions and even generalized functions into our study of
differential equations.

Suppose we are in the bank account example (2.1) in which x(t)
denotes the balance in my bank account at time t. The differential
equation modeling my account is

ẋ− Ix = q(t)

where q(t) is the rate of deposit.

Suppose that in the runup to t = 0 I don’t make any deposits or
withdrawals: so the balance as a function of time is given by x(t) =
ceIt. Suppose that the interest rate is 5% per year, so x(t) = ce(0.05)t

kilodollars. Suppose c = 3.

At time t = 0, I deposit two kilodollars, and I wish to model the
balance going forward using a differential equation. The rate of deposit
is thus q(t) = 2δ(t). This serves as the input signal. What should I
take for initial condition? The value of x(t) at t = 0 really isn’t well
defined.

The relevant “initial condition” in this setting is really not x(0), but
rather

x(0−) = lim
t↑0

x(t) = 3 .

We call this the pre-initial condition. After the deposit of two kilo-
dollars at t = 0 my balance is five kilodollars, so x(0+) = 5.

The natural way to express this scenario as a differential equation is
as the “pre-initial value problem”

ẋ− (0.05)x = 2δ(t) , x(0−) = 3 .

This is equivalent to the “post-initial value problem”

ẋ− (0.05)x = 0 , x(0+) = 5 ,

which is easy to solve:

x(t) = 5e(0.05)t for t > 0 .

For another example, suppose we have a spring with spring constant
8 and negligible damping. Attached to it is a cart of mass 2 units. So
the system is modeled by the simple harmonic oscillator 2ẍ + 8x = 0.
The general solution is the sinusoid of angular frequency 2. Suppose
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that for t < 0 the position x is given by x(t) = 3 cos(2t). At t = 0 we
supply an impulse of 4 units to the mass, and we are interested in the
behavior of the system for t > 0.

This scenario is most naturally modeled by the pre-initial value prob-
lem

2ẍ+ 8x = 4δ(t) , x(0−) = 3 , ẋ(0−) = 0 .

We can find an equivalent post-initial value problem. The impulse will
instantaneously increase the momentum by 4 units, and since momen-
tum is mass times velocity it will increase the velocity ẋ by 2 units.
No matter how hard I kick the cart, the position won’t change instan-
taneously, however, so in terms of post-initial conditions we have

2ẍ+ 8x = 0 , x(0+) = 3 , ẋ(0+) = 2 .

We can go ahead and solve this, too: the solution (for t > 0) will be a
sinusoid of angular frequency 2. The post-initial conditions give

x(t) = 3 cos(2t) + sin(2t) .

Here’s the general picture.

In a general LTI situation p(D)x = f(t), where the characteris-
tic polyomial p(s) = ans

n + · · · + a0 has degree n (so that an 6= 0)
giving pre-initial conditions means specifying x(0−), ẋ(0−), . . . , and
x(n−1)(0−). If f(t) has no singularity at t = 0, all the functions
x(t), ẋ(t), . . . , x(n−1)(t) will be continuous at t = 0 and so the pre-
and post-initial conditions coincide. If f(t) has cδ(t) as its singular
part at t = 0, so that f(t) = cδ(t) + g(t) where g(t) does not have a
singularity at t = 0, the equivalent post-initial value problem is given
by

p(D)x = g(t)

subject to the conditions

x(0+) = x(0−) , ẋ(0+) = x(0−) , . . .

x(n−1)(0+) = x(n−1)(0−) + (c/an) .

If all the pre-initial values are zero, we say that we have imposed
rest initial conditions. So, with the notations as above, the equation
p(D)x = f(t) with rest initial conditions is equivalent to the post-initial
value problem

p(D)x = g(t) , x(0+) = · · · = x(n−2)(0+) = 0, x(n−1)(0+) = c/an .
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23. Impulse and step responses

In real life, we often do not know the parameters of a system (e.g.
the spring constant, the mass, and the damping constant, in a spring-
mass-dashpot system) in advance. We may not even know the order
of the system—there may be many interconnected springs (or diodes).
(We will, however, suppose that all the systems we consider are linear
and time independent, LTI.) Instead, we often learn about a system by
watching how it responds to various input signals.

The simpler the signal, the clearer we should expect the signature of
the system parameters to be, and the easier it should be to predict how
the system will respond to other more complicated signals. To simplify
things we will always begin the system from “rest initial conditions,”
so x and its derivatives have value zero at t = 0−.

In section we will study the response of a system from rest initial
conditions to two standard and very simple signals: the unit impulse
δ(t) and the unit step function u(t).

The theory of the convolution integral, Section 24, gives a method
of determining the response of a system to any input signal, given its
unit impulse response.

23.1. Impulse response. Given an LTI differential operator p(D),
the unit impulse response or weight function w(t) is the solution
to the equation

(1) p(D)w = δ(t)

subject to rest initial conditions. Thus always w(t) = 0 for t < 0.

In the first order case, aẇ + bw = δ(t) with pre-initial condition
w(0−) = 0 is equivalent to the post-initial value problem

aẇ + bw = 0 , w(0+) = 1/a

(See Section 22.) The weight function is thus

w(t) =

{
0 for t < 0
(1/a)e−bt/a for t > 0.

Note that at t = 0 the value jumps by 1/a, so the derivative contains
(1/a)δ(t) as its singular part. When multiplied by a in the expression
aẇ + bw, it produces the delta function on the right hand side.

In the second order case, we might have a spring system which is
kicked. For example, suppose that the mass is 2, damping constant 4,
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and spring constant 10, so that the system is governed by the differen-
tial operator p(D) = 2D2 + 4D + 10I. Suppose that the system is at
rest at t = 0, and at that time we kick the mass, providing it with an
impulse of 1 unit. This can be modeled by

2ẍ+ 4ẋ+ 10x = δ(t) , x(0−) = 0 , ẋ(0−) = 0 .

The impulse changes the momentum by 1, and hence changes the ve-
locity by 1/2, so the equivalent post-initial value problem is

2ẍ+ 4ẋ+ 10x = δ(t) , x(0+) = 0 , ẋ(0+) = 1/2 .

For t > 0 this equation is homogeneous. The homogeneous equa-
tion 2ẍ + 4ẋ + 10x = 0 has an independent set of real solutions is
{e−t cos(2t), e−t sin(2t)}. The post-initial condition x(0+) = 0 forces
the weight function to be a multiple of the second homogenous solution,
and solving for the coefficient gives (1/4)e−t sin(2t). Thus

w(t) =

{
0 for t < 0
1
4
e−t sin(2t) for t > 0.

Weight functions of second order equations are continuous, but their
derivative jumps at t = 0.

The unit impulse response needs to be defined in two parts; it’s zero
for t < 0. This is a characteristic of causal systems: the impulse at
t = 0 has no effect on the system when t < 0. In a causal system the
unit impulse response is always zero for negative time.

23.2. Step response. This is the response of a system at rest to a
constant input signal being turned on at t = 0. I will write w1(t) for this
system response. If the system is represented by the LTI operator p(D),
then w1(t) is the solution to p(D)x = u(t) with rest initial conditions,
where u(t) is the unit step function.

The unit step response can be related to the unit impulse response
using (13.2): Dp(D) = p(D)D. Using this we can differentiate the
equation p(D)w1 = 1 to find that p(D)(Dw1) = δ(t), with rest initial
conditions. That is to say, ẇ1(t) = w(t), or:

The derivative of the unit step response is
the unit impulse response.

If we return to the system represented by 2ẍ+ 4ẋ+ 10x considered
above, a particular solution to 2ẍ+4ẋ+10x = 1 is given by x = 1/10, so
the general solution is x = (1/10) + e−t (a cos(2t) + b sin(2t)). Setting
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x(0) = 0 and ẋ(0) = 0 leads to

w1(t) =

{
0 for t < 0
1
10

(
1− e−t(cos(2t) + 1

2
sin(2t))

)
for t > 0

You can check that the derivative of this function is w(t) as calculated
above. In this example the unit impulse response is a simpler function
than the unit step response, and this is generally the case.
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24. Convolution

24.1. Superposition of infinitesimals: the convolution integral.
The system response of an LTI system to a general signal can be re-
constructed explicitly from the unit impulse response.

To see how this works, start with an LTI system represented by a
linear differential operator L with constant coefficients. The system
response to a signal f(t) is the solution to Lx = f(t), subject to some
specified initial conditions. To make things uniform it is common to
specify “rest” initial conditions: x(t) = 0 for t < 0.

We will approach this general problem by decomposing the signal
into small packets. This means we partition time into intervals of
length say ∆t: t0 = 0, t1 = ∆t, t2 = 2∆t, and generally tk = k∆t. The
kth signal packet is the null signal (i.e. has value zero) except between
t = tk and t = tk+1, where it coincides with f(t). Write fk(t) for the
kth packet. Then f(t) is the sum of the fk(t)’s.

Now by superposition the system response (with rest initial condi-
tions) to f(t) is the sum of the system responses to the fk(t)’s sepa-
rately.

The next step is to estimate the system response to a single packet,
say fk(t). Since fk(t) is concentrated entirely in a small neighborhood
of tk, it is well approximated as a rate by a multiple of the delta function
concentrated at tk, δ(t − tk). The multiple should be chosen so that
the cumulative totals match up; that is, it should be the integral under
the graph of fk(t), which is itself well approximated by f(tk)∆t. Thus
we replace fk(t) by

f(tk) ·∆t · δ(t− tk).

The system response to this signal, a multiple of a shift of the unit
impulse, is the same multiple of the same shift of the weight function
(= unit impulse response):

f(tk) ·∆t · w(t− tk).

By superposition, adding up these packet responses over the packets
which occur before the given time t gives the system response to the
signal f(t) at time t. As ∆t → 0 this sum approximates an integral
taken over time between time zero and time t. Since the symbol t is
already in use, we need to use a different symbol for the variable in
the integral; let’s use the Greek equivalent of t, τ (“tau”). The tk’s get
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replaced by τ in the integral, and ∆t by dτ :

(1) x(t) =

∫ t

0

f(τ)w(t− τ) dτ

This is a really wonderful formula. Edwards and Penney call it
“Duhamel’s principle,” but they seem somewhat isolated in this. Per-
haps a better name would be the “superposition integral,” since it is
no more and no less than an integral expression of the principle of
superposition. It is commonly called the convolution integral. It
describes the solution to a general LTI equation Lx = f(t) subject
to rest initial conditions, in terms of the unit impulse response w(t).
Note that in evaluating this integral τ is always less than t, so we never
encounter the part of w(t) where it is zero.

24.2. Example: the build up of a pollutant in a lake. Every good
formula deserves a particularly illuminating example, and perhaps the
following will serve for the convolution integral. It is illustrated by
the Mathlet Convolution: Accumulation. We have a lake, and a
pollutant is being dumped into it, at a certain variable rate f(t). This
pollutant degrades over time, exponentially. If the lake begins at time
zero with no pollutant, how much is in the lake at time t > 0?

The exponential decay is described as follows. If a quantity p of
pollutant is dropped into the lake at time τ , then at a later time t it
will have been reduced in amount to pe−a(t−τ). The number a is the
decay constant, and t − τ is the time elapsed. We apply this formula
to the small drip of pollutant added between time τ and time τ + ∆τ .
The quantity is p = f(τ)∆τ (remember, f(t) is a rate; to get a quantity
you must multiply by time), so at time t the this drip has been reduced
to the quantity

e−a(t−τ)f(τ)∆τ

(assuming t > τ ; if t < τ , this particular drip contributed zero). Now
we add them up, starting at the initial time τ = 0, and get the convo-
lution integral (1), which here is

(2) x(t) =

∫ t

0

f(τ)e−a(t−τ) dτ.

We found our way straight to the convolution integral, without ever
mentioning differential equations. But we can also solve this problem
by setting up a differential equation for x(t). The amount of this chem-
ical in the lake at time t+∆t is the amount at time t, minus the fraction
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that decayed, plus the amount newly added:

x(t+ ∆t) = x(t)− ax(t)∆t+ f(t)∆t

Forming the limit as ∆t→ 0, we obtain

(3) ẋ+ ax = f(t), x(0) = 0.

We conclude that (2) gives us the solution with rest initial conditions.

An interesting case occurs if a = 0. Then the pollutant doesn’t decay
at all, and so it just builds up in the lake. At time t the total amount
in the lake is just the total amount dumped in up to that time, namely∫ t

0

f(τ) dτ ,

which is consistent with (2).

24.3. Convolution as a “product”. The integral (1) is called the
convolution of w(t) and f(t), and written using an asterisk:

(4) w(t) ∗ f(t) =

∫ t

0

w(t− τ)f(τ) dτ, t > 0.

We have now fulfilled the promise we made at the beginning of Sec-
tion 23: we can explicitly describe the system response, with rest initial
conditions, to any input signal, if we know the system response to just
one input signal, the unit impulse:

Theorem. The solution to an LTI equation Lx = f(t), of any order,
with rest initial conditions, is given by

x(t) = w(t) ∗ f(t),

where w(t) is the unit impulse response.

If L is an LTI differential operator, we should thus be able to recon-
struct its characteristic polynomial p(s) (so that L = p(D)) from its
unit impulse response. This is one of the things the Laplace transform
does for us; in fact, the Laplace transform of w(t) is the reciprocal of
p(s): see Section 26.

The expression (4) can be interpreted formally by a process known
as “flip and drag.” It is illustrated in the Mathlet Convolution: Flip

and Drag.
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25. Laplace transform technique: coverup

I want to show you some practical tricks which will help you to
find the inverse Laplace transform of a rational function. These are
refinements on the method of partial fractions which you studied when
you learned how to integrate rational functions. Some of this will use
complex numbers.

25.1. Simple case. First, let’s do an easy case:

F (s) =
1

s2 − 4
.

To begin, factor the denominator, and write

(1) F (s) =
1

(s− 2)(s+ 2)
=

a

s− 2
+

b

s+ 2

for as yet unknown constants a and b. One way to proceed is to cross
multiply and collect terms in the numerator. That is fine but the
following is more fun.

To find a, first multiply through by the corresponding denominator,
(s− 2) in this case. You get

1

s+ 2
= a+ (s− 2)(other terms),

in which the “other terms” (namely,
b

s+ 2
) don’t have a factor of (s−2)

in the denominator. Then set s = 2:
1

2 + 2
= a+ (2− 2)(other terms) = a

since the second term vanishes. So a = 1/4. In exactly the same way,
you can multiply (1) through by s+ 2 and then set s = −2, to find

1

−2− 2
= b

or b = −1/4. Thus

F (s) =
1/4

s− 2
− 1/4

s+ 2
.

The tables then show that

f(t) = (1/4)(e2t − e−2t).

This approach to partial fractions has been called the “cover-up
method”; you cover up the denominators of the terms you wish to
compute. You can do it without writing anything down; just cover
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up the denominators and write down the answer. It works well but
does not completely handle the case in which the denominator has a
repeated root.

25.2. Repeated roots. For example look at

F (s) =
s

s2 + 2s+ 1
.

The denominator factors as (s+1)2. We want to find a and b such that

F (s) =
s

(s+ 1)2
=

a

s+ 1
+

b

(s+ 1)2
.

We can begin to use the coverup method: multiply through by (s+ 1)2

and set s = −1: The left hand side is just −1; the first term vanishes;
and the second term is b: so b = −1. We can’t get a this way, though.
One way to find a is to set s to some other value. Any other value will
do, and we might as well make our arithmetic as simple as possible.
Let’s take s = 0: then we have

0 =
a

1
+
−1

1

so a = 1:

F (s) =
1

s+ 1
− 1

(s+ 1)2
.

Now the tables show

f(t) = e−t − te−t.

25.3. Completing the square. Suppose

F (s) =
1

s2 + 2s+ 2
.

The first part of the method here is to complete the square in the
denominator, and rewrite the numerator in the same terms:

s

s2 + 2s+ 2
=
a(s+ 1) + b

(s+ 1)2 + 1
.

This works with a = 1 and b = −1:

F (s) =
(s+ 1)− 1

(s+ 1)2 + 1
.

Now the s-shift rule applies, since F (s) is written in terms of s − a
(where here a = −1). The second part of this method gives you a way
to use the s-shift rule without getting too confused. You should invent
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a new function name—say G(s)—and use it to denote the function
such that that F (s) = G(s− a). Thus, here,

G(s) =
s− 1

s2 + 1
.

Now the s-shift rule says that if g(t) G(s) then e−tg(t) G(s+1) =
F (s), which is to say that f(t) = e−tg(t). The tables give

g(t) = cos t− sin t

so

f(t) = e−t(cos t− sin t).

25.4. Complex coverup. Now let’s take an example in which the
quadratic factor does not occur alone in the denominator: say

F (s) =
1

s3 + s2 − 2
.

The denominator factors as s3 + s2 − 2 = (s− 1)(s2 + 2s + 2). In the
example above we learned that the factor s2 +2s+2 should be handled
by completing the square and grouping the (s+ 1) in the numerator:

F (s) =
1

(s− 1)((s+ 1)2 + 1)
=

a

s− 1
+
b(s+ 1) + c

(s+ 1)2 + 1
.

Find a just as before: multiply through by s − 1 and then set s = 1,
to get a = 1/5. To find b and c, multiply through by the quadratic
factor (s+ 1)2 + 1 and then set s equal to a root of that factor. Having
already completed the square, it’s easy to find a root: (s + 1)2 = −1,
so s+ 1 = i for example, so s = −1 + i. We get:

1

(−1 + i)− 1
= b((−1 + i) + 1) + c

or, rationalizing the denominator,

−2− i
5

= c+ bi

Since we want b and c real, we must have c = −2/5 and b = −1/5:

F (s) =
1

5

(
1

s− 1
− (s+ 1) + 2

(s+ 1)2 + 1

)
.

We’re in position to appeal to the s-shift rule, using the tricks described
in 25.3, and find

f(t) =
1

5

(
et − e−t(sin t+ 2 cos t)

)
.
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25.5. Complete partial fractions. There is another way to deal with
quadratic factors: just factor them over the complex numbers and use
the coverup method in its original form as in Section 25.1. I don’t
recommend using this in practice, but it’s interesting to see how it
works out, and we will use these ideas in Section 27. Using the example

F (s) =
1

s3 + s2 − 2

again, we can find complex constants a, b, c such that

(2) F (s) =
a

s− 1
+

b

s− (−1 + i)
+

c

s− (−1− i)
Expect that a will be real, and that b and c will be complex conjugates
of each other.

Find a just as before; a = 1/5. To find b, do the same: multiply
through by s− (−1 + i) to get

1

(s− 1)(s− (−1− i))
= b+ (s− (−1 + i))(other terms)

and then set s = −1 + i to see
1

(−2 + i)(2i)
= b

or b = 1/(−2− 4i) = (−1 + 2i)/10. The coefficient c can be computed
similarly. Alternatively, you can use the fact that the two last terms
in (2) must be complex conjugate to each other (in order for the whole
expression to come out real) and so discover that c = b̄ = (−1−2i)/10:

(3) F (s) =
1/5

s− 1
+

(−1 + 2i)/10

s− (−1 + i)
+

(−1− 2i)/10

s− (−1− i)
.

It’s perfectly simple to find the inverse Laplace transforms of the
terms here:

f(t) =
1

5
et +

−1 + 2i

10
e(−1+i)t +

−1− 2i

10
e(−1−i)t.

The last two terms are complex conjugates of each other, so their sum
is twice the real part of each, namely,

2
e−t

10
Re ((−1 + 2i)(cos t+ i sin t)) =

e−t

5
(− cos t− 2 sin t).

We wind up with the same function f(t) as before.
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26. The Laplace transform and generalized functions

The Laplace transform is treated in textbooks as an algorithm for
solving initial value problems. This is very misleading. The Laplace
transform is much more wonderful than that. It transforms one descrip-
tion of some part of the world—given by a signal f(t)—to a different
desription of the same thing. The new description is again a function,
F (s), but now s is a complex number. The new description looks noth-
ing like the first one, but certain things are much easier to see from
F (s) than from f(t).

The definition, as an integral, shows that in order to compute F (s)
for any single value of s, you need to know (essentially) the complete
function f(t). It’s like a hologram. You’ve seen this kind of thing
before: each Fourier coefficient is an integral involving the whole func-
tion. The sequence of Fourier coefficients provides an alternative way
of understanding a periodic function, and the Laplace transform will
do the same for general functions f(t). The Laplace transform applies
to non-periodic functions; but instead it depends only on the values of
f(t) for t ≥ 0.

26.1. The Laplace transform integral. In the integral defining the
Laplace transform,

(1) F (s) =

∫ ∞
0

e−stf(t) dt ,

we really should let s be complex. We are thus integrating a complex-
valued function of a real parameter t, e−stf(t), and this is done by
integrating the real and imaginary parts separately. It is an improper

integral, computed as the limit of

∫ T

0

e−stf(t) dt as T →∞. (Actually,

we will see in Section 26 that it’s better to think of the lower limit
as “improper” as well, in the sense that we form the integral with
lower limit a < 0 and then let a ↑ 0.) The textbook assumption that
f(t) is of “exponential order” is designed so that if s has large enough
real part, the term e−st will be so small (at least for large t) that the
product e−stf(t) has an integral which converges as T →∞. In terms
of the pole diagram, we may say that the integral converges when the
real part of s is bigger than the real part of any pole in the resulting
transform function F (s). The exponential order assumption is designed
to guarantee that we won’t get poles with arbitrarily large real part.
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The region to the right of the rightmost pole is called the region of
convergence. Engineers abbreviate this and call it the “ROC.”

Once the integral has been computed, the expression in terms of s
will have meaning for all complex numbers s (though it may take on
the value ∞ at some).

For example, let’s consider the time-function f(t) = 1, t > 0. Then:

F (s) =

∫ ∞
0

e−stdt = lim
T→∞

e−st

−s

∣∣∣∣T
0

=
1

−s

(
lim
T→∞

e−sT − 1
)
.

Since
∣∣e−sT ∣∣ = e−aT if s = a + bi, the limit is 0 if a > 0 and doesn’t

exist if a < 0. If a = 0, e−sT = cos(bT )− i sin(bT ), which does not have
a limit as T → ∞ unless b = 0 (which case is not relevant to us since
we certainly must have s 6= 0). Thus the improper integral converges
exactly when Re (s) > 0, and gives F (s) = 1/s. Despite the fact that
the integral definitely diverges for Re (s) ≤ 0, the expression 1/s makes
sense for all s ∈ C (except for s = 0), and it’s better to think of the
function F (s) as defined everywhere in this way. This process is called
“ analytic continuation.”

26.2. The lower limit and the t-derivative rule. Prominent among
the signals we want to be able to treat is the delta function δ(t). What
are we to make of the integral (1) in that case? The integrand is
e−stδ(t), which is just δ(t) since for any s we have es0 = 1. The anti-
derivative of δ(t) is the step function u(t), but u(t) doesn’t have a
well-defined value at t = 0. In order to make sense of the integral we
have to decide whether the lower limit is actually 0− or 0+; just 0
won’t do.

The correct thing to do is to define

(2) F (s) =

∫ ∞
0−

e−stf(t) dt

so that the Laplace transform of δ(t) is the constant function 1.

In application of the Laplace transform to understanding differential
equations, it is important to know what the Laplace transform of f ′(t)
is. We can calculate this using integration by parts.

f ′(t) 
∫ ∞

0−
e−stf ′(t) dt = e−stf(t)

∣∣∣∣∞
0−

+ s

∫ ∞
0−

e−stf(t) dt
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For s in the region of convergence,

e−stf(t)

∣∣∣∣∞
0−

= lim
t↑∞

e−stf(t)− lim
t↑0

e−stf(t) = 0− f(0−)

Therefore we have the t-derivative rule

(3) f ′(t) sF (s)− f(0−)

Provided we use the generalized derivative as explained in Section 21,
this calculation continues to work even when f(t) is merely piecewise
differentiable, so its derivative contains delta functions.

The formula (3) is similar to the formula found in textbooks, but
more precise. Textbooks will replace f(0−) by f(0). This is fine if f(t)
is continuous at t = 0, but if it is not then the actual value of f(t) at
t = 0 can be anything, so the textbook formula can’t be correct in that
case.

It is possible to get confused about the distinction between u(t) and
the constant function c(t) = 1, in the context of the Laplace transform.
Let’s see how the t-derivative rule works out in those cases.

Both u(t) and 1 have Laplace transform 1/s. Apply (3):

δ(t) = u′(t) s · (1/s)− u(0−) = 1− 0 = 1

0 = c′(t) s · (1/s)− c(0−) = 1− 1 = 0

Both are perfectly consistent calculations and not in conflict with each
other.

This example shows that the Laplace transform of f(t) depends only
on the values of f(t) for t ≥ 0, but determining the Laplace transform
of f ′(t) depends also on the value of f(0−). This is because the value
of f(0−) is needed to determine whether there is a delta function at
t = 0 in the (generalized, of course) derivative of f(t).

If we apply (3) to g(t) = f ′(t) we get

f ′′(t) = g′(t) sG(s)− g(0−) = s(sF (s)− f(0−))− f ′(0−) .

This can be continued. The result is particularly simple in case f (k)(0−) =
0 for all k < n: in that case,

(4) f (n)(t) snF (s)
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26.3. Laplace transform, weight function, transfer function.
Most of the time, Laplace transform methods are inferior to the ex-
ponential response formula, undertermined coefficients, and so on, as a
way to solve a differential equation. In one specific situation it is quite
useful, however, and that is in finding the weight function of an LTI
system.

So we want to find the solution of p(D)w = δ with rest initial condi-
tions. If we apply Laplace transform to the equation, and use (4), we
find

p(s)W (s) = 1

That is to say,

w(t) 
1

p(s)

Closely related, we can find the unit step response: p(D)w1 = u(t)
with rest initial conditions gives us p(D)W1(s) = 1/s, or

w1(t) 
1

sp(s)

Example 26.3.1. Suppose the operator is D2 + 2D+ 2. The transfer
function is W (s) = 1/(s2 + 2s + 2) = 1/((s + 1)2 + 1). By the s shift
rule and the tables,

w(t) = u(t)e−t sin t .

The Laplace transform of the unit step response is W1(s) = 1/s(s2 +
2s+ 2), which we can handle using complex cover up: write

1

s((s+ 1)2 + 1)
=
a

s
+
b(s+ 1) + c

(s+ 1)2 + 1
.

Multiply through by s and set s = 0 to see a = 1/2. Then multiply
through by (s+ 1)2 + 1 and set s = −1 + i to see bi+ c = 1/(−1 + i) =
(−1− i)/2, or b = c = −1/2: so

W1(s) =
1

2

(
1

s
− (s+ 1) + 1

(s+ 1)2 + 1

)
.

Thus the unit step response is

w1(t) =
u(t)

2
(1− e−t(cos t+ sin t)) .



123

26.4. What the Laplace transform doesn’t tell us. The Laplace
transform is defined by means of an integral. We don’t need complete
information about a function to determine its integral, so knowing its
integral or integrals of products of it with exponentials won’t be enough
to completely determine it.

For example, if we can integrate a function g(t) then we can also
integrate any function which agrees with g(t) except at one value of
t, or even except at a finite number of values, and the integral of the
new function is the same as the integral of g. Changing a few values
doesn’t change the “area under the graph.”

Thus if f(t)  F (s), and g(t) coincides with f(t) except at a few
values of t, then also g(t)  F (s). We can’t hope to recover every
value of f(t) from F (s) unless we put some side conditions on f(t),
such as requiring that it should be continuous.

Therefore, in working with functions via Laplace transform, when
we talk about a function f(t) it is often not meaningful to speak of the
value of f at any specific point t = a. It does make sense to talk about
f(a−) and f(a+), however. Recall that these are defined as

f(a−) = lim
t↑a

f(t), f(a+) = lim
t↓a

f(t).

This means that f(a−) is the limiting value of f(t) as t increases to-
wards a from below, and f(a+) is the limiting value of f(t) as t de-
creases towards a from above. In both cases, the limit polls infinitely
many values of f near a, and isn’t changed by altering any finite num-
ber of them or by altering f(a) itself; in fact f does not even need to
be defined at a for us to be speak of f(a±). The best policy is to speak
of f(a) only in case both f(a−) and f(a+) are defined and are equal
to each other. In this case we can define f(a) to be this common value,
and then f(t) is continuous at t = a.

The uniqueness theorem for the inverse Laplace transform asserts
that if f and g have the same Laplace transform, then f(a−) = g(a−)
and f(a+) = g(a+) for all a. If f(t) and g(t) are both continuous at
a, so that f(a−) = f(a+) = f(a) and g(a−) = g(a+) = g(a), then it
follows that f(a) = g(a).

Part of the strength of the theory of the Laplace transform is its
ability to deal smoothly with things like the delta function. In fact, we
can form the Laplace transform of a generalized function as described
in Section 21, assuming that it is of exponential type. The Laplace
transform F (s) determines the singular part of f(t): if F (s) = G(s)
then fs(t) = gs(t).
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27. The pole diagram and the Laplace transform

When working with the Laplace transform, it is best to think of the
variable s in F (s) as ranging over the complex numbers. In the first
section below we will discuss a way of visualizing at least some aspects
of such a function—via the “pole diagram.” Next we’ll describe what
the pole diagram of F (s) tells us—and what it does not tell us—about
the original function f(t). In the third section we discuss the properties
of the integral defining the Laplace transform, allowing s to be complex.
The last section describes the Laplace transform of a periodic function
of t, and its pole diagram, linking the Laplace transform to Fourier
series.

27.1. Poles and the pole diagram. The real power of the Laplace
transform is not so much as an algorithm for explicitly computing lin-
ear time-invariant system responses as in gaining insight into these
responses without explicitly computing them. (A further feature of the
Laplace transform is that it allows one to analyze systems which are
not modeled by ODEs at all, by exactly the same methodology.) To
achieve this insight we will have to regard the transform variable s as
complex, and the transform function F (s) as a complex-valued function
of a complex variable.

A simple example is F (s) = 1/(s−z), for a fixed complex number z.
We can get some insight into a complex-valued function of a complex
variable, such as 1/(s−z), by thinking about its absolute value: |1/(s−
z)| = 1/|s−z|. This is now a real-valued function on the complex plane,
and its graph is a surface lying over the plane, whose height over a point
s is given by the value |1/(s− z)|. This is a tent-like surface lying over
the complex plane, with elevation given by the reciprocal of the distance
to z. It sweeps up to infinity like a hyperbola as s approaches z; it’s as
if it is being held up at s = z by a tent-pole, and perhaps this is why
we say that 1/(s − z) “has a pole at s = z.” Generally, a function of
complex numbers has a “pole” at s = z when it becomes infinite there.

F (s) = 1/(s−z) is an example of a rational function: a quotient of
one polynomial by another. The Laplace transforms of many important
functions are rational functions, and we will start by discussing rational
functions.

A product of two rational functions is again a rational function.
Because you can use a common denominator, a sum of two rational
functions is also a rational function. The reciprocal of any rational
function except the zero function is again a rational function—exchange
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numerator and denominator. In these algebraic respects, the collection
of rational functions behaves like the set of rational numbers. Also like
rational numbers, you can simplify the fraction by cancelling terms
in numerator and denominator, till the two don’t have any common
factors. (In the case of rational numbers, you do have to allow ±1 as a
common factor! In the case of rational functions, you do have to allow
nonzero contants as common factors.)

When written in reduced form, the magnitude of F (s) blows up to
∞ as s approaches a root of the denominator. The complex roots of
the denominator are the poles of F (s).

In case the denominator doesn’t have any repeated roots, partial
fractions let you write F (s) as

(1) F (s) = p(s) +
w1

s− z1

+ · · ·+ wn
s− zn

where p(s) is a polynomial, z1, . . . zn are complex constants, and w1, . . . , wn
are nonzero complex constants.

For example, the calculation done in Section 25.5 shows that the
poles of F (s) = 1/(s3 +s2−2) are at s = 1, s = −1+ i, and s = −1− i.

The pole diagram of a complex function F (s) is just the complex
plane with the poles of F (s) marked on it. Figure 15 shows the pole
diagram of the function F (s) = 1/(s3 + s2 − 2).

1

1+i

1 i

Figure 15. Pole diagram for 1/(s3 + s2 − 2)

The constant wk appearing in (1) is the residue of the pole at s = zk.
The calculation in 25.5 shows that the residue at s = 1 is 1/5, the
residue at s = −1 + 2i is (−1 + 2i)/10, and the residue at s = −1− 2i
is (−1 − 2i)/10. These are the numerators in (25.3). They are also
the coefficients that appear in front of the exponential functions of t
appearing in the inverse Laplace transform of F (s).
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Laplace transforms are not always rational functions. For example,
the exponential function occurs: F (s) = e−as is the Laplace transform
of δ(t− a), for example. Generally, a pole of a function of the complex
number s is a value of s near which the function blows up to infinite
value. The exponential function has no poles: it takes on well defined
complex values for any complex input s.

We can form more elaborate complex functions by taking products—
e−s/(s3 + s2 − 2), for example. The numerator doesn’t contribute any
poles. Nor does it kill any poles—it is never zero, so it doesn’t cancel
any of the roots of the denominator. The pole diagram of this function
is the same as the pole diagram of 1/(s3 + s2 − 2).

A complex function is by no means completely specified by its pole
diagram. Nevertheless, the pole diagram of F (s) carries a lot of infor-
mation about F (s), and if F (s) is the Laplace transform of f(t), it tells
you a lot of information of a specific type about f(t).

27.2. The pole diagram of the Laplace transform.

Summary: The pole diagram of F (s) tells us a lot about long-term
behavior of f(t). It tells us nothing about the near-term behavior.

This is best seen by examples.

Suppose we have just one pole, at s = 1. Among the functions with
this pole diagram we have:

F (s) =
c

s− 1
, G(s) =

ce−as

s− 1
, H(s) =

c

s− 1
+ b

1− e−as

s

where c 6= 0. (Note that 1− e−as becomes zero when s = 0, canceling
the zero in the denominator of the second term in H(s).) To be Laplace
transforms of real functions we must also assume them all to be real,
and a ≥ 0. Then these are the Laplace transforms of

f(s) = cet , g(t) =

{
cet−a for t > a,
0 for t < a

, h(t) =

{
cet for t > a,
cet + b for t < a

All these functions grow like a multiple of et when t is large. You
can even say which multiple: it is given by the residue at s = 1. (Note
that g(t) = (ce−a)et, and the residue of G(s) at s = 1 is ce−a.) But
their behavior when t < a is all over the map. In fact, the function
can be anything for t < a, for any fixed a; as long as it settles down to
something close to cet for t large, its Laplace transform will have just
one pole, at s = 1, with residue c.
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Now suppose we have two poles, say at s = a + bi and s = a − bi.
Two functions with this pole diagram are

F (s) =
c(s− a)

(s− a)2 + b2
, G(s) =

cb

(s− a)2 + b2
.

and we can modify these as above to find others. These are the Laplace
transform of

f(t) = ceat cos(bt) , g(t) = ceat sin(bt).

This reveals that it is the real part of the pole that determines the
long term growth of absolute value; if the function oscillates, this means
growth of maxima and minima. The imaginary part of the pole deter-
mines the angular frequency of oscillation for large t. We can’t pick out
the phase from the pole diagram alone (but the residues do determine
the phase). And we can’t promise that it will be exactly sinusoidal
times exponential, but it will resemble this. And again, the pole dia-
gram of F (s) says nothing about f(t) for small t.

Now let’s combine several of these, to get a function with several
poles. Suppose F (s) has poles at s = 1, s = −1 + i, and s = −1 − i,
for example. We should expect that f(t) has a term which grows
like et (from the pole at s = 1), and another term which behaves
like e−t cos t (up to constants and phase shifts). When t is large, the
damped oscillation becomes hard to detect as the other term grows
exponentially.

We learn that the rightmost poles dominate—the ones with largest
real part have the dominant influence on the long-term behavior of f(t).

The most important consequence relates to the question of stability:

If all the poles of F (s) have negative real part then f(t) decays
exponentially to zero as t→∞.

If some pole has positive real part, then |f(t)| becomes arbitrarily
large for large t.

If there are poles on the imaginary axis, and no poles to the right,
then the function f(t) may grow (e.g. f(t) = t has F (s) = 1/s2, which
has a pole at s = 0), but only “sub-exponentially”: for any a > 0 there
is a constant c such that |f(t)| < ceat for all t > 0.

Comment on reality. We have happily taken the Laplace transform
of complex valued functions of t: eit  1/(s− i), for example. If f(t)
is real, however, then F (s) enjoys a symmetry with respect to complex
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conjugation:

(2) If f(t) is real-valued then F (s) = F (s).

The pole diagram of a function F (s) such that F (s) = F (s) is sym-
metric about the real axis: non-real poles occur in complex conjugate
pairs. In particular, the pole diagram of the Laplace transform of a
real function is symmetric across the real axis.

27.3. Laplace transform and Fourier series. We now have two
ways to study periodic functions f(t). First, we can form the Laplace
transform F (s) of f(t) (regarded as defined only for t > 0). Since
f(t) is periodic, the poles of F (s) lie entirely along the imaginary axis,
and the locations of these poles reveal sinusoidal constituents in f(t),
in some sense. On the other hand, f(t) has a Fourier series, which
explicitly expresses it as a sum of sinusoidal components. What is the
relation between these two perspectives?

For example, the standard square wave sq(t) of period 2π, with value
1 for 0 < t < π and −1 for −π < t < 0, restricted to t > 0, can be
written as

sq(t) = 2(u(t)− u(t− π) + u(t− 2π)− u(t− 3π) + · · · )− u(t)

By the t-shift formula and u(t) 1/s,

Sq(s) =
1

s

(
2(1− e−πs + e−2πs − · · · )− 1

)
=

1

s

(
2

1 + e−πs
− 1

)
The denominator vanishes when e−πs = −1, and this happens exactly
when s = ki where k is an odd integer. So the poles of Sq(s) are at 0
and the points ki where k runs through odd integers. s = 0 does not

occur as a pole, because the expression
2

1 + e−πs
− 1 vanishes when

s = 0 and cancels the 1/s.

On the other hand, the Fourier series for the square wave is

sq(t) =
4

π

(
sin(t) +

sin(3t)

3
+

sin(5t)

5
+ · · ·

)
.

If we express this as a series of complex exponentials, following 20.6,
we find that ck is nonzero for k an odd integer, positive or negative.
There must be a relation!
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It is easy to see the connection in general, especially if we use the
complex form of the Fourier series,

f(t) =
∞∑

n=−∞

cne
int.

Simply apply the Laplace transform to this expression, using eint  
1

s− in
:

F (s) =
∞∑

n=−∞

cn
s− in

The only possible poles are at the complex numbers s = in, and the
residue at in is cn.

If f(t) is periodic of period 2π, the poles of F (s) occur only
at points of the form nπi for n an integer, and the residue at
s = nπi is precisely the complex Fourier coefficients cn of f(t).
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28. Amplitude response and the pole diagram

We have seen in Section 10 that the analysis of the system response
of an LTI operator to a sinusoidal signal generalizes to the case of a
signal of the form Aeat cos(ωt − φ). When φ = 0, one considers an
associated complex equation, with input signal given by Ae(a+iω)t, and
applies the Exponential Response Formula.

The Mathlet Amplitude Response and Pole Diagram illustrates this
situation.

We will consider again the behavior of the spring/mass/dashpot sys-
tem, in its complex form

mz̈ + bż + kz = kAest

where s is a complex constant. The Exponential Response Formula
gives the exponential solution

(1) zp = AW (s)est

where W (s) is the “transfer function”

W (s) =
k

p(s)

Figure 16. Screen shot of Amplitude Response: Pole Diagram

The input signal gets multiplied by the complex number W (s). This
number has a magnitude and an argument. We will focus entirely on
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the magnitude. When it is large, the system response is that much
larger than the input signal. When it is small, the system response is
that much smaller. The real number |W (s)| is called the gain.

Now imagine the graph of |W (s)|. It is a tent-like surface, sus-
pended over the complex plane. There are places where |W (s)| becomes
infinite—at the roots of the characteristic polynomial ms2 + bs + k.
These are called poles of W (s). The graph flares up to infinite height
above the poles of W (s), which may be why they are called poles! The
altitude above s = a+iω has an interpretation as the “gain” of the sys-
tem when responding to an input signal of the form eat cos(ωt). When
s coincides with a pole, the system is in resonance; there is no solution
of the form gAeat cos(ωt− φ), but rather one of the form t times that
expression.

Near to the poles, the gain is large, and it falls off as s moves away
from the poles.

The case of sinusoidal input occurs when s is on the imaginary axis.
Imagine wall rising from the imaginary axis. It intersects the graph of
|W (s)| in a curve. That curve represents |W (iω)| as ω varies over real
numbers. This is precisely the “Bode plot,” the amplitude frequency
response curve.

The Amplitude Response and Pole Diagram Mathlet shows this
well. (The program chooses m = 1.) The left hand window is a 3-D
display of the graph of |W (s)|. Moving the cursor over that window
will reorient the picture. At lower right is the pole diagram of W (s),
and above it is the amplitude response curve.

You can see the geometric origin of near resonance: what is happen-
ing is that the part of the graph of |W (s)| lying over the imaginary
axis moves up over the shoulder of the “volcano” surrounding one of
the poles of W (s).
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29. The Laplace transform and more general systems

This section gives a hint of how flexible a device the Laplace trans-
form is in engineering applications.

29.1. Zeros of the Laplace transform: stillness in motion. The
mathematical theory of functions of a complex variable shows that
the zeros of F (s)—the values r of s for which F (r) = 0—are just as
important to our understanding of it as are the poles. This symmetry is
reflected in engineering as well; the location of the zeros of the transfer
function has just as much significance as the location of the poles.
Instead of recording resonance, they reflect stillness.

We envision the following double spring system: there is an object
with mass m1 suspended by a spring with spring constant k1. A second
object with mass m2 is suspended from this first object by a second
spring with constant k2. The system is driven by motion of the top
of the top spring according to a function f(t). Pick coordinates so
that x1 is the position of the first object and x2 is the position of the
second, both increasing in the downward direction, and such that when
f(t) = x1 = x2 = 0 the springs exert no force.

f(t)

x
1

x
2

m 1

m
2

k 1

k
2

Figure 17. Two spring system

The equations of motion are

(1)

{
m1ẍ1 = k1(f(t)− x1)− k2(x1 − x2)
m2ẍ2 = k2(x1 − x2)

This is a system of second order equations, and as you can imagine
mechanical engineering is full of similar systems.
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Suppose that our main interest is in x1. Let’s take Laplace trans-
forms, and assume rest initial conditions.{

(m1s
2 + (k1 + k2))X1 = k2X2 + k1F

(m2s
2 + k2)X2 = k2X1.

Use the second equation to express X2 in terms of X1, and substitute
this value into the first equation. Then solve for X1 to get:

X1(s) =
m2s

2 + k2

(m1s2 + (k1 + k2))(m2s2 + k2)− k2
2

· k1F (s).

The “transfer function” W (s) is then the ratio of the LT of the
system response, X1, and the LT of the input signal, F :

W (s) =
k1(m2s

2 + k2)

(m1s2 + (k1 + k2))(m2s2 + k2)− k2
2

.

It is still the case that W (r) is the multiple of ert which occurs as x1

in a solution to the equations (1) when we take f(t) = ert. Thus the

zeros of W (s) at s = ±i
√
k2/m2—the values of s for which W (s) = 0—

reflect a “neutralizing” angular frequency of ω =
√
k2/m2. If f(t) is

sinusoidal of this angular frequency then x1 = 0 is a solution. The
suspended weight oscillates with (k1/k2) times the amplitude of f(t)
and reversed in phase (independent of the masses!), and exactly cancels
the impressed force. Check it out!

29.2. General LTI systems. The weight function w(t), or its Laplace
transform, the transfer function W (s), completely determine the sys-
tem. The transfer function of an ODE has a very restricted form—it
is the reciprocal of a polynomial; but the mechanism for determin-
ing the system response makes sense for much more general complex
functions W (t), and, correspondingly, much more general “weight func-
tions” w(t): given a very general function w(t), we can define an LTI
system by declaring that a signal f(t) results in a system response (with
null initial condition, though in fact nontrivial initial conditions can be
handled too, by absorbing them into the signal using delta functions)
given by the convolution f(t) ∗ w(t). The apparatus of the Laplace
transform helps us, too, since we can compute this system response as
the inverse Laplace transform of F (s)W (s). This mechanism allows us
to represent the system, the signal, and the system response, all three,
using functions (of t, or of s). Differential operators have vanished from
the scene. This flexibility results in a tool of tremendous power.
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30. First order systems and second order equations

30.1. The companion system. One of the main reasons we study
first order systems is that a differential equation of any order may be
replaced by an equivalent first order system. Computer ODE solvers
use this principle.

To illustrate, suppose we start with a second order homogeneous LTI
system,

ẍ+ bẋ+ cx = 0.

The way to replace this by a first order system is to introduce a new
variable, say y, related to x by

y = ẋ.

Now we can replace ẍ by ẏ in the original equation, and find a system:

(1)

{
ẋ = y
ẏ = −cx− by

The solution x(t) of the original equation appears as the top entry in
the vector-valued solution of this system.

This process works for any higher order equation, linear or not, pro-
vided we can express the top derivative as a function of the lower ones
(and t). An nth order equation gives rise to a first order system in n
variables.

The trajectories of this system represent in very explicit form many
aspects of the time evolution of the original equation. You no longer
have time represented by an axis, but you see the effect of time quite
vividly, since the vertical direction, y, records the velocity, y = ẋ. A
stable spiral, for example, reflects damped oscillation. (See the Mathlet
Damped Vibrations for a clear visualization of this.)

The matrix for the system (1),[
0 1
−c −b

]
,

is called the companion matrix. These matrices constitute quite a wide
range of 2 × 2 matrices, but they do have some special features. For
example, if a companion matrix has a repeated eigenvalue then it is
necessarily incomplete, since a companion matrix can never be a mul-
tiple of the identity matrix.

This association explains an apparent conflict of language: we speak
of the characteristic polynomial of a second order equation—in the case
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at hand it is p(s) = s2 + bs+ c. But we also speak of the characteristic
polynomial of a matrix. Luckily (and obviously)

The characteristic polynomial of a second order LTI operator
is the same as the characteristic polynomial of the companion
matrix.

30.2. Initial value problems. Let’s do an example to illustrate this
process, and see how initial values get handled. We will also use this
example to illustrate some useful ideas and tricks about handling linear
systems.

Suppose the second order equation is

(2) ẍ+ 3ẋ+ 2x = 0.

The companion matrix is

A =

[
0 1
−2 −3

]
,

so solutions to (2) are the top entries of the solutions to ẋ = Ax.

An initial value for (2) gives us values for both x and ẋ at some
initial time, say t = 0. Luckily, this is exactly the data we need for an

initial value for the matrix equation ẋ = Ax: x(0) =

[
x(0)
ẋ(0)

]
.

Let’s solve the system first, by finding the exponential eAt. The
eigenvalues of A are the roots of the characteristic polynomial, namely
λ1 = −1, λ2 = −2. (From this we know that there are two normal
modes, one with an exponential decay like e−t, and the other with a
much faster decay like e−2t. The phase portrait is a stable node.)

To find an eigenvector for λ1, we must find a vector α1 such that
(A− λ1I)α1 = 0. Now

A− (−1)I =

[
1 1
−2 −2

]
.

A convenient way to find a vector killed by this matrix is to take the
entries from one of the rows, reverse their order and one of their signs:

so for example α1 =

[
1
−1

]
will do nicely. The other row serves as

a check; if it doesn’t kill this vector then you have made a mistake
somewhere. In this case it does.

Similarly, an eigenvector for λ2 is α2 =

[
1
−2

]
.
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The general solution is thus

(3) x = ae−t
[

1
−1

]
+ be−2t

[
1
−2

]
.

From this expression we can get a good idea of what the phase por-
trait looks like. There are two eigendirections, containing straight line

solutions. The line through

[
1
−1

]
contains solutions decaying like

e−t. (Notice that this single line contains infinitely many solutions: for
any point x0 on the line there is a solution x with x(0) = x0. If x0

is the zero vector then this is the constant solution x = 0.) The line

through

[
1
−2

]
contains solutions decaying like e−2t.

The general solution is a linear combination of these two. Notice

that as time grows, the coefficient of

[
1
−2

]
varies like the square of

the coefficient of

[
1
−1

]
. When time grows large, both coefficients

become small, but the second becomes smaller much faster than the
first. Thus the trajectory becomes asymptotic to the eigenline through[

1
−1

]
. If you envision the node as a spider, the body of the spider is

oriented along the eigenline through

[
1
−1

]
.

A fundamental matrix is given by lining up the two normal modes
as columns of a matrix:

Φ =

[
e−t e−2t

−e−t −2e−2t

]
.

Since each column is a solution, any fundamental matrix itself is a
solution to ẋ = Ax in the sense that

Φ̇ = AΦ.

(Remember, premultiplying Φ by A multiplies the columns of Φ by A
separately.)

The exponential matrix is obtained by normalizing Φ, i.e. by post-
multiplying Φ by Φ(0)−1 so as to obtain a fundamental matrix which
is the identity at t = 0. Since

Φ(0) = [α1 α2] =

[
1 1
−1 −2

]
,
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Φ(0)−1 =

[
2 1
−1 −1

]
and so

eAt = Φ(t)Φ(0)−1 =

[
2e−t − e−2t e−t − e−2t

−2e−t + 2e−2t −e−t + 2e−2t

]
.

Now any IVP for this ODE is easy to solve: x = eAtx(0). For

example, if x(0) =

[
1
1

]
, then

x =

[
3e−t − 2e−2t

−3e−t + 4e−2t

]
.

Now let’s solve the original second order system, and see how the
various elements of the solution match up with the work we just did.

The key is always the fact that y = ẋ: x =

[
x
ẋ

]
.

As observed, the characteristic polynomial of (2) is the same as that
of A, so the eigenvalues of A are the roots, and we have two normal
modes: e−t and e−2t. These are the exponential solutions to (2). The
general solution is

x = ae−t + be−2t.

Note that (3) has this as top entry, and its derivative as bottom entry.

To solve general IVPs we would like to find the pair of solutions
which is normalized at t = 0 as in Section 9. These are solutions x1

and x2 such that

[
x1(0)
ẋ1(0)

]
=

[
1
0

]
and

[
x2(0)
ẋ2(0)

]
=

[
0
1

]
. This

says exactly that we are looking for the columns of the normalized
fundamental matrix eAt! Thus we can read off x1 and x2 from the top
row of eAt:

x1 = 2e−t − e−2t, x2 = e−t − e−2t.

The bottom row of eAt is of course exactly the derivative of the top
row.

The process of finding Φ(0)−1 is precisely the same as the process
of finding the numbers a, b, c, d such that x1 = ae−t + be−2t and x2 =
ce−t + de−2t form a normalized pair of solutions. If A is the companion
matrix for a second order homogeneous LTI equation, then the entries
in the top row of eAt constitute the pair of solutions of the original
equation normalized at t = 0.
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31. Phase portraits in two dimensions

This section presents a very condensed summary of the behavior of
two dimensional linear systems, followed by a catalogue of linear phase
portraits. A much richer understanding of this gallery can be achieved
using the Mathlets Linear Phase Portraits: Cursor Entry and Linear

Phase Portraits: Matrix Entry.

31.1. Phase portraits and eigenvectors. It is convenient to rep-
resent the solutions of an autonomous system ẋ = f(x) (where x =[
x
y

]
) by means of a phase portrait. The x, y plane is called the phase

plane (because a point in it represents the state or phase of a system).
The phase portrait is a representative sampling of trajectories of the
system. A trajectory is the directed path traced out by a solution. It
does not include information about the time at which solutions pass
through various points (which will depend upon when the clock was
set), nor does it display the speed at which the solution passes through
the point—only the direction of travel. Still, it conveys essential in-
formation about the qualitative behavior of solutions of the system of
equations.

The building blocks for the phase portrait of a general system will be
the phase portraits of homogeneous linear constant coefficient systems:
ẋ = Ax, where A is a constant square matrix. Notice that this equation
is autonomous!

The phase portraits of these linear systems display a startling variety
of shapes and behavior. We’ll want names for them, and the names I’ll
use differ slightly from the names used in the book and in some other
sources.

One thing that can be read off from the phase portrait is the stabil-
ity properties of the system. A linear autonomous system is unstable
if most of its solutions tend to infinity with time. (The meaning of
“most” will become clearer below.) It is asymptotically stable if all of
its solutions tend to 0 as t goes to ∞. Finally it is neutrally stable if
none of its solutions tend to infinity with time but most of them do not
tend to zero either. It is an interesting fact that any linear autonomous
system exhibits one of these three behaviors.

The characteristic polynomial of a square matrix A is defined to be

pA(s) = det(A− sI).
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If A is n× n, this polynomial has the following form:

pA(s) = (−s)n + (trA)(−s)n−1 + · · ·+ (detA),

where the dots represent less familiar combinations of the entries of A.

When A is 2× 2, say A =

[
a b
c d

]
, this reads

pA(s) = s2 − (trA)s+ (detA).

We remind the reader that in this case, when

A =

[
a b
c d

]
,

trA = a+ d , detA = ad− bc.

From the eigenvalues we may reconstruct trA and detA, since

pA(s) = (s− λ1)(s− λ2) = s2 − (λ1 + λ2)s+ λ1λ2

implies
trA = λ1 + λ2, detA = λ1λ2.

Thus giving the trace and the determinant is equivalent to giving the
pair of eigenvalues.

Recall that the general solution to a system ẋ = Ax is usually of the
form c1e

λ1tα1 + c2e
λ2tα2, where λ1, λ2 are the eigenvalues of the matrix

A and α1, α2 are corresponding nonzero eigenvectors. The eigenvalues
by themselves usually describe most of the gross structure of the phase
portrait.

There are two caveats. First, this is not necessarily the case if the
eigenvalues coincide. In two dimensions, when the eigenvalues coin-
cide one of two things happens. (1) The complete case. Then A =[
λ1 0
0 λ1

]
, every vector is an eigenvector (for the eigenvalue λ1 = λ2),

and the general solution is eλ1tα where α is any vector. (2) The defec-
tive case. (This covers all the other matrices with repeated eigenvalues,
so if you discover your eigenvalues are repeated and you are not diag-
onal, then you are defective.) Then there is (up to multiple) only one
eigenvector, α1, and the general solution is x = eλ1t(c1α1 +c2(tα1 +β)),
where β is a vector such that (A−λ1I)β = α1. (Such a vector β always
exists in this situation, and is unique up to addition of a multiple of
α1.)

The second caveat is that the eigenvalues may be non-real. They will
then form a complex conjugate pair. The eigenvectors will also be non-
real, and if α1 is an eigenvector for λ1 then α2 = α1 is an eigenvector
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for λ2 = λ1. Independent real solutions may be obtained by taking the
real and imaginary parts of either eλ1tα1 or eλ2tα2. (These two have the
same real parts and their imaginary parts differ only in sign.) This will
give solutions of the general form eat times a vector whose coordinates
are linear combinations of cos(ωt) and sin(ωt), where the eigenvalues
are a± iω.

Each of these caveats represents a failure of the eigenvalues by them-
selves to determine major aspects of the phase portrait. In the case of
repeated eigenvalue, you get a defective node or a star node, depending
upon whether you are in the defective case or the complete case. In the
case of non-real eigenvalues you know you have a spiral (or a center, if
the real part is zero); you know whether it is stable or unstable (look
at the sign of the real part of the eigenvalues); but you do not know
from the eigenvalues alone which way the spiral is spiraling, clockwise
or counterclockwise.

31.2. The (tr, det) plane and structural stability. We are now con-
fronted with a large collection of autonomous systems, the linear two-
dimensional systems ẋ = Ax. This collection is parametrized by the
four entries in the matrix. We have understood that much of the be-
havior of such a system is determined by two particular combinations
of these four parameters, namely the trace and the determinant.

So we will consider now an entire plane with coordinates (T,D).
Whenever we pick a point on this plane, we will be considering the
linear autonomous systems whose matrix has trace T and determinant
D.

Such a matrix is not well-defined. For given (T,D) there are always
infinitely many matrices A with trA = T and detA = D. One example
is the “companion matrix,”

A =

[
0 1
−D T

]
.

This is a particularly important example, because it represents the
system corresponding to the LTI equation ẍ−T ẋ+Dx = 0, via y = ẋ.
(I’m sorry about the notation here. T and D are just numbers; Dx
does not signify the derivative of x.)

The (T,D) plane divides into several parts according to the appear-
ance of the phase portrait of the corresponding matrices. The impor-
tant regions are as follows.
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If D < 0, the eigenvalues are real and of opposite sign, and the
phase portrait is a saddle (which is always unstable).

If 0 < D < T 2/4, the eigenvalues are real, distinct, and of the
same sign, and the phase portrait is a node, stable if T < 0,
unstable if T > 0.

If 0 < T 2/4 < D, the eigenvalues are neither real nor purely
imaginary, and the phase portrait is a spiral, stable if T < 0,
unstable if T > 0.

These three regions cover the whole of the (T,D) except for the
curves separating them from each other, and so are them most com-
monly encountered and the most important cases. Suppose I have a
matrix A with (trA, detA) in one of these regions. If someone kicks my
matrix, so that its entries change slightly, I don’t have to worry; if the
change was small enough, the new matrix will be in the same region
and the character of the phase portrait won’t have changed very much.
This is a feature known as “structural stability.”

The remainder of the (T,D) plane is populated by matrices exhibit-
ing various other phase portrait types. They are structurally unstable,
in the sense that arbitrarily small perturbations of their entries can,
and almost always will, result in a matrix with phase portrait of a dif-
ferent type. For example, when 0 < D and T = 0, the eigenvalues are
purely imaginary, and the phase portrait is a center. But most per-
turbations of such a matrix will result in one whose eigenvalues have
nonzero real part and hence whose phase portrait is a spiral.

31.3. The portrait gallery. Now for the dictionary of phase por-
traits. In the pictures which accompany these descriptions some ele-
ments are necessarily chosen at random. For one thing, most of the
time there will be two independent eigenlines (i.e., lines through the
origin made up of eigenvectors). Below, if these are real they will be

the lines through α1 =

[
1
1

]
and α2 =

[
1
0

]
. If there is only one

eigendirection (this only happens if λ1 = λ2 and is then called the “de-

fective case”) it will be the line through α1 =

[
1
1

]
. If they are not

real, they are conjugate to each other and hence distinct. The question
of how they influence the phase portrait is more complex and will not
be addressed.
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Name: Spiral.

Eigenvalues: Neither real nor purely imaginary: 0 6= tr2/4 < det.

Stability: Stable if tr < 0, unstable if tr > 0.

x ’ =  2 x + 5 y
y ’ =  2 x + 4 y
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Name: Node.

Eigenvalues: Real, same sign: 0 < det < tr2/4.

Stability: Stable if tr < 0, unstable if tr > 0.

x ’ = 2 x  y
y ’ = y      

 
 

 
 

4 3 2 1 0 1 2 3 4

4

3

2

1

0

1

2

3

4

x

y



143

Name: Saddle.

Eigenvalues: Real, opposite sign: det < 0.

Stability: Unstable.

x ’ = x  2 y
y ’ =  y    
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Name: Center.

Eigenvalues: Purely imaginary, nonzero: tr = 0, det > 0.

Stability: Neutrally stable.

x ’ = 2 x  3 y
y ’ = 2 x  2 y
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Name: Defective Node.

Eigenvalues: Repeated (hence real) but nonzero: det = tr2/4 > 0;
defective.

Stability: Stable if tr < 0, unstable if tr > 0.

x ’ = 2 x  y
y ’ = x      
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Name: Star Node.

Eigenvalues: Repeated (hence real) but nonzero; complete: det =
tr2/4 > 0.

Stability: Stable if tr < 0, unstable if tr > 0.

x ’ = x
y ’ = y
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Name: Degenerate: Comb.

Eigenvalues: One zero (hence both real).

Stability: Stable if tr < 0, unstable if tr > 0.

x ’ = y
y ’ = y

 
 

 
 

4 3 2 1 0 1 2 3 4

4

3

2

1

0

1

2

3

4

x

y

Name: Degenerate: Parallel Lines.

Eigenvalues: Both zero: tr = det = 0; defective.

Stability: Unstable.

x ’ = x  y
y ’ = x  y
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Name: Degenerate: Everywhere fixed; A =

[
0 0
0 0

]
.

Eigenvalues: Both zero: tr = det = 0; complete.

Stability: Neutrally stable.

(No picture; every point is a constant solution.)
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