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 Annals of Mathematics, 120 (1984), 39-87

 The Sullivan conjecture on maps from
 classifying spaces

 By HAYNES MILLER*

 Dedicated to John C. Moore

 on the occasion of his sixtieth birthday

 Introduction

 In this paper we shall prove the following theorem, resolving in the
 affirmative a conjecture of D. Sullivan [40: p. 5.118].

 THEOREM A. Let G be a discrete group which is locally finite (i.e. every
 finitely generated subgroup is finite), and let X be a connected finite dimensional

 CW complex. Then the space of pointed maps to X from the classifying space of
 G has the weak homotopy type of a point:

 7T*map*( BG,X) = 0.

 This theorem presents a curious feature of loop spaces of finite dimensional
 complexes X: For any n > 0 and any locally finite group G, every pointed map
 BG -- Q'X is null-homotopic through pointed maps. Thus for example no
 essential map from RPm to Q2X can be extended over RPrns for all s.

 Alex Zabrodsky has pointed out that the following extension is a corollary.

 THEOREM A'. Let W be a connected CW complex such that each homotopy
 group gi(W) is locally finite and such that 7Ti(W) is nonzero for only finitely
 many i. Let X be a connected finite dimensional CW complex. Then

 7T*map*(W, X) = 0.

 We give the simple deduction of this from Theorem A in Section 9.

 Zabrodsky [44] has carried this further, to obtain information even when 77 *(W)
 is not torsion. We remark also that C. McGibbon and J. Neisendorfer [28] have
 used Theorem A (or rather, Theorem C below) to prove the conjecture of J-P.

 *Supported in part by the Alfred P. Sloan Foundation and NSF grants MCS-8108814(AO1)
 and MCS-8300838.
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 40 HAYNES MILLER

 Serre [38]: Let X be a simply connected space such that H*(X; Fp) is nonzero
 for only finitely many degrees. Then either 7 *(X) contains no elements of order

 p at all, or it contains them in arbitrarily large dimensions.

 One may view Theorem A as an unstable analogue of the Burnside ring

 conjecture of G. B. Segal [2]. A proof of this conjecture has recently been

 completed by G. Carlsson. For a finite group G, it computes the stable
 cohomotopy of BG, and asserts, among other things, that

 {BG,Sq} = [BG, lim QnSn+q]

 is trivial for q > 0. On the other hand if q < 0 it predicts that { B, Sq 4 will be

 nonzero-indeed, when q = 0, it will generally be uncountable. This is in

 contrast to the consequence of Theorem A: For any q E Z,

 lim [BG, UnSn+q] = 0.
 n

 The moral one draws is that none of the essential maps to liM5nSn+q can be

 compressed to QnSn+q, for any n. This may be regarded as a dramatic instance

 of J. F. Adams' dictum [1], "Cells now, maps later."

 We will now outline the proof of Theorem A. There are three subsidiary

 results. Two use the notion of a nilpotent space [11: II, 4.3, p. 59]. This is a

 path-connected space such that vi is nilpotent and acts nilpotently on 7Tn for all
 n > 1. Also, we say that a graded abelian group is bounded provided that it is

 nonzero in only finitely many degrees. Finally, all classifying spaces will be

 assumed to be CW complexes, and all base points will be vertices. Zp denotes
 the group of order p.

 THEOREM B. Let X be a finite dimensional CW complex and G a torsion

 group. Then any pointed map BG -* X induces the trivial map of fundamental
 groups.

 THEOREM C. Let X be a nilpotent space such that H*(X; Fp) is bounded.
 Then map*(BZP, X) is weakly contractible.

 THEOREM D. Let X be a nilpotent space and G a locally finite group.

 Assume that map*(BZP, X) is weakly contractible for every prime p occurring
 as the order of an element of G. Then map*(BG, X) is weakly contractible.

 Note that Theorems C and D provide a strengthening of Theorem A in case

 X is nilpotent: all that is required for map*(BG, X) to be weakly contractible is

 that H*(X; Fp) be bounded for every prime p occurring as the order of an
 element of G. This strengthening extends to Theorem A' as well.

 To prove Theorem A, take an element of g,,map*(BG, X) and form its
 adjoint, f: >2'BG -* X. (It is now apparent that we intend the compactly
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 THE SULLIVAN CONJECTURE 41

 generated topology [42: I, ? 4] associated to the usual compact open topology on

 all mapping spaces.) The map f lifts to the universal cover of X: if n > 0 this is

 obvious, while in the other case we appeal to Theorem B. We may thus assume

 that X is simply connected, and so in particular nilpotent; and Theorems C and

 D then finish the proof.

 Most of the paper is written in the setting of simplicial sets. The standard

 comparison theorems (see [11: VIII, ? 4], for example) easily provide a transla-

 tion.

 We conclude the introduction by sketching the proofs of Theorems B, C,

 and D, and explaining the organization of the paper.

 Theorem B is an exercise in covering spaces and K-theory; it is carried out

 in Section 10. Theorem D also is not a long story, though more technical; the

 essential idea is to find a replacement for B(G/H) when H is not a normal

 subgroup of G, and use it in an induction. This is done, following an approach
 due to M. J. Hopkins, in Section 9.

 Theorem C is the heart of the matter. In Section 1, we recall work of

 Bousfield, Dror, Dwyer, and Kan, showing that it would suffice to prove that

 certain Ext sets

 (*) Ext{A(H*(>2 BZP), H*(X))

 are zero for all n ? s. These are defined cosimplicially, and depend on the
 structure of H*(X) both as a coalgebra and as a module over the Steenrod

 algebra A. When n = s = 0 we have only a pointed set, but its triviality in this

 case is easy (1.15). When n > 0, H*(2:nBZP) is a cogroup object, and (*) forms
 a group-indeed, an Fp-vector space. There is then a standard homological
 technique for tweezing apart the effects of the two structures, recalled in Section

 2. This allows us to proceed in two steps: (1) show that the relevant homological

 construction on coalgebras (namely, formation of the derived functors of primi-

 tives) preserves boundedness (Theorem 2.6); and (2) show that the relevant

 homological construction on unstable A-modules (namely, formation of the

 derived functors of HomA(H*(2:nBZP), -)) yields zero given bounded input
 (Theorem 2.7).

 Step (1) is carried out in Sections 3, 4, and 5. In these sections we choose to

 work with algebras and simplicial objects, rather than with coalgebras and

 cosimplicial objects, because of their greater familiarity and in order to make

 reference to other work easier. As explained at the end of Section 5, the

 dualization causes no trouble.

 In Section 3 we review in our context D. G. Quillen's "homotopical

 algebra" setting for studying derived functors from nonadditive categories. This
 is useful as an orientation, and is moreover essential in the proof. The derived
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 42 HAYNES MILLER

 functors of indecomposables are defined and generalized to the "Quillen homol-

 ogy" of a simplicial supplemented commutative graded Fp-algebra. A new
 element here is the introduction of a canonical resolution. This resolution is

 naturally filtered, and the resulting spectral sequence is studied in Section 4.

 When combined with a small amount of computation, it leads to a boundedness

 result (Theorem 4.2) for Quillen homology. Finally, in Section 5, the Eilenberg-

 MacLane W construction is studied, and shown to serve as a suspension in this

 theory: its application merely shifts the degrees of the Quillen homology. The

 boundedness result of the preceding section then easily yields the required result

 for derived functors of indecomposables (Theorem 5.1).

 Theorem 5.1, incidentally, results in a logarithmic "lower vanishing curve"

 for E2 of the Bousfield-Kan unstable Adams spectral sequence [10] for a space
 with bounded modp homology. This is given as Theorem 8.9 below, and may

 have some independent interest.

 Step (2) is carried out in Sections 6 and 8. The vanishing result for

 Exts(H*(>EnBZp), -) in the category of unstable right A-modules follows easily
 from the surprising fact that H*(BZP) is a summand over A of a direct limit of
 projective objects. This splitting result is due to G. Carlsson [14] when p = 2,

 and provided the initial motivation for the entire project. Carlsson's proof must

 be modified somewhat to deal with odd primes. The projective objects turn out to

 be familiar: each is the homology of the Spanier-Whitehead dual of a Brown-

 Gitler spectrum [12], [16]. This observation leads to a novel characterization of

 Brown-Gitler spectra, presented in Section 7.

 In summary, the proof proceeds by constructing a long chain of spectral

 sequences and then showing that, miraculously, the initial term of the initial

 spectral sequence is trivial. It may be used somewhat more generally to address

 the following question. Suppose that H*(W; Z) is altogether p-torsion. Is

 map*(W, X) weakly contractible for every nilpotent space X with bounded

 mod p homology? The work gives a sufficient condition entirely in terms of the

 A-module structure of H*(W; Fp); see Theorem 8.8.

 Acknowledgements. I have been helped in this work in specific ways by

 many mathematicians, among whom I especially want to thank: Pete Bousfield,

 who provided the statement and proof of Theorem 1.5 in its present form, and

 who let me see his unpublished manuscripts [7] and [8], which were important in

 earlier proofs of Theorem 5.1 and which contained an idea present in the current

 proof as well; Gunnar Carlsson, for an early draft of [14]; Bill Dwyer, for a useful

 conversation on a British Rail train about derived functors of indecomposables;

 John Harper, for pointing out the projectives of Section 6 to me, and for many

 tutorials on Massey-Peterson towers, which were used in earlier versions of this

 work [29]; Mike Hopkins, for allowing me to use his approach to the passage
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 THE SULLIVAN CONJECTURE 43

 from Zp to arbitrary groups (Section 8); Dan Kahn, for a conversation resulting
 in the material in Section 10; Mark Mahowald, for recognizing a Brown-Gitler

 spectrum when he saw one; Jeff Smith, for tutorials on [11]; Bob Thomason, for a

 comment about the material of Section 9, and for insisting that I keep Quillen's

 book [36] on my desk; and Alex Zabrodsky, for letting me include his Theorem

 A', and for many stimulating conversations. Finally, I am grateful to Don Davis,

 John Moore, Joe Neisendorfer, and Paul Selick, who read large portions of an

 early draft and made many useful criticisms, and to Ed Curtis, for suggesting

 Theorem 8.9. It is a pleasure also to acknowledge the support of Northwestern

 University, the University of Cambridge, and the Institute for Advanced Study,

 during various stages of this work.

 Notation. We will use the following symbols. For categories:

 S = category of sets;

 S. = category of pointed sets;
 R = category of modules over a ring R.

 If C is any category,

 nC = category of nonnegatively graded objects over C;

 n+C = category of positively graded objects over C;
 sC = category of simplicial objects over C;

 s+C = category of simplicial objects over C which are connected, i.e.,
 such that the coequalizer of X1 > X0 exists and is a terminal
 object in C;

 s0C = category of cosimplicial objects over C.
 Also, if p is a prime number,

 Zp= the group with p elements;
 Fp =the field with p elements.

 Finally, H.(-) will always denote homology with coefficients in Fp for
 some prime p evident from the context.

 1. The Bousfield-Kan construction

 In this section we shall review the work of Bousfield and Kan [10], [11], as

 supplemented by Dror, Dwyer, and Kan [17], insofar as it is relevant to our

 approach to the Sullivan conjecture. Their work results in a homological criterion,
 applicable under suitable conditions, for the weak contractibility of a mapping
 space: Theorem 1.13 below.

 We remind the reader that "space" means "simplicial set."

 Bousfield and Kan begin in [11: I] by constructing, for any ring R, a
 cosimplicial "resolution" of a pointed space X. To explain this, suppose first that

 S is a pointed set: S E S*. Let KS be the free R-module generated by S, modulo
 the relation [*] = 0, where * is the basepoint of S. There are natural transforma-
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 44 HAYNES MILLER

 tions 7,: S -* RS and w: RRS -* RS, by 71(s) = [s] and p(r[r'[s]]) = rr'[s], and
 (R, ptri) forms a triple [5].

 Any triple (T, A, q) on a category C determines a functor T: C -i s0C to
 the category of cosimplicial objects [11: X.2.1, p. 267] over C:

 (T-C)n = Tn+ C

 (1.1) di = T',qTn-iC: Tn-1C TnC,

 Si = T tT'-'C: Tn+'C T`C.

 Moreover, r): C -* (T*C)0 determines a "coaugmentation," a map from the
 constant cosimplicial object C with C in each codegree.

 Thus we have, for X E sS*, a map X -* RX of cosimplicial pointed spaces.
 RlX is naturally group-like [11: X.4.8, p. 275]: (R-X)n has a natural group

 structure for each n > 0, and each codegeneracy map s' is a homomorphism.
 Bousfield and Kan next show how to "collapse" a cosimplicial space X to

 obtain a space tot X. For this, notice that there is a "tautologous" cosimplicial

 space A, with the simplicial n-simplex An in codegree n and with the evident

 cosimplicial operators. This object enables one to define, for any W, X E s'sS, a

 mapping space map (W, X) E sS with

 map(W, X)n = sOsS(An x W, X).

 Here An x W denotes the evident product in s~sS.

 The most naive thing one could do now is take W = *. The resulting space

 may be described using "cohomotopy": for C E s?S, let 7T0(C) denote the
 equalizer in

 do

 (1.2) 7? C

 For X e sosS, then, 7T0(X) is a space, and

 map(*,X) = 7T0(X).

 This is clearly not an adequate invariant of X, and one phrasing of the reason is

 that * is not "cofibrant" in the model category structure on s~sS [11: X ? 5,

 p. 277]. It is weakly equivalent in that structure to A, however, which, as it turns

 out, is cofibrant; so define

 (1.3) tot X = map(A, X).

 An immediate consequence of the definition is that if X e sS then naturally

 totX = X.
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 THE SULLIVAN CONJECTURE 45

 Also:

 LEMMA 1.4. If W E sS. and X E s'sS., then naturally

 map.(W, tot X) = tot map*(W,X). X

 If R is a ring and X E sS., then the map of pointed spaces
 77 - def

 X = tot X tot R-X = RooX

 is the Bousfield-Kan R-completion of X. The first question to ask is: How close is

 iq to being a weak equivalence? Since we are interested in mapping spaces, the
 following theorem is suitable for our purposes. We thank A. K. Bousfield for the

 statement and proof in the present generality.

 THEOREM 1.5. Let W be a connected space such that H*(W; Z[l/p]) = 0,

 and let X be a nilpotent fibrant space. Then q: X -* FPX induces a weak
 equivalence

 map*(W, X) -* map*(W, FpoX).

 Proof Recall from [17] that there is up to homotopy a fiber square

 X H xzl

 I~~~~ XQ -~(HX 1)Q

 where XG denotes the Bousfield H*(- ; G)-localization of X [9]. Thus there is,
 up to homotopy, an analogous fiber square of mapping spaces with source space

 W. Now Proposition 12.2 of [9] easily implies that map*(B, C) is contractible
 whenever B is h*-acyclic and C is h*-local. If h*(-) = H*(- ;Z[l/p]), it
 follows that map*(W, YG) - *, where Y is any space and G = Q or G = Z1 with
 I # p. Thus the fiber square implies that the map

 map*(W, X) -* map*(W, Xz )

 is an equivalence, and the proposition follows since Xz - FpoX by [9: ? 4]. z

 Using Lemma 1.4 we may rewrite the weak equivalence resulting from
 Theorem 1.5 as

 (1.6) map*(W, X) -* tot map*( W, FX).

 The cosimplicial space map*(W, F;X) is group-like since F;X is. We now recall
 that if X E s'sS* is group-like (or even merely "fibrant" [11: X.4.6, p. 275]),
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 46 HAYNES MILLER

 Bousfield and Kan provide a condition guaranteeing that tot X is k-connected. It

 is expressed in terms of "cohomotopy." If C E s'S*, then we defined the pointed
 set 7T0(C) in (1.2). If C is a cosimplicial abelian group we may define 77'(C) for

 all n ? 0 as the nth cohomology group of the cochain complex with C' in

 degree n and boundary map I(- 1)'d'.

 PROPOSITION 1.7 [11: X.7.3, p. 285]. Let k > 0 and let X E s'sS* be

 group-like. If 7rs7rt(X) = 0 for 0 < t - s < k, then jr(tot X) = 0 for r < k. El

 Notice that when t = 0, so that gt(X) is merely a cosimplicial pointed set
 and only 77.77t(X) is defined, we have only to consider s = 0. When t > 0, gt(X)
 is a cosimplicial abelian group (since X is group-like) so that 7gs'gt(X) is defined
 and is an abelian group for all s > 0. Only the groups for which s < t are

 relevant to us at present, however; the significance of the groups 77 sgt(X) for
 s > t is an interesting question.

 The objects gTsTt map*(W, F;X) were described in earlier work [10] of
 Bousfield and Kan, as follows. Let CA be the category of connected commutative

 graded Fp-coalgebras without unit, with a right action of the Steenrod algebra A
 which is

 (1.8) unstable

 xP'=0 if lxl <2pn- 1,

 xfP' = 0 if Jxl < 2pn + 1
 (here and throughout the paper, we adopt the convention that if p = 2 then

 Pn = Sq2n and /3 = Sq', so that /Ppn = Sq2n+1);

 (1.9) compatible with the diagonal-l: C -* C ? C is
 A-linear, when we allow A to act diagonally on the

 tensor product;

 (1.10) related to the Verscheibung (: Cpk * Ck by

 (x = xSqn if p = 2 and JxJ = 2n,
 =xpn if p>2andlxl=2pn.

 There is an adjoint pair, with left adjoint the forgetful functor I:

 G
 (1. 11) n+Fp CA

 (and indeed, CA is the category of coalgebras over the resulting cotriple on

 n+Fp). Write G also for the resulting triple on CA [10].
 Mod p homology of pointed connected spaces naturally takes values in CA,

 and the triple G is compatible with the triple Fp on s + S*: there is a natural
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 THE SULLIVAN CONJECTURE 47

 isomorphism 6 such that the following diagram commutes.

 lH-* (X) H*(X)

 0

 -* (-X ) >GH*(X)

 H * Fp X GH* FpX ) G GH*(X )

 Moreover, for any connected simplicial vector space V E sFp and any pointed
 connected simplicial set W E s + S *, the natural map

 [W, V] -* HomCA(H*(W) H*(V))

 is an isomorphism. We stress that here H*(V) denotes the reduced mod p
 homology of V as a pointed simplicial set. It follows that

 7Ttmap* W, F;X)-tw~ F;X] HomCA(H*(EtW)5 G-H()

 The right-hand side here is a cosimplicial vector space when t > 0, and its
 cohomotopy deserves to be called the derived functor of HomCA(H*(2tW), -)
 evaluated at H*(X). Thus we may write (for s = 0 only, if t = 0)

 (1.12) 7TS7Ttmap*(W. FpX) = ExtCA(H*(ItW), H*(X)).

 Combining (1.5), (1.7), and (1.12), we have

 THEOREM 1.13. Let W be a connected space such that H*(W; Z[l/p]) = 0,
 and let X be a nilpotent fibrant space. If

 Ext CA(H*(ItW), H*(X)) = 0

 for all s, t > 0 with 0 < t - s < k, then

 7Trmap*(WX) = 0

 for all r < k. D

 Theorem C of the introduction results from this and the following theorem,
 whose proof will occupy six of the next seven sections.

 THEOREM 1.14. If s 0 and t> 0, or ifs = t = 0, then

 ExtsA(H*(1tBZP), C) = 0

 provided that C e CA is bounded.
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 48 HAYNES MILLER

 We can make a start on proving this theorem without further ado. If s = 0,
 the result is implied by

 LEMMA 1.15. If M is a bounded A-module then

 HomA(H*(tBZ,), M) = 0.

 Proof This is a consequence of the fact that every element of H*(>tBZp) is
 hit by a positive-dimensional Steenrod operation. D

 2. A Grothendieck spectral sequence for triple-derived functors

 Our goal is to establish a spectral sequence which will enable us to study

 separately the effects on the groups ExtcA(H*(EnBZP), C) of the diagonal in C
 and of the action of the Steenrod algebra on C.

 We begin by establishing general notation for triple-derived functors [5]. So
 let S be a triple on a category B and let E: B A be a functor to some abelian
 category. Then (1.1) displays a functor S: B s0B to cosimplicial objects over
 B. Apply E and evaluate the cohomotopy-i.e. the cohomology of the associated
 cochain complex-of the result:

 (2.1) RsE(B) = 7Ts(ES-B).

 If the triple is evident from the context it will be omitted from the notation.

 There is a natural map

 (2.2) 'rB: E(B) -* R0E(B)

 and we will say that B is RME-acyclic if qB is an isomorphism and Rs E(B) = 0
 for s > 0. The functor E is S-exact when every object of B is R*E-acyclic.

 There is of course a categorically dual definition of the (left) derived functors

 of E with respect to a cotriple G on the source category B; we write LG E for
 these. They will be used in Sections 3, 4, and 5.

 The category CA of unstable A-coalgebras is closely related to two other
 categories.

 (2.3) The category U of right A-modules satisfying the unstable condition

 (1.8). In particular, Mi = 0 for i < 0, since Po = 1. There is an evident adjoint
 pair

 F

 nFp T U

 between U and the category of nonnegatively graded Fp vector spaces. The right
 adjoint F of the forgetful functor sends a vector space M to the subspace of all
 elements satisfying the unstable condition in the A-module Hom(A, M), with A

 acting by (fa)(P3) = f(a13), a, ,B e A. It is easy to see that U is abelian, that it
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 THE SULLIVAN CONJECTURE 49

 has enough injectives, and that the injectives are exactly the F-injectives, i.e.

 summands of objects of the form F(M). Given M E U, Homu(M, -) is an

 additive functor to Fp (not to nFp), and we denote by Ext' (M, -) its sth
 derived functor.

 (2.4) The category C of connected commutative graded Fp-coalgebras
 without unit. There is an evident adjoint pair

 n+Fp ?= C

 between C and the category of positively graded Fr-vector spaces. We will
 occasionally consider the analogous category of coalgebras over a field k other

 than Fp: We then write Ck. The right adjoint S' of the forgetful functor sends a
 positively graded vector space M to the largest commutative subcoalgebra of the
 tensor coalgebra without unit T'M. Denote the resulting triple on C by S'. The

 vector space of primitives in C E C is PC = ker(A: C -* C 0 C). This gives a

 functor P: C -* n + Fp, whose S'-derived functors RSP( -) will be of interest. It is
 easy to check that -q: P(C) -* R?P(C) is an isomorphism.

 We may regard C E CA as a coalgebra and form its module of primitives.

 By (1.9) this is an A-module; by (1.8) it is unstable; and by (1.10) it is in fact a
 suspension in U. Write

 -7'P: CA -* U

 for the resulting functor. It has a left adjoint 1: U -* CA sending M in U to the
 A-module IM, with trivial diagonal. Thus we have a factorization

 HomCA(IM, -) = Homu(M ,-) )o P( ).

 THEOREM 2.5. (i) There is a convergent cohomological spectral sequence

 ES't = Ext' (M, Rt (Y-'P)(C)) => Exts(EM, C)

 natural in ME U and CE CA.

 (ii) There is for each t an isomorphism of graded vector spaces

 Rt (E - )(C) _ E- RtR,P(C)

 natural in C E CA.

 Before proving this theorem, we note that together with Lemma 1.15 it

 allows us to obtain Theorem 1.14 from the next two results. Recall that a graded
 vector space is bounded if it is zero in almost all degrees.

 THEOREM 2.6. If C E C is bounded, then RtP(C) is bounded for each
 t> 0.
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 50 HAYNES MILLER

 THEOREM 2.7. If N E U is bounded, then

 Ext' H BZp), N = 0

 for all s > 0 and n > 0.

 Sections 3, 4, and 5 are devoted to a proof of Theorem 2.6, and Sections 6

 and 8 contain a proof of Theorem 2.7.

 Remark 2.8. It is possible to prove certain cases of the Sullivan conjecture

 using only the following result of M. Andre [3: IX], rather than the sharper

 Theorem 2.6.

 THEOREM 2.9. Let C E Ck. If PC is bounded and of finite type, then so is

 RtP(C).

 Fix a locally finite group G. Theorem 2.9 suffices in the proof that

 map*(BG, X) is weakly contractible provided that the target space X is a

 nilpotent CW complex whose mod p homology is bounded and of finite type for

 each prime p occurring as the order of an element of G, or is a finite dimensional
 CW complex admitting such a space as a covering space.

 Actually, Andre derives functors with respect to the triple on Ck induced

 from the forgetful functor from Ck to the category n ? S of positively graded sets,

 rather than to the category n ? Fp as is done here. However, Proposition 2.11 may
 easily be used to show that the two derived functors coincide. This also follows

 from Theorem 3.4 (i) below. Moreover, Andre works in the setting of ungraded

 algebras; but neither the extension to graded objects nor the subsequent dualiza-

 tion poses a problem. Of course, it is immediate that if C E Ck is of finite type

 then RSP(C) is of finite type, so that Theorem 2.9 is a corollary of Theorem 2.6.

 We will establish a general "Grothendieck spectral sequence" for triple-

 derived functors. Such spectral sequences have been studied before: cf. [6]
 (where, however, a condition like (2.13) (b) was omitted). Our setting will be

 (2.10)
 F E

 C -* B --*A

 T S

 where T is a triple on C, S is a triple on B, A is an abelian category, and F and
 E are functors.
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 THE SULLIVAN CONJECTURE 51

 PROPOSITION 2.11. In the context of (2.10), assume that

 (a) FTC is RsE-acyclic for all C E C, and

 (b) ESs+F is T-exact for all s ? 0.

 Then there is a natural isomorphism

 R*E(FC) _ R*(EF)(C).

 Proof Consider the augmentations

 EFTC -* ESFTC - ES*FC

 and the associated maps of double cochain complexes. Filter the left one by
 degree in T-; (a) implies that at E1 the map is an isomorphism. Filter the right
 one by degree in S; (b) implies that at E1 the map is an isomorphism. So both
 maps of total complexes are homology isomorphisms. M

 Remark 2.12. On (a): If B E B is S-injective-that is, if q: B -* SB is a
 split monomorphism-then it is easy to construct a contractiond') for B -* SB
 [5: (2.1), p. 264]. So one may assure (a) by assuming that FTC is S-injective for
 all C E C.

 On (b): Assume that T arises from an adjoint pair

 D C
 a

 and suppose that for each s > 0 the functor ESS? F factors through a. Now it is
 easy to construct a contraction for aC -* aTC, and so ESs+LFC - ESs+LFT C
 inherits one as well. Thus (b) holds in this situation.

 PROPOSITION 2.13. In the context of (2.10), assume further that B is
 abelian, and that

 (a) FTC is R*E-acyclic for all C E C, and
 (b) ESs+l: B -* A is exact for all s > 0.

 Then there is a convergent cohomological spectral sequence

 Es t = RsE(Rt F(C)) =* RsT(EF)(C).

 (')An augmentation of a simplicial object X e sC is a map e: X -+ A to a constant simplicial
 object: that is, E: XO -M A such that -do = cdl. A contraction of an augmented simplicial object E:
 X -A is a map ii: A- XO together with maps h: X X +rI which behave like " s1:

 hs1 =sj+ 1h, j > O,

 doh = 1 = 7,

 dih = hdi-1, i > O.

 If C is abelian, a contraction for - defines a chain homotopy inverse for the map of associated chain
 complexes induced by c, and - thus induces an isomorphism in homotopy. Dual remarks apply in
 the cosimplicial situation under consideration here.
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 Proof Form ES-FT-C again, and look at the associated double cochain

 complex. Filter by degree in T-; (a) implies that

 ES't= { EFTs+'C t = 0
 0 tt> 0,

 so the spectral sequence collapses to an isomorphism of the homology of the total

 complex with R*(EF)(C). The spectral sequence of the theorem is obtained by

 filtering by degree in S; we have established its abutment. In it, (b) implies that

 Es t = ESs+l(Rt F(C))

 so that E2 has the desired form.

 Remark 2.14. If FTC is always S-injective then of course (a) holds. If ES:

 B -- A and S: B -* B are both exact, then of course (b) holds.

 Proof of Theorem 2.5. (i) For (2.10) take

 y.-'p Homu(M,-)

 CA- U - ~Fp.

 G F

 The conditions of Remark 2.14 are easily checked, and a spectral sequence of the
 indicated form results.

 (ii) For (2.10) take

 0 P

 CA- C --nFp

 G S'

 where <) is the forgetful functor. For any ME n + Fp, GM is infective as a
 coalgebra, so by Remark 2.12, (2.11) (a) holds. The triple G arises from an

 adjoint pair

 G

 n+Fp 2 CA,

 and PS's+14)(C) = SS4)(C) depends only on the underlying vector space of C;
 so by Remark 2.12, (2.11) (b) holds too, and we have a natural isomorphism

 S*ic is ex) th R P fC).

 Since E: is exact, the second clause of Theorem 2.5 follows. [1
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 3. The homotopy theory of simplicial commutative algebras

 Our purpose in this section is to set out the definition of the Quillen
 homology of a simplicial commutative algebra. We will tailor our work to suit the

 applications, and provide some proofs even when they are special cases of the

 general results of Quillen [36], [37] and Andre [3]. In particular, we make heavier

 use of cotriples than do those authors. This is because the spectral sequence
 needed in Section 4 arises from a canonical filtration on a cotriple-generated
 resolution. We add an internal gradation to the standard accounts. Only the
 cofibration/acyclic fibration side of the simplicial closed model category struc-
 ture concerns us, so we restrict our attention to that aspect. Finally, we choose to
 work with supplemented algebras over a field k.

 Let k be a field and let Ak denote the category of supplemented commuta-
 tive graded k-algebras: henceforth, "algebras." We shall define two classes of
 morphisms in the category sAk of simplicial algebras.

 Definition 3.1. A map p: Y -- B in sAk is an acyclic fibration provided
 that it is surjective and induces an isomorphism in homotopy. A map i: A -- X
 in sAk is a cofibration provided that in any commutative diagram

 A - Y

 (3.2) 'P

 X -B

 in which p is an acyclic fibration, there is a map X -- Y making both triangles
 commute. An object X is cofibrant provided that the canonical map k -- X is a
 cofibration.

 It will be important for us to be able to recognize cofibrations, and for this
 purpose we have

 Definition 3.3. A map i: A -- X in sAk is almost free provided that there
 is a sequence of subspaces Vn c Xn such that (i) siVn C VnX for each i with
 0 < i < n, and (ii) the natural map

 An SVK-* Xn

 is an isomorphism for all n > 0.

 Here S: nk -- Ak is the free algebra functor, left adjoint to the augmenta-
 tion ideal functor.

 THEOREM 3.4. (i) Any almost free morphism is a cofibration.
 (ii) Any map A -- B admits a factorization A -) X -- B in which A -- X

 is almost free and X -* B is an acyclic fibration.
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 (iii) Suppose that in (3.2) A X is a cofibration and Y -- B is an acyclic
 fibration. Then any two maps X Y making the triangles commute are homo-
 topic under A and over B.

 Here a homotopy between maps f, g: X -) Y may be defined using

 A-algebra maps hi: Xn -- Yn+1, 0 < i < n, satisfying the identities in [27: I.5.1,
 p. 12], or, equivalently, by means of a mapping object construction YV as
 indicated in [37: p. 67].

 Notice that (i) and (ii) together imply:

 COROLLARY 3.5. A map A X in sAk is a cofibration if and only if it is a
 retract of an almost free map A Y.

 Definition 3.6. The Quillen homology of X E sAk is

 HQ(X) = 7T*(QP)

 where P -- X is an acyclic fibration and P is cofibrant.

 Theorem 3.4 guarantees that such a map exists and that the homotopy type

 of P is functorial in X. Thus HV(X) is well-defined and functorial in X E sAk.
 If X is constant then HV(X) is a sequence of derived functors defined by

 means of a cotriple in a fashion dual to (2.1). More precisely,

 PROPOSITION 3.7. If A E Ak and A e sAk is the associated constant simpli-

 cial algebra, then H2(A) coincides with the cotriple derived functors L * Q(A)

 obtained using the cotriple S associated to the adjoint pair

 S
 Ak ? nk.

 I

 Proof We shall see in the proof of Theorem 3.4 that the cotriple complex

 S.A is cofibrant. C1

 Remark 3.8. The definition of the Quillen homology of a simplicial algebra

 is indeed a case of Quillen's general notion of homology [36], [37], namely,
 derived functors of abelianization. It is easy to see that an abelian object in Ak is

 an algebra with trivial multiplication, and that the projection A -* k e QA is
 abelianization. Thus, in the notation of [37],

 LnQ(A) = Dn(A/k).

 From the point of view of commutative algebra it is more natural to consider

 D*(k/A); but the "transitivity sequence" [37: Theorem 5.1, p. 74] or [3: V,
 p. 61] shows that Dn(k/A) = Dn-l(A/k) for all n.

 Proof of Theorem 3.4. (i) We modify an argument of Kan [24]. Some
 terminology will be useful. Let A be the category whose objects are the ordered

 sets [n] = {O, 1, ... n }, n > 0, and whose morphisms are order-preserving maps.
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 A simplicial object X over a category C is then precisely a contravariant functor

 X: A -* C [27: p. 4]. If 4): [n] -* [m] is surjective then X,, = 4)* is called a
 degeneracy. The operator si, for example, is induced from the surjection ai:
 [m + 1] -* [m] which repeats the value i. If 4: [n] ? [m] is a surjection and
 n > m, we let i(+) be the largest integer such that Q(j) = j for all j < i(fp).
 Then 4) factors as 4) = ri((). Finally, we will need the following consequence of
 the Dold-Kan Theorem [27: Theorem 22.4, p. 96].

 Fact 3.9. If C is an abelian category, then for each n > m

 E+)*: e Xm --Xn
 a: [n]-*[m]

 is a monomorphism.

 Given any injection A -- X in sA0k define the "relative skeleton" filtration
 of X by letting (FmX)n be the An-subalgebra of Xn generated by degeneracies of

 elements of Xi for j < m if m < n, and(FmX)n=Xn if m > n.

 Claim 3.10. FmX is a subobject of X in sAk.

 We leave the proof of this claim, and of those below, to the reader.

 Now let A -- X be almost free, with generating vector spaces Vn c Xn. Let
 FmVn be the subspace of Vn generated by degeneracies of elements of Vj for
 j < m if m < n, and let FmVn = Vn if m > n. For fixed mi, {FmVn} is closed
 under degeneracies.

 Claim 3.11. FmXn = An ?) SFmVn.

 Therefore, A -- FmX is almost free for each m > 0, with generating vector

 spaces FmVn. We next claim that in fact Fm - 1X - Fm X is almost free for each
 m > 0. Let Wm be any subspace of Vm complementary to Fm - Vm, and let

 Wm, n E 4 *IW:r.
 p: [n] [m]

 Claim 3.12. FmVn = Wm n G Fm- Vn

 The proof of this claim uses Fact 3.9. It follows that FmiX Fm X is
 almost free, with generating vector spaces { Wm n }

 To prove (3.4) (i), it will clearly suffice to show that each Fm 1X FmX is
 a cofibration, so we now assume that A = Fmi X and FmX = X. Then for all
 n > m,

 Vn e M.*V
 p: [n] -*[m]

 The Moore normalization theorem [27: Theorem 22.2, p. 94] shows

 Claim 3.13. We may assume that diVm = 0 for all i > 0.
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 Now suppose given a commutative diagram

 A 9 __4,Y
 g

 X - B
 f

 in which p is an acyclic fibration. The dotted lifting will clearly be determined

 by its value on Vm. For W e snk, let N(W) denote the normalized chain

 complex and Z(W) the subcomplex of cycles. We have a commutative diagram:

 VM

 Zm A NmY- Nm B

 g do do

 Zrn Y ZrniB.

 Since Vm is projective, the dotted fill-in exists provided that NmY surjects to the

 evident pull-back. Now Nm(p): NmY NmB is surjective, since (by the normali-
 zation theorem) NsW is naturally a quotient of Ws. Thus the following chain-level
 fact suffices. C denotes an arbitrary abelian category.

 Claim 3.14. Let f: B -) C be a homology isomorphism of nonnegatively
 graded chain complexes over C. If f is an epimorphism then for each m, the

 map from Bm to the pull-back Pm(f) in the diagram

 Br

 f

 d\ PM(f )~ * CM
 \ I _ _ d

 ZMinB * ZmesC

 1S an epimorphism.
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 The proof of (3.4) (i) is completed by checking

 Claim 3.15. The resulting map h is simplicial.

 (ii) This is proved in [36: II.4.5], and a related proof occurs in [3: IX]. We

 give another proof, which yields a canonical factorization. For A e Ak, let

 A/Ak denote the category of morphisms in Ak from A. There is an adjoint pair

 I

 A/Ak '?nk
 sA

 in which I sends A -* X to IX = ker(X -- k), and SAM = A ? SM. Write SA
 for the associated cotriple on A/Ak, with functor SAI. We have the correspond-

 ing functor S A to simplicial objects over A/Ak, with a description dual to (1.1),

 and an augmentation SAX __ X. This is natural in the map A -) X.
 Now suppose that A is a simplicial algebra. Then application of SAn in

 degree n gives a cotriple SA on A/sAk. Given A -- X in sAk, form the
 associated simplicial object

 S.X E s(A/sAk)

 There is an augmentation SAX X, and so upon taking diagonal simplicial
 objects, a factorization

 A diagSAX X.

 We claim that p is an acyclic fibration and that i is a cofibration.

 The map p is clearly surjective. To see that it is a weak equivalence,

 suppose first that A -- X in Ak rather than in sAk. Then, as in (2.12b), there is a

 canonical contraction for the augmentation IgAX - IX as simplicial graded
 vector spaces. Thus

 (3.16) X t > O _ t=O 0

 Now suppose that A -- X in sAk. Then by the Eilenberg-Zilber-Cartier theorem

 [19: Satz 2.9] (Theorem 4.3 below) there is a spectral sequence converging to
 7 *(diag SAX) with

 Est= Xt( As.Xs) .

 By (3.16), the spectral sequence collapses at

 E2 (7{s(X) t=o
 S, t O t>0.

 The map p thus induces an isomorphism at E2, and so in homotopy.

 To check that i: X -- diag SAX is almost free, suppose first that A -* X in
 Ak. The images of the canonical contraction for the augmentation IgAX -* IX
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 then provide a generating system which is natural in A -- X. The general case
 clearly follows.

 (iii) See Quillen [37: 1.3, p. 67]. 0

 4. Boundedness of Quillen homology

 The object of this section is a proof of a boundedness assertion for Quillen
 homology. We assume that the field k is of characteristic p > 0; the characteris-
 tic 0 analogue is implied by [37: Theorem 7.3, p. 79].

 Definition 4.1. A bigraded vector space M has exponential bound c pro-

 vided that Mni = 0 for all i > cpn.
 In considering 7T *(X), HQ(X), etc., as bigraded vector spaces, the simplicial

 dimension will always be considered as the first degree.

 THEOREM 4.2. Let X be a simplicial algebra, X E sAk, over a field k of

 positive characteristic. If TO(X) = k and 7 s*(X) has exponential bound c, then
 HQ( X) also has exponential bound c.

 While this result is sufficient for our purposes, we remark that it can be

 substantially improved using the methods indicated in Remark 4.7 below.

 The proof of Theorem 4.2 uses a spectral sequence, valid over any field k,

 converging to HW(X) for X E sAk, and to describe it we begin by recalling:

 THEOREM 4.3 (Eilenberg-Zilber-Cartier [19: Satz 2.9]). If A is a bisimplicial

 abelian group, then the total complex of the double chain complex associated to
 A is naturally chain homotopy equivalent to the chain complex associated to the

 diagonal simplicial abelian group diag A.

 Thus there is a spectral sequence (one of two) converging to 7r *diag A, with

 (4.4) El, = 7Tt(As,.)
 The differential d 1 is induced by the alternating sum of the face maps in the first
 index s, so that

 (4.5) E2 =77(A).

 Let diag SX -- X be the acyclic fibration constructed in the proof of
 Proposition 3.4 (ii), with A = k. Notice that

 Qdiag S*X = diag QS*X.

 By Theorem 4.3, there is thus a spectral sequence converging to TT * Q diag S*X =
 HQ(X), with

 Es= 7T (Qgs+lX)
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 and

 Es, 7TS7Tt(Q SX ) X

 Note that QS = I: Ak -> nk, so that

 (4.6) El = gt(ISsX).

 Remark 4.7. It is easy to see from Dold's work [18] that 7T*(ISV) is a
 functor of 'T*(V) for V E snk. Write tY: nnk -* nnk for this functor; if K is the

 quasi-inverse to N [27: p. 95] then 5"(M) = 7T*(ISK(M)), where M is regarded
 as a chain complex with trivial differential. The triple structure on IS yields a

 triple with functor tY, and g *(IX) becomes an Y?-algebra in a natural way for

 X E sAk. The exact structure of Y is very complex. Let k = Fp. The homotopy
 of a simplicial algebra is an algebra with divided powers [21], [15] (on positive
 even degrees if p # 2, and on degrees greater than 1 if p = 2), and supports

 operations, "higher divided powers," studied by Bousfield [8], [9] and Dwyer
 [20]. All this explicit information leads to an explicit form of E2 of the spectral
 sequence. In the special situation considered in Section 5, the grip on E'
 becomes even tighter, as indicated in [31]. We hope to return to this topic at a
 later time.

 There is a morphism e of triples from IS to the identity triple, sending
 IS(M) to M by killing products. The functor Q may be described as the
 coequalizer

 ISIXzIX QX

 of e and the IS-algebra structure map (p for X E Ak. The morphism E induces a
 similar augmentation e: JY-) id, and we define a functor r2 on 9Yalgebras as an
 analogous coequalizer. Then it is not hard to see that the spectral sequence has
 the form

 (4.8) E = L~2(7T*(IX)) = H%)J(X).

 In particular, E2 depends functorially on 7T*(IX). If we take seriously the
 interpretation of HQ(-) as homology, then this appears as a "reverse unstable
 Adams spectral sequence." An "unstable Adams spectral sequence" was con-

 structed and exploited by Quillen in [37]. It has the form

 (4.9) Eslt = 5s(HQ(X))t = s+t(IX)

 where 9Ys is the homogeneous component of Y of degree s, related to Ss (as in
 (4.10) below) as Y is related to IS. Our spectral sequence appears to offer a
 more direct approach to the study of HQ( -). One illustration is provided by the
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 proof of Theorem 4.2, but again this is a subject to which we hope to return in

 the future.

 We hasten to point out that if X is constant, then El, = 0 for t $ 0 and the
 spectral sequence degenerates uninterestingly at E2. However, if HQ(-) is
 legitimately to be considered as a "homology theory," then it ought to commute

 up to a shift in dimension with "suspension"; and as it turns out the suspension

 of a constant object has interesting, and familiar, higher homotopy. We will study
 it in Section 5.

 Theorem 4.2 follows immediately from (4.6) and the next result.

 THEOREM 4.10. Let V E snk be a simplicial graded vector space over a field

 k of positive characteristic p. Assume that 70(V) = 0 and that 7 *(V) has
 exponential bound c. Then 7T *(ISV) again has exponential bound c.

 Remark 4.11. The proof shows that if 7 * V has exponential bound c

 through (simplicial) dimension n, then so does S *(ISV). Hence analogous
 restricted versions of Theorems 4.2 and 5.1 hold.

 Proof of (4.10). Let N be a graded k-vector space. The graded vector space

 SN then breaks up naturally as a direct sum

 SN = E Sr N
 r>O

 where SrN is the vector subspace generated by products of length r. In

 particular, SiN = N. We will show:

 (4.12)r If V E snk is such that 77OV = 0 and 7r*V has exponential bound c,
 then 7 *(SrV) has exponential bound c.

 We begin with a lemma, whose proof is deferred. In it

 :Ss N X StN Ss? t N

 is the multiplication map and

 T: Ss(StN) SstN

 is the restriction of the structure map for the triple IS on nk.

 LEMMA 4.13 [8]. Let V E snk. Let r > 0, and let e be the exponent of p in
 the prime factorization of r.

 (a) If r is not a power of p, then

 t *: 7T * (SpeV) ? r * (Sr _ peV) ST * (SrV)

 is an epimorphism.
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 (b) If r is a power of p, then

 Tp*: TT*(Sp(Spe-I V)) ST PT*(SrV)

 is an epimorphisn.

 If M and N are bigraded vector spaces each with exponential bound c, then
 M ? N again has exponential bound c. Thus Lemma 4.13 implies:

 (4.14) (4.12)r holds for r < p.

 (4.15) If (4.12)p holds (for all V) then (4.12)r holds for all r > 0 (and
 all V).

 For M E nk, let K(M, n) E snk be the object whose normalized chain

 complex is M in degree n and 0 elsewhere. Dold's theorem [18] (mentioned

 in Remark 4.7 above) shows that if 7T*(V) 7 7*(n >0K(M(n),n)) then

 o *(SpV)=T *(Sp(en,> 0K(M(n), n))). Since

 Sp(V Ew)= 3E SY v SjW,
 i+j=p

 it follows from (4.14) that we may assume that V = K(M, n), with M E nk such

 that Mi = 0 for i > cpn. Then (V.)i = 0 for i > cpn and all s, so (SpV,)i = 0 for
 all i > cpn+1 and all s. Hence 7T8(SpV)i = 0, for i > cpS automatically provided
 s > n, and the case s = n follows from:

 LEMMA 4.16. 'zn(SPK(M, n)) = 0 if n > 0.

 This completes the proof of (4.12)p and hence of (4.10), by (4.15). We turn
 to the proofs of the lemmas.

 Proof of Lemma 4.16. By the Eilenberg-Zilber theorem and the Kunneth
 theorem together with a direct limit argument, we may assume that M is
 concentrated in one degree, say d, and there is one-dimensional, with generator

 x. If p and d are both odd, then Sp K(M, n)n = 0, and the conclusion is
 trivial; so assume that pd is even. Then K(M,n) = Kx), K(M,n) n +
 ( s0x,. .., snx), and

 {x k =i or i +
 dksiX ={ otherwise

 Extend multiplicatively to SP, and compute

 dk (S0X ) P -1( s1x) _ ( P k= ThusJ\L!J (xs = s a 0 otherwise.

 Thus d((s0x)P-1(s1x)) =-xP, so that all cycles in SPK(M, n)n are boundaries.
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 Lemma 4.13 rests on the following sharper result, due to Bousfield.

 LEMMA 4.17 [8]. There exist k-linear natural transformations

 d: Ss+tN SsN 0 StN,

 e: SstN Ss(StN),
 for N E nk such that the composite

 SS+ tN -SSN X StN Ss+ tN

 is multiplication by (r + s)!/(r!s!), and the composite

 SstN A* S(stN) SstN

 is multiplication by (st)!/(s!(t!)s).

 Proof: Recall that if s, t > 0, then an (s, t)-shuffle is a permutation of
 {1,2,..., s + t } preserving the order of the subsequences { 1,..., s } and

 { s + 1,... , s + t }. Sr N is generated as a vector space by products of the form

 Xl *. Xr5 Xi E N. We define d by

 d(xl ...xs+t) = L?+ XG(L) .X(s) X XG(s+ l) Xa(s+ t)
 a

 where a runs over the (s, t)-shuffles and + denotes the sign

 (4.18) 17 (- 1)I xil XIh

 the product running over pairs (i, j) for which i < j but a(i) > u(j). (This is of
 course the canonical diagonal in SN, induced by the diagonal map N -- N E N.)
 This map is well-defined, since if T is a permutation of { 1, ... , s + t } and a is an

 (s, t)-shuffle, there is a unique (s, t)-shuffle a' for which { ur(1), ... ., u(s)} =

 {u '(1), ... , a'(s) } (and hence also { ur(s + 1), ... , ur(s + t)} = { u'(s + 1), ... .
 u'(s + t)}). This establishes a bijection between the terms of d(x1 ...xS+)
 and those of d(xT(1) . xT(S+t)), and the signs are arranged so that the two sums
 differ by exactly the sign relating the two products.

 When we come to compute jid( x1 xs+t)5 each term rearranges itself to
 +X1... xS+t and there are (s + t)!/(s!t!) terms, so that the composition rule
 follows.

 Define the map e by

 e(xl ... xst) = ?(Xa(L) * Xa(t)) * (Xa((s-l)t+1) * xa(st) ) '
 a

 where a runs over permutations of { 1, .. ., st } which preserve the order of the

 sequences {1,. ... , s}, . .. .{(r - I)s + 1, . .. , st}, and {1, s + 1, . ..
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 (r - I)s + 1), and where the sign is as in (4.18). We leave the reader to check
 that this gives a well-defined map with the asserted composition property. [l

 Proof of Lemma 4.13. In (a), r!/(pe!(r - pe)!) is a unit mod p, and in (b),

 !,/(p!( pe!)P ) a unit mod p. ?

 5. The Eilenberg-MacLane "suspension" W

 Our object in this section is to prove the next theorem, and show how it

 implies Theorem 2.6. Again, we shall let k be a field of characteristic p > 0, and

 use the notion of exponential bound defined in (4.1).

 THEOREM 5.1. Let A be a supplemented commutative graded k-algebra and

 assume that Tor A(k, k) has exponential bound c. Then L* Q(A) has exponential
 bound Pc.

 COROLLARY 5.2. Assume A1 = 0 for i > a. Then L*Q(A) has exponential
 bound a.

 Proof The bar construction (or the W construction studied below) shows

 that if Ai = 0 for i > a then Tor *(k, k) has exponential bound p a.

 The proof of Theorem 5.1 uses the boundedness result (4.2) for Quillen

 homology, together with a "suspension" construction in the category sAk of

 simplicial supplemented commutative graded k-algebras. The role of suspension,
 as it happens, is played by the Eilenberg-MacLane functor W [21], [26], [33]. We
 recall that construction in our graded setting.

 Let X e sAk. We define a new object WX E sAk as follows. Let

 (WX)n = Xn ? Xn-1 ..( X?

 and define simplicial operators by

 di(xn ... x0o) = diXn ? di-1Xn-1 ... (doXn-i)Xn-i-1

 ?xn_.i2 ? .. x0 if 0 < i < n,

 = dn nx d-xn-1 ? ... * (dlx1)(rqex0) if i = n,

 Si(Xn ?... * X0) = SiXn Si-lXn-1 ... SOXn-i

 1 0 Xn-i1 0?...0 X0.
 Let X -* W(X) by x + x ? 1; this is a map of simplicial algebras. Form the
 "quotient" simplicial algebra WX with

 (WX)n = k Xn (WX)n = Xn-1 ... '*/$J X
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 The Eilenberg-Zilber map endows the homotopy of a simplicial algebra
 X E sAk with a commutative bigraded k-algebra structure. We will need the

 classical

 THEOREM 5.3. There is a natural convergent spectral sequence

 E2= Tor'*(X)(k, k) =* 7*(WX).

 Proof: According to the Main Theorem of Eilenberg-MacLane ([21: Theo-

 rem 20.1]; also, [34]):

 NWX BNX

 where B denotes the bar construction. Filtering by homological degree, as in

 [35], we obtain a spectral sequence of the desired form. Alternatively, note that

 WX is a cofibrant simplicial module over X, and that the augmentation WX -* k
 is an acyclic fibration, in the sense of Quillen [36: 11.6.2]; so such a spectral

 sequence results from [36: 11.6.8, Theorem 6 (b)]. C]

 COROLLARY 5.4. If X is constant, with Xn = A, then

 7T *(WX) = TorA(k, k).

 PROPOSITION 5.5. (a) WX -- k is contractible in sAk.
 (b) W preserves cofibrations and acyclic fibrations.
 (c) The sequence of simplicial vector spaces

 0 -QX -QWX -QWX -0

 is exact.

 Proof. (a) A contraction is given, following [26], by the map h: (WX)n
 (WX)n+1_sending w to 1 0 w.

 (b) W clearly preserves surjections, and it follows from (5.3) that it preserves
 weak equivalences. To see that W preserves cofibrations, it suffices by Corollary
 3.5 to show that it preserves locally free maps. This is a direct check, using the

 following formula. If Xi E Xj, write Xi also for the element 1 0 ... Ox1
 ?.*-- E1 (WX)nn >j.Then

 (x1 if i+j<n

 s(x}) = 's?i+j-nx if i + j> n.

 (c) This is clear. In fact, in a fixed internal degree i, the sequence is the

 classifying fibration for the simplicial abelian group (QX)* *. OI
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 COROLLARY 5.6. HO(WX) = 0, and, for s > 0, there is a natural isomor-
 phism

 H8Q(WX) HsQ 1(X).

 Proof. Let P -- X be an acyclic fibration from a cofibrant object, and
 consider the "cofibration sequence"

 P -* WP -* WP.

 By (5.5) (a), WP is contractible in sAk, so QWP is contractible as a simplicial
 graded vector space. Thus the homotopy long exact sequence afforded by (5.5)
 (c) implies that the boundary map

 7gS(QWP) - gs-(QP)
 is an isomorphism for all s > 0. But by (5.5) (b), WP WX is an acyclic
 fibration from a cofibrant object, so that 7,r(QWP) = HI( WX). C

 Proof of Theorem 5.1. Apply Theorem 4.2 to WA, using Corollary 5.4 to
 identify 7T *( WA) and Corollary 5.6 to identify HQ( WA). C

 Finally, we translate this work back into the setting of coalgebras, as
 required for Theorem 2.6. Let Ck be the category of connected commutative
 graded k-coalgebras without unit. The following result is a strong form of
 Theorem 2.6.

 THEOREM 5.7. If k is of positive characteristic p, and C E Ck is trivial
 above degree a, then R*P(C) has exponential bound a:

 RsP(C)i = 0 for i > aps.

 Proof: Any connected coalgebra is the direct limit of its finite subcoalgebras,
 and R*P commutes with direct limits, so that we may assume that C is
 finite-dimensional. Then A = k E C* is in Ak, and

 R*P(C)* L*Q(A);

 so the result follows from Corollary 5.2. L]

 6. Unstable A-modules

 We shall begin by proving our basic vanishing result, a restricted form of
 Theorem 2.7.

 THEOREM 6.1. If M is a bounded unstable right A-module, then for each
 s > O.

 Ext'(H*(BZP), M) = O.
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 This will be proved by comparing H*(BZp) with certain projective objects
 in U. These are provided by the following lemma, which will emerge in the

 course of events or can easily be checked directly (see (7.1) below).

 LEMMA 6.2. For each n ? 0, the functor U -- S sending M to the set of
 elements in degree n is corepresentable: There is an object G(n) E U and

 tn E G(n)n such that the map

 Homu(G(n), M) Mn

 which sends f to f(tn) is an isomorphism.

 Since the functor M - Mn is obviously exact, G(n) is a projective object in
 U. We will compare H*(BZp) with suitable direct limits of G(n)'s, constructed
 as follows. Map

 (6.3) G(2n) -- G(2pn)

 by sending ?2n to ?2pnpn, and write

 G2n == lim { G(2n ) -- G(2pn )}

 LEMMA 6.4. Let N(1) N(2) -- ... be a linear system in U. There is a
 natural short exact "Milnor sequence," for each s:

 0 -~ limlExtj- 1 (N(i), M) -- Extu(limN(i), M)

 - lim Exts (N(i), M) -O0.

 Proof. Apply Extu(- , M) to the short exact sequence
 1-shift

 0 -* E N(i) ED N(i) -- limN(i) -O 0,

 defining the direct limit, break up the resulting long exact sequence into a family
 of short exact sequences, and use the definitions of lim and limlr

 LEMMA 6.5. For any M E U,

 ExtU(G2n M) = limM2pin s = 0

 = lim1M2pin, s 1

 = 0, s > 1.

 The inverse system here is

 pn ppn

 (6.6) M2n (M2pn ( M2p2n

 Proof. Use (6.4) and projectivity of G(2p'n). El
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 COROLLARY 6.7. (i) Ext'(G2n, M) = 0 for all s ? 0 provided that M is

 bounded.

 (ii) Ext (G2, M) = 0 for all s > 0 provided that M is offinite type. D

 LEMMA 6.8. For any n > 0,

 Homu(G2nH*(BZp)) Fp.

 Proof: Since H2*(BZp) is polynomial, pn: H2n(BZp) -H2pn(BZp) is an
 isomorphism; so the system (6.6) is constant with value Fp. D

 Let fn: G2n -- H*(BZp) be a generator, and form the sum
 p-i p-i

 f= Yfn: @ G2n _>H*(BZp).
 n=1 n=1

 We have the following fundamental result, due when p = 2 to G. Carlsson [14].

 THEOREM 6.9. The map f is a split epimorphism in U.

 Theorem 6.1 follows from this and (6.7) (i). Also:

 COROLLARY 6.10. H*(BZp) is a projective object in the category Uft of
 unstable right A-modules offinite type. DL

 If M is a graded Fp-vector space and n E Z/(p - 1), denote by M(n) the
 graded vector space with

 M(n)i=M2, i-2n-Ior2nmod2(p-1)

 = 0 otherwise.

 Thus

 (6.11) M M(n).
 neZ/(p- 1)

 LEMMA 6.12. If M is a right A-module such that M2n I1f = O for all n,
 then the splitting (6.11) occurs over the Steenrod algebra A.

 Proof. The conditions force Cartan-Serre monomials with more than one

 Bockstein to act trivially. All the other Cartan-Serre elements have degree
 congruent to 0 or - 1 mod 2( p - 1), and the result follows. n

 Given a right A-module M and integers a < b, let Mb denote the submod-
 ule of elements of degree not exceeding b modulo the submodule of elements of
 degree less than a.

 Let

 P = H*(BZP)
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 so that P(n)ob is defined. Let a(n) denote the sum of the digits in the p-adic
 expansion of n, and let pV(fl) be the largest power of p dividing n.

 THEOREM 6.13. There are A-module monoirorphisms

 .Y P nP2a(n)+2(p-1)v(n) -- G(2n) (p > 2),

 p .pa(n)+v(n) -- G(n) (p = 2)
 'n' a(n)

 such that if i denotes the evident inclusion then the diagrams

 Pn)2a(n)_l2(p-1)v(n) 7)71 G(n

 {in (p > 2),

 Pan) >2a(n)+2(p- l)(v(n)+ 1) 7Pn
 P~n 2a~n) - 1G(2pn)

 p a(n)+v(n) Yn G(n)
 a(n)

 I i {sqn (p 2)

 p a(n) + v(n) + Y2n G(2n)

 commute.

 We shall prove this presently, but we first note how it implies Theorem 6.9.
 In the limit, we have A-module monomorphisms

 (6.14) 9n: P(n)2 a n - G n (p > 2),

 9 n Pa( n) G n (p = 2)
 such that gn = 9pn For 1 ? n < p - 1 consider the composite

 gn fn
 P(n) - G2n P

 By construction, fn is surjective in degree 2n - 1 and has image in P(n). In
 Corollary 6.22 we will see that dim(G2n)2n1 = 1; so Theorem 6.9 follows
 because:

 LEMMA 6.15. P( n) is atomic: An endomorphism over A is an isomorphism
 provided it is bijective in the lowest nonzero degree.

 Proof. We claim that in fact

 X(fiePs): H2npi(BZp) - H2npi-2(p-)s-e(BZP)

 is surjective for all 0 < s < 2n(p' - l)/(p - 1) and 0 < e < 1; this certainly
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 suffices. One way to see this is to observe that the skeleton (BZ )2fp is

 Spanier-Whitehead 0dual to the stunted lens space E(BZp)-2 i , and then 0-dual to ~~~~~~2npt 'adte
 compute the Steenrod operations on the bottom class in cohomology. We invite

 the reader to translate this suggestion into algebra and carry out the details.

 Alternatively, it is easy to check that P(n) is atomic over the subalgebra of the

 Steenrod algebra generated by /3 and PF. M

 To begin the proof of Theorem 6.13, we notice that the system {G(n)}

 supports additional structure. First, there is a copairing

 (6.16) A: G(m + n) -- G(m) ? G(n)

 defined as the A-linear map sending tm+n to tm ? tn in the tensor product with
 diagonal A-action. There is also a left A-action, defined as follows. For 0 E Ai- -

 define 0: G(j) -- G(i) as the right A-linear map sending ti to ti0 E G(i)j. The
 map (6.3) is a case of this construction.

 Form a bigraded vector space G(.) with G(i)j in bidegree (i, j). This is an
 associative, commutative, unital bigraded coalgebra via (6.16). It supports a right

 Steenrod action with A acting vertically and decreasing degrees, and a left

 Steenrod action with A acting horizontally and increasing degrees. Each column

 of G( ) is right unstable, and each row is left unstable. Finally, both actions

 satisfy the Cartan formula with respect to A.

 The bigraded vector space G(.) is of finite type. Write G*(.) for its linear
 dual. It is a bigraded F1-algebra with a vertical left A-action and a horizontal
 right A-action. Its structure is explicitly given by

 THEOREM 6.17. If p > 2, then G*(.) is the free commutative bigraded

 Fp-algebra on generators

 e E G'(I),

 ti E- G 1(2 pi), i 2 O.

 i E G 2(2pi), i ? 0,

 subject to the relation e2 = x0. The left A-action is determined by

 (6.18) /3e = O, Pe =e,

 i = xi, Pti =ti,

 Xi 0= , Pxi =x + XIP

 where P is the total reduced power

 p= S
 i20
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 and where xi = 0 and ti = 0 if i < 0. The right A-action is determined by

 (6.19) e/3= 0, eP = 0,

 _feifi = 0
 tif=l sk tip = tz + ti-1,

 t 03 ~ifi> 0,
 (6.20) xi/= 0, xiP= xi + x .

 If p = 2, then G*(.) is the free commutative bigraded F2-algebra on

 generators

 xi E- G 1(2') i 2 0.

 The left A-action is determined by

 Sqxi = Xi + x12

 and the right A-action is determined by

 xiSq = xi + xi-1

 Proof In this proof we choose to return to the geometric origin of the

 unstable condition. Let H denote the mod p Eilenberg-MacLane spectrum,

 A* = H*(H) the dual Steenrod algebra, and for a space X let 2 X denote the
 associated suspension spectrum. The map [1] Y:X - E:S0 A X -- H A X in-

 ducing the coaction A: H*(X) -- A* ? H*(X) factors through 2' applied to
 iX -X-FpX. Thus + factors as follows:

 QH*(FPX) < QH*(Kj) ? Hfj(X)

 H*(X) -- H*(H A X) A* ? H*(X) = A* Hj(X)e
 I 4 T'

 Here Kj = FpS) = K(Fp, j). An A *-comodule M is unstable provided the
 structure map A: M -> A * ? M factors through the inclusion e QH *( K) XI MI
 >- A * ? M. The homology of a space is thus automatically unstable.

 The structure of QH* K1 is well-known, and we recall it. When j = 1,
 K =BZp and QH*(Kl) has generators e, tot ,...5 Jej = 1, Itil = 2p1, with
 right A-action given by (6.19). When p = 2, we write xO for e and xi for ti, .

 Now let p > 2. When j = 2, the map Z- Zp induces CPF0 Kp and we
 obtain as images of generators of QH*(CP00) elements x0, x1,. .., lxii = 2pi,
 with A-action given by (6.20). By definition [32] these elements suspend to A * as

 follows.

 em > 1, tic >hi x 24i 5
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 or, when p = 2,

 xi (i,

 with (0 = 1.

 The cup-product in cohomology is induced by a pairing Ki A K - Ki+j5
 and this yields on QH* K * the structure of commutative bigraded algebra; in

 fact, it is the symmetric algebra on { e, ti, xi } modulo the relation e2 = x0 if
 p > 2, and it is the symmetric algebra on { xi } if p = 2. This is well-known; for a
 modem treatment see [43]. It may be checked using the facts that A,* is free
 commutative [32] and that QH* K1 injects into A*. See also [23] and [25].

 A Steenrod operation 0 E A' induces an H-map 0: K1 Kj+n represent-
 ing the primitive cohomology class Ot ,. This in turn yields right A-module maps

 QH*(Kj) -* QH*(Kj+n) which render QHi(K*) a left A-module for each i.
 This left A-action increases degrees and is unstable in the cohomological sense:

 Pix = O if Ixl < 2i,

 13PPx = 0 if Ixi < 2i.
 The Cartan formulae in H*(-) and H*(-) guarantee that QH* K * is a left and
 a right A-module algebra. Explicit formulae are given by (6.18).

 Given an A*-comodule M we may consider the adjoint right A-module

 structure, p: M ? A -- M. Let 7T: A n-j PHn(Kj) be the projection dual to
 the inclusion QHn(Kj) >-> An j It is easy to check that the condition of
 instability is equivalent to q factoring as

 M An-j M.

 7Tl\

 Mn ? PHn(K1)

 Given any x E Mn, there is thus defined a right A-module map f: PHn(K*) M
 characterized by the condition f(tn) = x. This proves Lemma 6.2 and shows that

 (6.21) G(n) = PHn(K*)

 as right A-modules. An easy check shows that the right A-module structure and
 the product on G*( ) must agree with those on QH*(K*) under the dual of
 (6.21); so Theorem 6.17 follows.

 COROLLARY 6.22. (i) EG(2n) -G(2n + 1) as A-modules.

 (ii) Gi(2n) is first nonzero fori = 2a(n) - t(n), where
 a(n) = sum of digits,

 [i( n) = number of nonzero digits

 in the p-adic expansion of n, and is one dimensional in that degree.
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 Proof (i) In effect, A: G(2n + 1) -- G(1) X G(2n) is an isomorphism.
 (ii) The way of expressing a number n as a sum of powers of p which is

 most efficient, in the sense of requiring fewest terms, is given by the p-adic

 expansion. One may obtain an element of G(2n) by using corresponding powers

 of xi; the dimension of such an element is 2a(n) if p > 2, and a(n) = 2a(n) -
 p(n) if p = 2. For each nonzero digit, however, one may, if p > 2, replace one
 xi with ti, to obtain an element in degree 2a(n) - p(n). This clearly gives the
 unique monomial in that degree. n

 Proof of Theorem 6.9. If p > 2 we let F denote the subobject of G*(.)

 obtained by restricting to even horizontal degrees. (The horizontal A-action does

 not respect this: top/ = e.) If p = 2, let F = G*( ).
 We map G*(2n) to P(n)*, or G*(n) to P* if p = 2, for each n, as follows.

 Define a new free commutative bigraded A-algebra A with generators s, t, x:

 11s81 = (2,0), 11til = (0,1), lixii = (0,2),

 P3s = 0, Ps = S,

 Pt = x, Pt= t=

 Ax = 0, Px = x + xP;

 or, if p = 2, with generators s, x:

 hIS1h = (1,0), lxi = (0,1),

 Sqx = x + x2,

 Sqs = s.

 Define an algebra map y: F A by sending

 t ' ' t, X sPix

 or, if p = 2,

 X. s x

 Suppose first that p > 2. Note that y: G*(2n) > P(n)*. The map y fails

 to be A-linear only because of the irregular definition of P'x0. We therefore look
 in G*(2n) for the lowest dimensional occurrence of x0 in a monomial which

 maps nontrivially to A. This is two greater than the degree of the lowest

 monomial in G(2n) containing at most one ti. Reasoning as in Corollary 6.22, we
 find that the latter degree is 2a(n - 1) - 1 = 2a(n) + 2(p - 1)v(n) - 3. Thus
 the first violation of A-linearity occurs in degree 2a(n) + 2(p - 1)v(n) - 1 +

 2(p - 1). Since a(n) n mod(p - 1), this is killed by projecting to
 (P(n)2a(n)+2(p- 1) (n))*. Since G(2n) is zero below degree 2a(n) - 1, we obtain
 A-linear maps as stated.
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 When p = 2 the discussion is analogous but simpler.

 It is now straightforward to check that the maps are compatible in the

 desired way. E

 Remark 6.23. Let I denote the kernel of y: IF - A. Then one may check
 that

 I = (ttt xPL - tjxP S, XZXPLS - xPxI3S i)js o) if p > 2,

 I = (xix2s L- X X2S: i'j~s > ) if p = 2,

 where again we agree that xi = 0 if i < 0. Now I is invariant under both
 A-actions on F, where we declare if p > 2 that topl = 0. (One may reduce the
 number of generators:

 I = (tit),tixjP3-" XP S, XP -xx?: i < js 2) if p > 2,

 I = (Xi1j2 - X i < j) if p = 2.

 Also, it is interesting to note that when p > 2, { titj; i < j } generates I as a left
 A-ideal.)

 In G*(2n), a complete list of representatives mod I may be given as follows.

 Let

 n = p(ne+ ne+1P + )

 be the p-adic expansion of n, with ne> 0 and 0 < ni < p - 1. Then we have,
 when p > 2,

 X ne Xne +l

 x1xe ex+~ ...
 YP rne-1 ne+1 Xe-1 e Xe+ ..

 Xp p-1 .. p- 1Xne -1Xne+1 0 1 e-1 e e+1 ...*

 and when p > 2 the corresponding monomials in which one xi of minimal
 subscript is replaced by ti. The identification of r/I prescribed in Theorem 6.13
 is then clear, and the compatibility diagrams are just part of the compatibility

 with the horizontal A-action.

 Remark 6.24. Many questions remain unanswered.

 (a) This proof may appear rather ad hoc. Is there some divisibility criterion,
 akin to the Adams-Margolis theorem, for determining when an object of Uft is
 projective, or when Ext*(M, N) = 0 for all bounded N?
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 (b) The module G(n) is, as we shall remark in Section 7, the homology of a

 spectrum, and the maps fn: G(n) - H *(BZP) are induced from geometric
 maps. Are the gn's? Is 7n: P(n)2a(n)+2(pP-)v(n) -( )G(2n)?
 (c) Are there analogous spectra realizing the columns of QBP *BP* [43]?
 (d) What is the significance of F/I when read horizontally? It defines, for

 each j, a submodule of PH*Kj over the reduced powers (or over A if p = 2).

 7. Dual Brown-Gitler spectra as projective covers of spheres

 In this aside we shall study some of the geometry associated with the algebra
 of Section 6.

 Grade the Steenrod algebra nonpositively. From the description of U given
 in (2.3) it is clear that

 (7.1) G(n) = EnA/{f3ePs: 2(ps + e) > n)A
 provided that the right-hand side is unstable. This follows from a computation in
 the Steenrod algebra or by dualizing the work of Section 6. When p = 2

 G(n) = Y.lA/{Sqs: 2s > n}A.

 In [12], Brown and Gitler constructed a spectrum T(n) with this homology (at
 p = 2). It is Spanier-Whitehead n-dual to the much-studied spectrum B[n/2]:

 G(n) = H*( nB[2j)

 If we write G(n) for the linear dual of G(n), made into a right A-module via X,
 then this says

 H*B(k) = 2kG(2k)
 Similarly, R. L. Cohen [16] constructed spectra B(k) for p odd such that

 H*B(k) = 12P(k+l)-2G(2p(k + 1) - 2)

 Presumably the other G(n)'s can be realized too.

 The unstable right A-module G(n) is the projective cover of S(n) = H*(Sn).
 Recall, e.g. from [41: pp. 89 ff.], that a morphism p: P -- X in any category is a
 projective cover provided: (a) P is projective; (b) p is an epimorphism; and (c)
 any f: Y -+ P such that pf is an epimorphism is itself an epimorphism. In
 general (a)-(c) characterize p (if it exists) up to a non-canonical isomorphism. In
 the present context the isomorphism is actually canonical, since G(n) is mono-
 genic.

 One is thus compelled to ask whether the spectrum T(n) admits an
 analogous characterization.
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 Let 5'H be the full subcategory of the stable category consisting of spectra

 which: (a) are connective; (b) have trivial homology with Z[j] coefficients; and
 (c) admit a mod 2 homology monomorphism to the suspension spectrum of some

 space. Condition (b) serves to eliminate from consideration all primes (even 0)

 other than 2. Given a connective spectrum X there is a map X -+ X terminal
 among maps from Z[ ]-acyclic spectra, namely, the fiber of the localization map

 X-- X[2]. The map X -- X is a mod2 homology isomorphism, and is called the
 cocompletion of X at 2.

 The proof of Theorem B of [13] implies that T(n) lies in YSH, provided that
 we replace T(O) = S0 and T(1) = S' by their cocompletions.

 The natural notion of "epi" in Y'H is not the categorical one, which is, of

 course, what we had in mind above, but rather this: a map f: X -- Y in SYH is
 an H-epi provided that H*(f) is epi. Then H-projectives and H-projective
 covers may be defined accordingly, and one has:

 THEOREM 7.2. T(n) is an H-projective cover of Sn in the category 'H.

 Proof Condition (b) of the definition is trivial, and (c) follows from the

 cyclicity of H*(T(n)). It remains to check that T(n) is projective in 9YH; and by
 duality this is contained in the assertion that if f: X -- Y is an H-epi in 'YH
 then 7rT(B(k) A X) - s7Tr(B(k) A Y) is epi for r < 2k + 1. We leave the case
 k = 0 to the reader; remember that B(O) is the 2-adically completed 0-sphere.

 Recall that in [12] Brown and Gitler construct, for given k > 0, a diagram of
 cofibration sequences

 (7.3) *-E2 El Eo

 H2 H1 Ho

 and compatible maps B(k) -- ES in which: (a) each Hs is a mod 2 generalized
 Eilenberg-MacLane spectrum; (b) B(k) -- Es becomes highly connected as s
 becomes large; and (c) for any space K, 7rr(Hs A K) 7Tr(Es A K) is monic
 for r < 2k. If X --+ Y.PK is a mod 2 homology monomorphism, then clearly

 7T,(H, A X) - 7Tr(Es A X) is monic for r < 2k as well. Thus 7T,(Es A X) -+
 rT(Es-1 A X) is epi for r <2k + 1. Now let ff: X -- Y be an H-epi in YSH. It
 then follows that 7Tr(Es A X) - 7Tr(Es A Y) is epi for r < 2k + 1, by induction
 on s using the fact that in the diagram

 7T,(Hs A X) -T,(Es A X) 7T,(Es 1 A X) -O 0

 7Tr(Hs A Y) -Tr(Es A Y) 7T-(Es - A Y)
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 suriectivity of the end vertical arrows implies subjectivity of the middle vertical
 arrow. The result now follows from property (c) of (7.3). 0

 The usual proof that projective covers are unique shows here that any two

 projective covers of X are mod2 homology-isomorphic over X. But for HZ[A]-

 acycic spaces, this gives an integral homology equivalence, and hence, using

 connectivity, a homotopy equivalence, by the Whitehead theorem. Thus Theo-

 rem 7.2 provides a characterization of T(n), and hence of its dual, B[n/2].

 The category Y'H is of course very artificial. A more natural category 5Y is

 afforded by replacing (c) in the definition by: (c') admit a split monomorphism to

 the suspension spectrum of some space. If T(n) E 5Y, then the analogue of

 Theorem 3.9 holds in 5Y. Thus we propose the

 Conjecture 7.4. The n-dual of B[n/2] is a summand of the suspension

 spectrum of some space.

 8. The EHP spectral sequence

 Our goal is to show how the restricted vanishing result Theorem 6.1 implies

 the general one, Theorem 2.7. We also comment on various extensions of this

 work. As a secondary matter, we use the results of the earlier sections to establish

 a lower vanishing curve for the Bousfield-Kan E2-term of a space with bounded
 homology. We begin by restating (2.7).

 THEOREM 8.1. (a) If N e U is bounded then Ext (H*(Y.BZP), N) = 0 for
 all nq > 0.

 (b) If N E Uft then Ext (H*(ynBZP), N) = 0 for all q > n.

 The proof uses the right adjoint 52 of the suspension functor Y:: U -+ U. The
 explicit construction in [10: p. 103] shows:

 LEMMA 8.2. (i) The right derived functors RiS2 are trivial fori > 1.
 (ii) If N is bounded then so are the unstable A-modules S2N and R1'2(N).
 (iii) If N is of finite type then so are S2N and R1'2(N).

 Clearly the n-fold iterate tn is right adjoint to the n-fold iterate En, Thus

 2m ? 2n = 2m+n

 Homu(M, -) o 2n = Homu(EnM, ).

 Write i2' for the tth derived functor of i2n Since En is exact, 2n carries
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 injectives to injectives; so we obtain Grothendieck spectral sequences

 (8.3) OmanN Qm+nN,

 (8.4) Exts (M, SUnN) Exts+t(lnM, N).

 Remark 8.5. J. Neisendorfer has pointed out that the properties of an may

 be derived within the context of Section 6. Indeed,

 ON = HomA(IG(*), N)

 where the right A-action on the right-hand side is induced from the left
 ("horizontal") A-action in G(-). Now it is easy to write down a projective

 resolution of YG(n) of length at most 1. These resolutions are the short exact

 " EHP" sequences figuring prominently in the standard approach to Brown-Gitler

 spectra. Altogether they may be given a compatible left A-action. The resulting

 short exact sequence of A-bimodules, when mapped to N E U, gives rise to the
 4-term exact sequence of [10: p. 103].

 We return to preparations for our proof of Theorem 8.1. By induction using

 the "Singer spectral sequence" (8.3) (cf. [39]) and Lemma 8.2, we have

 LEMMA 8.6. (i) an = 0 for t > n.

 (ii) an = a Qn-1
 (iii) If N is bounded, so is ainN for all n, t 2 0.
 (iv) If N is of finite type, so is fNfor all n, t > 0.

 The proof of Theorem 8.1 (a) is now clear: in the "EHP spectral sequence

 (8.4) Es t = Ext (H* (BZp), )nN

 S n N is bounded by (8.6) (iii); so Es t = 0 by Theorem 6.1. (b) is similar. a

 Theorem 8.1 can be extended somewhat.

 THEOREM 8.7. For any M, N E U, with N bounded,

 Ext (M ?) H*(BZ,), N) = 0
 for all s ? 0.

 Proof. Any object of U is a direct limit of bounded objects of finite type, so

 by the Milnor sequence (6.4) we may assume that M is bounded and of finite
 type. Then argue by induction on the top nonzero degree n, using the short
 exact sequence

 o M' ar M byM n o S(n)d to i.

 The Ext groups involving M' are 0 by induction, and those involving Mn o3 S n )
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 are 0 by Theorem 8.1 and additivity of Ext. L

 Theorem 3.1 of [30], quoted from this paper, follows easily from this and
 Lemma 8.6 (ii).

 Notice that our work shows that in certain cases the contractibility of

 mapping spaces from a space W reduces to a property solely of the A-module

 structure of HF*(W):

 THEOREM 8.8. Let W be a space such that H*(W; Z[1/p]) = 0 and

 Ext'(H*(W), N) = 0

 for every bounded object N e U and every s > 0. Then map*(W, X) is weakly
 contractible for any nilpotent space X such that H *(X; Fp) is bounded. LI

 Finally, we note that the methods of this paper lead to a general lower

 vanishing curve for the Bousfield-Kan E2-term.

 THEOREM8.9. Let C e CA have Ci = O for i > c and M e U have Mi = 0
 for i <im. If m > psc, then

 ExtsA(EM, C) = 0.

 Proof Lemma 8.2 (ii) may be made more precise: if N E U has Ni = 0 for
 i > n, then

 (UN)i = 0 for i > n -1

 (&11N)i = 0 for i > pn -1.

 Induction using the Singer spectral sequence (8.3) then shows that

 (S. 10) (Ur N)i = ? for i > psn - (ps-1 + +p + 1) -( )
 Since S(O) E U is projective, the EHP spectral sequence (8.4) degenerates to an
 isomorphism (cf. [39])

 (8.11) Exts (S(r), N) = (Ur N)os

 so that

 (8.12) Exts (S(r), N) = 0 for r > psn - (ps-l + + 1) + s.

 The evident induction over skeletons of M E U (using the Milnor sequence (6.4)

 to deal with the inverse limit) shows that if Mi = 0 for i < m then

 (8.13) Exts(M,N)=O if m>psn -(ps-l + +1)+s.

 Now the spectral sequence of Theorem 2.5, together with the boundedness
 Theorem (2.6), give the result. El
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 COROLLARY 8.14. Let F rr *(X) denote the filtration associated to the
 Bousfield-Kan unstable Adams spectral sequence. If Hi(X) = 0 for i > c, then
 for all k > psc - s,

 Tk( X)= Fs+lTk(X).

 Proof By [10], the spectral sequence has

 Es n= ExtcA(S(n) H*(X)) _Tn-s(X). a

 9. Generalizing the source

 In this section we address Theorem D and the deduction of Theorem A'

 from Theorem A. The idea of the proof of Theorem D given here is due to M. L.

 Hopkins, and I am grateful to him for permission to include it. This proof
 replaces one sketched in [31]. While I am convinced that that line of argument

 can be made to work, an error was discovered in the proof of Theorem 3.2 there.
 (That result should probably be restricted to OG(p) in any case.) The deduction of

 Theorem A' from Theorem A is a reformulation of a proof due to A. Zabrodsky.
 It will be convenient at times to work without a basepoint. The following

 lemma is useful in passing between pointed and unpointed hypotheses, and we
 will use it in the sequel without mention. Recall again that "space" means
 "simplicial set."

 LEMMA 9.1. If X is a connected pointed fibrant space and W is any pointed

 space, then map*(W, X) is contractible if and only if the map X -* map(W, X)
 induced from W -- * is an equivalence.

 Proof The cofibration sequence

 *+ W+ W

 (where W+ is W with a disjoint basepoint added, and W+ -* W sends + to the
 basepoint of W) induces a fibration sequence

 map*(W, X)

 I
 X map(W,X)

 x

 The result is now clear. El
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 We will use the following technical result, whose proof we defer to the end

 of the section.

 PROPOSITION 9.2. Let W' -* W be a map of simplicial spaces, and let X be

 a fibrant space. If map(Wn, X) -* map(Wn, X) is an equivalence for each n,
 then

 map(diag W, X) -* map(diag W', X)

 is an equivalence.

 This proposition has the following well-known fact as a consequence (cf. [11:

 XII. 4.2 and 4.3, p. 335] and [11: X.5.2 (ii), p. 278]).

 COROLLARY 9.3. Let W' -* W be a map of simplicial spaces such that

 Wn7- Wn is an equivalence for each n. Ten diag W' -* diag W is an equiva-
 lence. ED

 Let []: A - S be the "standard" cosimplicial set, with []fn = [n] =
 {0, 1, ... , n }. Any set S e S then determines a simplicial set

 (9.4) ES = map( [ ], S) .

 The space ES is clearly contractible, if S is nonempty: one may for example note
 that ES is the nerve of the small category with object set S and exactly one

 morphism from x to y for any x, y E S. It also depends functorially on S. so that

 if S is a G-set for some group G. then ES is a G-space. If S is G-free, then so is
 ES, and indeed, if S is G with the translation action, then EG is the usual
 contractible free G-space (sometimes written WG).

 To prove Theorem A' it is useful to extend this construction to simplicial

 sets. For X E sS, let EX denote the diagonal of the bisimplicial set with EXn in
 degree n. By Corollary 9.3, EX is contractible. If X is a G-space for a simplicial
 group G. so is EX, and if X is G-free, so is EX. We warn the reader, though,
 that EG is not the usual contractible free G-space WG (unless G is discrete-i.e.
 constant). The identity element of G determines a natural basepoint in EG. For

 G-spaces Y' and Y. write Y' XG Y for the orbit space of the diagonal G-action on
 Y x Y.

 PROPOSITION 9.5. Let G be a simplicial group, let X be a connected pointed

 fibrant space, and assume that map*(G,X) is contractible. Then for any

 G-space Y the composite Y -- EG x Y -- EG xG Y induces an equivalence

 map*(EG XG Y. X) map*(Y, X).
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 Proof Y -* EG x Y is an equivalence, so that [11: X.5.2 (ii), p. 2781 it
 induces an equivalence in map*(- , X).

 EG x Y is the diagonal space of the "external product" simplicial space

 W' = EG Q Y, with WK = G" x Y. EG XG Y is the diagonal space of the
 simplicial space W = EG Q Y, with Wn = G XG Y. We claim that
 map(Wn, X) -- map(Wn, X) is an equivalence for each n; the result then follows
 from Proposition 9.2. We have a commutative diagram

 G n+ x Ye Gn+1 X Y

 hj kI

 Pr
 G n+ X yG nX y

 in which

 h(go5 .. X gn; Y) = (go,5 go'll X1 .. X X go ln; go-'Y) 5

 k[go . ... gn; y] = (go' X * X go go

 pr(gO ...' gn; Y) = (g, 5 ' ' gn; Y)

 The claim now follows from the adjointness relation

 map(Gn x Ymap(G, X)) map(G"' x Y, X). ]

 Write BG = G \ EG.

 COROLLARY 9.6. Let G and X be as in (9.5). Then

 map*(BG,X) *.

 Proof Take Y = *. El

 COROLLARY 9.7. Let G and X be as in (9.5), and let Y be a free G-space

 with orbit space B. Then Y -- B induces an equivalence

 map*(B, X) map*(Y, X).

 Proof EG XG Y -* B is an equivalence. 1

 These corollaries clearly provide the material for a deduction of Theorem A'

 from Theorem A, using the tower of connective covers of the source space W.

 We turn now to a proof of Theorem D, which we restate here.

 THEOREM 9.8. Let X be a nilpotent fibrant space, let G be a locally finite

 group, and assume that map*(BZP, X) is contractible for every prime p occur-
 ring as the order of an element of G. Then map*(BG, X) is contractible.
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 To begin with, we may as well assume that G is finite. For G is the direct

 limit of its directed system of finite subgroups K, so that if we use [11: XII. 3.5,

 p. 331],

 BG limBK holimBK.

 Thus [11: X.5.2 (ii), p. 278] for a fibrant space X,

 map*(BG, X) holim map*(BK, X)

 where we have used [11: XII.4.1, p. 334] to bring holim outside. If we assume
 that map*(BK, X) is contractible for each K, then [11: XI.5.6, p. 304] so is
 map*(BG, X).

 We next see that we may assume that X is p-complete.

 LEMMA 9.9. Let X be a nilpotent fibrant space and W any connected space

 with HI*(W; Q) = 0. Then map*(W. X) * if and only if map*(W, Fpo<Q X)
 * for every prime p.

 Proof Arguing as in the proof of Theorem 1.5, we find that

 map*(W, X) -- Imap*(W, FpxX)
 p

 is an equivalence. Thus map*(W, X) is contractible if and only if map*(W, FpQX)
 is for all p; so the result follows. [1

 The proof of Theorem 9.8 will proceed by induction. The inductive step is
 contained in the following.

 PROPOSITION 9.10. Let X be a connected fibrant space, G a group, and H

 a subgroup. Assume that map*(BK, X) is contractible for every finite inter-

 section K of conjugates of H in G. Then map*(BG, X) * if and only if

 map*(G \ E(G/H), X)

 Before proving this, let us use it to complete the proof of Theorem 9.8. First
 assume G is a p-group, and argue by induction on the order of G. Pick
 a nontrivial proper normal subgroup H of G. Then map*(BH, X) * by
 the inductive hypothesis, so by Proposition 9.10 we must show that
 map*(G \ E(G/H), X) *. But G acts on E(G/H) through the translation

 action of G/H on itself; so this is just map*(B(G/H), X), which, again by
 inductive assumption, is contractible. Of course, Theorem C starts the induction.
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 In the general case, take for H a p-Sylow subgroup of G. Since X may be

 assumed to be p-complete, it will suffice (as in the proof of Theorem 1.5) to prove

 PROPOSITION 9.11. Let H be a p-Sylow subgroup of a finite group G. Then

 H*(G\ E(G/H); Z(P)) = 0.

 Proof We construct a contraction for the augmented simplicial Z(p)-module
 Z(p)(G \ E(G/H)). A typical class in G \ E(G/H)n consists of a G-orbit of
 (n + 1)-tuples of cosets, [co, ... . ., ], ci E G/H. Define

 h flJC.] = G:H1] cE G/H

 Then it is straightforward to check that this is a contraction. U

 This completes the proof of Theorem 9.8. We now return to the deferred

 proofs, beginning with Lemma 9.2. For this we need the following construction.

 Given W E ssS and X E sS, define map(W, X) E s'sS by

 map(W, X)n = map(Wn, X).

 LEMMA 9.12. map(diagW, X) tot map(W, X).

 Proof This involves a direct check of definitions (cf. [11: proof of XII. 4.3,

 p. 335]). n

 The next lemmas use the notion of fibration in s'sS; see [11: X ? 4, p. 275].

 LEMMA 9.13. If X -- Y is a map of fibrant cosimplicial spaces which is
 such that Xn -+ yn is an equivalence for each n, then the induced map
 tot X -- tot Y is an equivalence.

 Proof This is [11: X.5.2, p. 277], with source the cofibrant object A (as in
 Section I above). n

 LEMMA 9.14. Let X -- Y be a fibration of simplicial sets and let W be a
 bisimplicial set. Then the induced map of cosimplicial spaces

 map(W, X) -+map(W, Y)
 is a fibration.

 Proof This is a straightforward application of definitions. The case in which

 Wn is constant for each n is [11: X.4.7 (ii), p. 275]. 0

 An object W is fibrant. provided that W * is a fibration. With Y =
 Lemma 9.14 has as a consequence:

 COROLLARY 9.15. If the space X is fibrant then, for any simplicial space
 W, the cosimplicial space map(W, X) is fibrant. U
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 ____Proof of Proposition 9.2. According to Corollary 9.15, map(W, X) and

 map(W', X) are fibrant cosimplicial spaces. Thus Lemma 9.13 shows that

 tot map(W, X) -- tot map(W', X) is an equivalence, which, by Lemma 9.12, is
 what we want to prove.

 Proof of Proposition 9.10. We apply Proposition 9.2 with

 Wf = E(G/H) Q EG,

 W = G \ E(G/H).

 At level n we have

 Wn = (GIHnl XG G

 Wn =G \(GIH) n +1.

 The map W' -* W is induced by EG -- *. As a G-set, (G/H)n+' breaks up
 into orbits of the form G/K, where K is the intersection of (n + 1) conjugates of

 H. The map Wn' - Wn is thus a disjoint union of maps of the form BK -* *. By
 hypothesis, each such map induces an equivalence in map(- , X), so

 map(Wn, X) -* map(W7', X) is an equivalence for each n, and the result follows.

 10. The fundamental group

 We end this paper with a proof of Theorem B, which we restate here.

 THEOREM 10.1. Let X be a finite dimensional CW complex and G a torsion

 group. Then any map BG -* X induces the trivial map of fundamental groups.

 Proof Suppose that a E G is mapped nontrivially to 7T1(X). Since G is

 torsion, a has finite order; say f~u has order m and a order mn. Let p: X -+ X
 be the covering projection such that pT1(fX) is the subgroup (f.a) of sr(X)
 generated by f.a. There results a commutative diagram

 B(a) X*B(f.#a)

 BG X BvT1(X).

 The top composite is induced by the suriective homomorphism h: (a) -(a),
 i.e. h: Zmn ZM) and we have factored Bh through the finite-dimensional CW
 complex X. Such a space has finite category [42: X.1.8, p. 460]; so we conclude
 that (Bh)*x has finite height for any x e E*(BZm) and any multiplicative
 generalized cohomology theory E*. But this is false. For instance, take E* to be
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 complex K-theory. We may choose a CW structure on BZm for which

 Hi (BZ(2k); Z) = ZmX 21i < 2k,

 = 0 otherwise.

 The Atiyah-Hirzebruch spectral sequence collapses for degree reasons. The line

 bundle (m on BZm, corresponding to the representation of Z4 obtained by
 identifying Zm with the complex mth roots of unity, has mm 1. Moreover

 Xm = (m - 1 E EK(BZm) is detected in filtration 2; so we find

 KO(BZ(2k)) = Z[Xm]/((Xm + 1)i - 1 k+1

 KL(BZ$(k)) = 0.

 The Milnor sequence then implies

 KO(BZm) = Z[[xm]]/((xm + )m -1)

 with augmentation exm = 0. The map Zmn > Zm sends (m to mn, so that
 xm (xmn + 1)n - 1, which is easily seen to have infinite height. See also [4]. CL

 Remark 10.2. Since a connected covering space of a well-pointed space of
 finite category again has finite category, Theorem B remains true if we require
 merely that X have finite category and a nondegenerate basepoint.

 Remark 10.3. The assumption that the target space X is a CW complex is
 made entirely as a matter of convenience, and can be relaxed at the expense of
 listing technical features required of the space. On the other hand, in the
 theorems of the introduction it is essential that the source be a CW complex; this
 is a condition of cofibrance required to make the transition to simplicial sets. See
 [11: VIII, 4.1, p. 244].

 UNIVERSITY OF WASHINGTON, SEATrLE
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