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0. Introduction 

A ring-spectrum B determines an Adams spectral sequence 

Ez(X; B) = n,(X) 

abutting to the stable homotopy of X. It has long been recognized that a map A +B 
of ring-spectra gives rise to information about the differentials in this spectral 
sequence. The main purpose of this paper is to prove a systematic theorem in this 
direction, and give some applications. 

To fix ideas, let p be a prime number, and take B to be the modp Eilenberg- 
MacLane spectrum H and A to be the Brown-Peterson spectrum BP at p. For p 

odd, and X torsion-free (or for example X a Moore-space V= So Up e’), the classical 
Adams E2-term E2(X;H) may be trigraded; and as such it is E2 of a spectral 
sequence (which we call the May spectral sequence) converging to the Adams- 
Novikov Ez-term E2(X; BP). One may say that the classical Adams spectral 
sequence has been broken in half, with all the “BP-primary” differentials evaluated 
first. There is in fact a precise relationship between the May spectral sequence and 
the H-Adams spectral sequence. In a certain sense, the May differentials are the 
Adams differentials modulo higher BP-filtration. One may say the same for p=2, 
but in a more attenuated sense. In this paper we restrict attention to dz, although I 
believe that the machinery developed here sheds light on the higher differentials as 
well. 

Assertions similar to these, in case X is torsion-free, have been made by Novikov 
[24], who however provided only the barest hint of a proof. I have attempted to 
provide in Section 1 a convenient account of part of the abstract theory of spectral 
sequences of Adams type, and in Sections 3, 5, and 6, I construct the May spectral 
sequence and prove the theorem outlined above. The constructions here are 
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reminiscent of some of P. Deligne’s work on mixed Hodge structures (compare (4.1) 
with [7, (1.4.9.2)], for example), but are more elaborate in that we must work 
directly in a triangulated category, while Deligne can work on the level of chain 
complexes. 

The major application of this result included here is a determination of the 
differentials in the “metastable” part of the Adams spectral sequence for the Moore 
space V= So U, e* when p is odd. In this range E3 = E,, and the calculation has the 
following corollary. Let cp: Z@-*V+ V denote the Adams self-map, S: A’-IV-, V 
the Bockstein, and let composition with the inclusion So* V of the bottom cell be 
understood when necessary. It is then well known that 

Theorem 4.11. For any XE n,(V) there exists n10 such that 9”xe (F~[9]@E[G9]. 

This theorem has been conjectured by a number of people, and Adams and Baird, 
Bousfield, and Dwyer, have independently obtained interesting homotopy-theoretic 
consequences of it. One reason for conjecturing it is that 

9 - ‘E2( v; BP) = F,[9,9 - ‘I 0 E[a9]. 

However, the localized BP-Adams spectral sequence may fail to converge. This 
difficulty has frustrated all attempts at a proof using BP alone, and has necessitated 
the present approach. 

The calculation of the differential in E2( V; H) is carried out in Section 9 by use of 
the formal-group theoretic description of BP-operations. This section also contains 
a new (historically the first) proof of the localization theorem of [21]. To apply 
formal group techniques, we reconstruct the May spectral sequence algebraically in 
Section 8. Section 7 provides the machinery necessary to identify the May Ez-term. 
This section also contains a proof of the presumably well-known fact that the MU- 
Adams El-term for X is isomorphic to the cohomology of the Landweber-Novikov 
algebra with coefficients in MU,(X). These three sections are grouped into “Part 
II” and are entirely algebraic and independent of Part I. 

PART I 

1. Adams resolutions and Adams spectral sequences 

We shall begin by collecting some standard material on Adams resolutions and 
the associated spectral sequences. We shall work in the homotopy category of CW 
spectra [5, III] 2, although the reader sensitive to generalizations will recognize that 
a spectral sequence of Adams type always arises from an injective class [ll] in a 
triangulated category [28]. Some of this work is indebted to [23]. 
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A ring-spectrum is a spectrum A together with morphisms ~,I:S+A and 
p :AAA-A such that the diagram 

(1.1) 

commutes. Here of course S denotes the sphere spectrum. A spectrum X is A- 
injective if it is a retract of AA Y for some spectrum Y. It is equivalent to require 
that X=SAX-+AAX split. A sequence X *X+X” is a pair of morphisms with 
trivial composition. A sequence X+X-+X” is A-exact if 

1x9 II+ [X 4 c IX”, 4 (1.2) 

is exact for every A-injective I. A longer sequence is A-exacf if every two-term 
subsequence is. A morphism f: X-+X is A-manic if *+X+X is A-exact. The 
following useful facts are easily verified. 

Lemma 1.3. f : X*X is A-manic if and only ifA AI: A AX’-A AX issplit-manic. 

Lemma 1.4. (a) If I is A-injective, so is IA Y. 
(b) If f :x’+X is A-manic, so is fA Y: X’A Y-*XA Y. 

Lemma 1.5. If x’+X is A-manic and X *X+x” is a cofibration sequence, then 

**X’-+X*X”+ * is A-exact. 

It is elementary to show that these notions define an injective class [I I] in y, 
which is stable in the sense that I is A-injective if and only if its suspension 27 is. 
Thus, given X one may construct an A-exact sequence 

*-+X+IO-PII+... (1.6) 

such that I’is A-injective for all s. This is an A-resolution of X. Given A-resolutions 
X-rZ* and Y-J*, any f: X* Y lifts to a chain-map f * : I*+J* which is unique up 
to a chain-homotopy. 

Given an A-resolution (1.6), one can inductively construct a sequence of exact 
triangles 

x= 

(1.7) 
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where the dotted morphisms have degree -1, such that jk = d. The sequence 

is then A-exact for all s. Given the A-resolution I*, the associated A-Adams 

resofution (1.7) is unique up to an isomorphism. Furthermore, given f: X+ Y, any 
chain-map of A-resolutions covering f lifts to a map of Adams resolutions. 

Remark 1.8. It follows from Corollary 1.4 that given an Adams resolution (1.7) for 
X, an Adams resolution for XA Y may be obtained simply by smashing (1.7) with Y. 
In particular, an Adams resolution for the sphere spectrum S defines an Adams 
resolution for any spectrum X. 

Remark 1.9. The most frequently encountered example of an Adams resolution is 
the canonical resolution, in which j : XS+ZSIs is the map 

XS= s/\xs- OnX AAXS=z’SIS 

for each ~20. It is unique up to a (non-canonical) isomorphism. Note that it is 
obtained by smashing X with the canonical resolution for the sphere spectrum. 

Remark 1.10. By use of suitable mapping telescopes, we may always assume that 
XS+ ’ is a subspectrum of X’, with quotient PP. 

Applying stable homotopy n, to the Adams resolution (1.7) of X results in an 
exact couple and hence a spectral sequence E,(X; A), functorial from Ez, called the 
A-Adams spectral sequence. Observe that Es’+“( - ; A) is the sth right-derived 
functor of rru with respect to the A-injective class: 

E;S+U(X; A) =R;nu(X). (1.11) 

Here and throughout this paper u is reserved for the topological dimension. We also 
have the associated functorial filtration of stable homotopy: 

F>n,(X) =im(n.(X’)+n.(X)). (1.12) 

Notice that d,: E~SfU~E~+‘,S+U+r-‘. Thus E:f, 2 E:;,--- ; let ET denote the 
intersection of this system: 

If xcF>n*(X) let REP, be a lifting. Then jZEx.(P)=Ef’*(X;A) is a 
permanent cycle and thus defines an element of Ey. We claim this element depends 
onlyonxmodF~* * . n (X) For suppose in fact XE FS+ ’ A n,(X). LetJErrt(X*+‘)bea 
lifting, and let r be the minimal integer such that 0 = i’@- ip) E x,(X’-3. Then there 
exists ZE n,(P-‘) such that kz= P-*(X- iy). By construction, then, .ZE Ef-” 

survives to E, and d,(z) = {j.T}; so jl? maps to 0 E Ey. Thus j induces a natural 
homomorphism, the “generalized Hopf invariant”, 
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@ : gr;n*(X)-+E;*(X; A). (1.13) 

We shall say that the spectral sequence converges provided that e is an isomorphism 
and that the filtration of n,(X) is such that 

n*(X)-+lin_l 7r*(X)/ESn*(X) 

is an isomorphism. This agrees with Adams’ use of the word “convergent” ([.5, III 
8.21). 

2. The Mahowald spectral sequence 

In his work on the order of the image of the J-homomorphism, Mahowald uses a 
bo-Adams resolution to produce a spectral sequence converging to the classical 
mod 2 Adams Ez-term. We recall that construction here, in greater generality. 

We begin with an easy observation. 

Lemma 2.1. Let A and B be ring-spectra, and suppose that B is A-injective. Then B- 
injectives are A-injective, and A-exact sequences are B-exact. 

For example, let 0 : A +B be a morphism of ring-spectra. That is, ~9 is a morphism 
of spectra such that 19q.4 =qa and @A =PB(~A~). Then pus(BAl) splits B=SAB+ 
A A B, so B is A-injective. 

Now let (1.7) be an A-Adams resolution for X. Then each sequence 

* -+XJ+E;.s(s+z;ys+ I+ * 

is B-exact and so gives rise to a long exact sequence in R@r, = Ef*( - ; B), with 
connecting homomorphisms 

a:E~r+U-‘(XSCI;B)~ESfl.I+U(XS;B). 

These link together into an exact couple, giving rise to a spectral sequence 
converging to E2(X; B). Its El-term is 

S I. U 
E, =E$‘+‘(ZSZS; B)=R&s(P) 

so 

E2 S*‘*U=R;R;nu-s(X). (2.2) 

Note that drI E:.t,u~E:-‘fl.‘+I.U-l, and that the associated filtration on E$‘(X; B) 
is given by 

FLE$+‘(X; B) = im(P: E:(XS; B)dES,+‘(X; B)). (2.3) 

One may regard this as the Grothendieck spectral sequence for the composite 
nr 0 id, where id : Y’+ Y is the identity functor; only the injective class changes. We 
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call it the Muhowald spectra/sequence. It is independent of the A-resolution used in 
its construction from E2 on. The associated filtration of E2(X; B) is functorial. 

Example 2.4. Let B be the mod 2 Eilenberg-MacLane spectrum and let A be the 
spectrum bo of orthogonal connective K-theory. The resulting Mahowald spectral 
sequence agrees with the spectral sequence of [14]. It is algebraically determined by 
H,(X), as explained in Remark 8.15 below. 

3. A geometric May spectral sequence 

Let A and B be ring-spectra. Let X-+1* be an A-resolution and let FLn, be the B- 

filtration of homotopy. Define a filtration of the complex rr+(I*) by 

FS+‘n,(lS) = F&r,(P). (3.1) 

Then d,FS+‘CFS+‘+‘, so that 

Es + I* ‘* ’ 1 = J%+ t,s*u = F&-s(P)/Fr ‘IL-s(P) (3.2) 

in the resulting spectral sequence abutting to E2(X; A). Note that d,: E:+‘*“d 

E :+r+Cs+‘*u-‘. To further identify (3.2), we introduce a definition. 

Definition 3.3. A spectrum X is (A, B)-primary if there exists an A-resolution X-+1* 
such that for all s, E,(P; B) converges (as in Section 1 above) and collapses at E2. 

If X*1* is such a resolution, then our spectral sequence has 

ES + t, S, U 
1 =E $s+r+“(Is; B)=R;ns+u(P) 

and 
E~+t~s~u=R;R~ns+u(X). (3.4) 

The spectral sequence converges and is functorial in the (A, B)-primary spectrum X 
from Ez on. We shall call this the May spectral sequence. It is analogous to the 
spectral sequence considered in J.P. May’s thesis [16] in that it arises from a 
filtration of a resolution. Novikov considered a special case of it in (241. 

Example 3.5. By a theorem of Mahowald and Milgram [ 181, S is (bo,H)-primary 
where bo and H are as in Example 2.3. 

Example 3.6. Let p be prime and let V be the Moore-spectrum S”Upel. Let HZ&,) 
(resp. H) denote the hu,) (resp. F,) Eilenberg-MacLane spectrum. Then VAX is 
(Hi&,),H)-primary for any spectrum X. For one can smash any connective HZ@)- 
resolution of X with V to obtain a resolution of VAX with the desired properties. 
This observation is related to [23]. 

Example 3.7. Suppose A AA splits as a wedge of suspensions of A. Then X is (A, B)- 

primary whenever EAA AX; B) converges and collapses at E2. 
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4. Statement and application of the main theorem 

Now suppose that B is A-injective and that X is (A,@-primary. Comparing (2.2) 
with (3.4), we see that the Er-term of the May spectral sequence coincides with the 
&z-term of the Mahowald spectral sequence. Schematically, 

(4.1) 

In the following theorem FiEl(X; B) denotes the filtration associated with the 
Mahowald spectral sequence (2.3), and df denotes a differential in the B-Adams 
spectral sequence. 

Theorem 4.2. Let A and B be ring-spectra such that B is A-injective, and suppose 
that X is an (A, B)-primary spectrum. Then the differential df carries FiEiC’(X; B) 
into Pff’E;+‘+’ (X; B). Suppose that the Mahowald spectral sequence collapses at 
Ez. LetzEFfiES2+t(X;B)projecttoa=z+F~i’ESz’t(X;B)ER~R~n,(X). Then 

-dfz E dya. (4.3) 

This theorem is a special case of Theorem 6.1, which will be proved in Section 6. 
The remainder of this section is devoted to applications of this theorem in case A 

is the Brown-Peterson spectrum BP at the odd prime p and B is the modp 
Eilenberg-MacLane spectrum H. In Section 8 we shall see that the Mahowald 
spectral sequence often collapses in this case - for example, when X is p-torsion- 
free, or when X is the mod p Moore spectrum V= So U, et. 

We shall begin by recovering the differentials on E#; H) solving the modp Hopf 
invariant problem [ 1, 13,271. Here we allow p = 2. Recall that E:(S; H) is generated 
by elements hl,j and that there are elements bl,jc E:(S; H); if p=2, bl,j= hi,j. See 
(8.11), (8.12). 

Theorem 4.4. (Adams, Liulevicius, Shimada-Yamanoshita). In E2(S; H), 

dzhl.j=qobl.j- I, jr 1. 

Proof. We shall see in Lemma 8.13 that this is true (with sign changed) in the May 
spectral sequence. Hence by Theorem 4.2 (or Theorem 6.1 for p = 2) it holds in the 
Adams spectral sequence module higher filtration. But for degree reasons the higher 
filtration is trivial. 

Remark 4.5. At p =2, qo is commonly called ho and ht,j is hi+ I. Thus hz and h3 
survive because hohi = 0 = hohi, and dzhj= hoh;_ I for j> 3. 
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Remark 4.6. It seems likely that Milgram’s results [17) relating dz to Steenrod 
operations in the Ez-term can be recovered module higher filtration by these 
methods. 

We turn now to V=S”UPe*, with p odd. Adams [3] constructs a map 

yl:~2@-1)V.-+V 

detected by the Steenrod operation QI. It follows that cp~ n2@-1)V (where we are 
neglecting to indicate composition with the inclusion So+ V of the bottom cell) is 
represented in the Adams spectra1 sequence by 

~,={[T,]}EE:.~~-‘(~;H). 

In [20] we constructed an algebra homomorphism 

Ez(V; H)-+iF,[ql]@E[hn,o: nr l]@f’[bn,o: nz l] (4.7) 

where Jh,oJ=(1,2@“- 1)) and Ibn,0/=(2,2p(p”- I)), which is bijective in bidegrees 
(s, t) for which t --ss (p2-p - l)(s+ 1). In the spectral sequence, h1.o survives to 6rp 
where 6 :27-l V+ V is the Bockstein. Since q; survives for all n, we may localize the 
Adams spectral sequence with respect to the multiplicative system of powers of ql, 
thus “inverting” 41. Then (4.7) identifies the localization q;‘ES( V; H). 

Theorem 4.8. In the localized Adams spectral sequence 

q;‘E30’; HI= bkl,q;‘lOW~,ol. 

Proof. We shall see in Section 9 that 

dzhn,o= -qlbn- 1.0, n> 1, (4.9) 

in the May spectral sequence, so by Theorem 4.2 this is true (with sign changed) 
modulo higher filtration in the Adams spectra1 sequence. But this is enough, by an 
obvious spectral sequence argument. 

Corollary 4.10. Forp>2 

E,(V;H)=ff,[qllOE[hl,ol 

in bidegrees (s, t) for which t-sl(p2-p- l)(s+ 1). 

This Corollary is the analogue forp odd of a result of M. Mahowald [14]. It plays 
an important role in an approach to modp homotopy theory analogous to 
Mahowald’s [15], which we will treat in joint work with J. Harper. Here we merely 
indicate some immediate corollaries. 

Theorem 4.11. Let p be an odd prime. For any x E n 1 ( V) there exists n 10 such that 
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9-‘7r*(U= F,[9,9-‘lOJw91. 

Proof. Suppose cp”x#O for all n10. Since gt-multiplication acts parallel to the 
vanishing edge ([2]; see also [20, Proposition 4.7b]), there exists kr0 such that if 
cokx is represented by y E E2( V) then 9k+n x is represented by 47~ E Ez( v). Thus the 
result follows from Corollary 4.10. 

Corollary 4.12. Let 9 - ’ V denote the mapping telescope of the direct system 

V2 Z-4V2% EC-QV- . . . . 

Then 

71*(9-‘V)=ffj7[9,9-‘lO4G91. 

Proof. 7rt(9-‘V)=9D’171.(V). 

These results have been applied to the study of K-theoretic localization by Adams 
and Baird, Bousfield, Dwyer, and probably others. 

5. Smash-products of Adams resolutions 

In this section we show how to embed all the spectral sequences considered above 
into a unified construction. This will form the basis of the proof of the main 
theorem in Section 6. We begin with a lemma. 

Lemma 5.1. LetX=X”>X’>... and Y= Y”> Y’a ... be decreasing filtrations of 
CW spectra X and Y by subspectra, with quotients XS/XSfl =.FIS and Y’/Y’+’ = 

FJ! Let 

Z”= u X’AY’CXAY=Z 
and 

I+,=” 

K”= V I”l\J’. 
_%*,=n 

Then Z=Z”zZ1z... is a filtration by subspectra, with quotients Z’/Z” A ’ = E”K”. 

The maps involved are the obvious ones, and the proof is routine. It may help the 
reader in visualizing this arrangement to imagine the various subquotients of Z as 
subsets of the first quadrant of the (s, Q-plane. For example XsA Y’is represented by 
((x,y):slx,tly}, XSr\21fJf by {(x,y):s~x,t~ylt+l}, and .PZ*l\2?Jt by 
{(x,y):s~x~s+1,try~t+l}. The diagram for .F’K” is inaccurate in that the 
intersections of thez”ZS/\ J’summands should be identified to a single point. Define 
filtrations of these objects by 
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Remark 5.2. For each f, 

Z’= FOZ’ \-F’\-...-“rF~+--; 

PA Y’ ,W/\Yt-’ ,??I’A YO 

is an A-Adams resolution, by Corollary 1.4. 

Remark 5.3. For each s, 

F”Z = FSZS - FSZS+ 1 ,- . . . 

\ / (5.4) 

_?TF=K” p+lFsKs+l 

is a B-Adams resolution. We must show that k : FsZ”+PFsK” is B-manic for all 
nzs?O. This is proved by downward induction on s. For s= n. k: X$A Y”+ 

Csls~ Jo is the composite of Xsr\ Y”+ZsP~ Y” (which is A-manic by Corollary 1.4, 
hence B-manic by Lemma 2.1) and IsA Y o+ls~Jo (which is B-manic by Corollary 
1.4), and so is B-manic. For the inductive step, chase the diagram obtained by 
mapping 

Fs+‘Z” - z”FS+ ‘K” 

I I 
F’Z” - .PFSKR 

I I 

(s+t=n) 

i?‘I’A Y’- .PPA Jt 

into a B-injective; the top and bottom rows give epimorphisms, and the right 
column is split short exact, so the middle row is epic. Cf. [8]. 

Note that this B-Adams resolution maps to the B-Adams resolution 

by a map of “degree” s (in the obvious sense). 
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Now define a filtration of E&Z; B) by 

FiE:+‘(Z; B) = im(E:(FSZ; B)*E:+‘(Z; B)). 

This filtration has the following properties: 

(5.6) ,$,+I+ ‘E;+‘(Z; B) = 0. 

(5.7) 
0 s+r F,z,E, (Z; B) = E:+‘(Z; B). 

(5.8) The isomorphism 

Er + I (Z; B) +H(&(Z; B)) 

is filtration-preserving. 

(5.9) If F;‘%,(Z) is filtered by 

F:Fi+‘rr.(Z) =im(lr.(FSZS+‘)+n.(Z)) 

and grSsf’n,(Z) is given the induced filtration, then the map 

Q : grsrr.(Z)-*E-(Z; B) 

of (1.9) is filtration-preserving. 

(5.10) At r=l 

FS,EfCt(Z; B) = II*(F~K~+~), 

(5.5) 

and the spectral sequence defined by this filtration agrees with the Mahowald 
spectral sequence of Section 2. In particular, the filtration on E2 is independent of 
choice of A-Adams resolution {X: P). Also, in the Mahowald spectral sequence 

Es.‘= R,(PA J’) 

since the filtration of KS+’ splits. 

(5.11) 

Remark 5.12. The May spectral sequence is obtained from the filtration 

FLn,(15) =im(n.(PA Y’)+~,(PA YO)). 

In case X is (A, @-primary, and Ei(P; B) = g&P), the isomorphism between the 
Mahowald and May Ez-terms appears as follows. Let ZOE ~,(PA J’) in ET’ of the 
Mahowald spectral sequence survive to Ez; so it is a cycle: (1 A d~)zo = 0. Thus it lives 
to Ei(P; B), and hence lifts to XE II+(I’A Y’). The image of x in Fkn,(P) represents 
the element in the May Ez-term corresponding to 20. 

6. Proof of the main theorem 

In this section we shall complete the proof of the following theorem. 
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Theorem 6.1. Let A and B be ring-spectra such that B is A-injective. and suppose 
that X is an (A, B)-primary spectrum. Then the differential dg carries F>Ei+‘(X; B) 
into F>+‘E$+“*(X; B). Furthermore, every te FS,E:“(X; B) has a representative 
aE R>RLn,(X) in the Mahowald spectral sequence whose differential dyaYaE 
Ry’Ry’n,(X) in the May spectral sequence represents -dft in the Mahowald 

spectral sequence. 

For the proof, we shall work with the double complex of Section 5 under the 
additional assumptions 

(i) that Y is equivalent to the sphere spectrum S, and 
(ii) that X+I* is an A-resolution such that E2(15; B) = grsn.(P) (which is possible 

since X is (A, B)-primary). Thus 2 = XA Y= X. In this section we shall allow maps to 
have nonzero dimension. 

Let zc F>ES+‘(Z; B) be represented by z E E:(F’Z; B) = z.(FW+ ‘). Then dKz = 0 
where dK is the differential in the chain-complex K*. Since 

, 
FSKS+‘= v IstiAJI-i 

we can write 

ZiE ~*(l’+~l\ J’-‘). (6.2) 

Then 0 = (1 A dJ)zo E ~,(PA J’+ I), so zo E Ei (P; B) survives to E2 and hence, by (ii), 
to E~‘=gr~n,(P). Thus zo~im(n,(PA Y’)+~c,(PAJ~)) and so 

O=(lAk)toEn (IsAYr+‘). * (6.3) 

This fact enables us to apply Lemma 6.7, proved at the end of this section, to 

ZE x*(FSKst’) in the diagram 

____- --- - --------- 
FS++t_, 

--__ -_ 
FS+IKS+’ _, FSt lZS+t+ 1 

LetxEn.(ZSAYr) andyE2r,(E s+ iZst f + ‘) be the resulting elements, so that 

(lAj)X=to, kz = hy, iy = -ax. (6.4) 
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Claim 6.5. d’zE F~‘E;+‘+‘(Z;B). 

Indeed, we claim that y lifts to an element YE n,(FS+‘ZS+f+2). Consider the 
commutative diagram 

FZ+ 1ZS+t+2 , FS+iZ’+‘+l I, FS’1KS+t+1 

FSZS+l+ 1 _A, FSK’-t+ 1 

k 

FSKS + t 

Now gjy =jhy =jkz = dKt = 0; but g splits, so jy = 0 and y lifts as claimed. 
We turn now to the second assertion of the theorem. To construct the repre- 

sentative UE RS,Rkn,(X), notice that this is ESctys of the May spectral sequence. We 
havexE z+(PA Y’)=E:+“‘, and 

Claim 6.6. x survives to E2 in the May spectral sequence. 

We are asserting the existence of an element 2’~ n,(P+ ‘A I”+ ‘) such that 

Let 2= -kj. Then (6.4) together with a chase of the diagram 

i* FS+iZS+t+2._+ FS+IZS+t a , IsA Y’ 

IS+ I,, yt+ 1 .-_, IS+l,,yt-1 , I’+‘A Y’ 

shows that in fact 

So let a = (22) E RS,RLn,(X). In the May spectral sequence dza is represented at EI 

by(1Aj)~E71,(IS+‘A\Jf+’ ). But this also represents -jj modulo im n,(F3+ZKS+‘+Z), 

as a chase of the following diagram shows. 
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FS+2K’+f+? 

& 
FS+1ZS+t+2___& FS+IKS+'+2 

i I 

p+I*yt+ 1.3, 13+lt,Jt+l 

This completes the proof of Theorem 6.1. We return now to the lemma we 
needed. 

Lemma 6.7. Suppose that 

w-9 

.-.-. 

is a commutative diagram of cofibration sequences in which each row has arrows i, 
j, k, and each column has arrows p, q, r. If t satisfies jqz = 0, then there exist x and y 
such that 

ix = 4.2, jz = py, ky+rx=O. 

Proof. By means of mapping cylinders we may suppose that the upper left corner 
has the form 

A-Y 

where all four arrows are inclusions of subcomplexes and A = Xfl Y. Then the 
diagram 
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A- Y- Y/A 

X/A - XU Y/Y- * 

maps into (6.8), and jqz = 0 implies that z lifts to ZE rr,(XU Y). Then there are 
unique elements .?E n.(X/A) and JE n,( Y/A) satisfying 

i.if = qZ, jZ = PA 

and we claim that 

kg+rx=0 (6.9) 

as well. The lemma then follows by taking x and y to be the images of R and 7. 
Let C, denote the cone functor, and form the commutative diagram 

XUY - xuc-Y 

(6.10) 

c+xu Y - c+xu c- Y. 

In virtue of the cofibration sequence 

A+C+XvC- Y+C+XU C- Y, 

C+XU C- Y=_&l since C+XvC- Y is contractible. In fact, (6.10) is equivalent to 
the diagram 

xu Y - X/A 

and (6.9) follows. 
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PART II 

In this Part we shall gather together some elementary observations about “Hopf 
algebroids” and their cohomology. We construct a “May spectral sequence” by 
filtering a resolution by powers of an invariant ideal, and derive some corollaries, 
notably a vanishing line. These results were contained in [ 191. Then in Section 9 the 
homology localization theorem of [20] is brought into play, and the BP localization 
theorem of [21] is proved as a corollary. Finally, we compute the May differential 
needed in Section 4. 

Throughout Part II, R will denote a commutative ring, “R-module” will mean 
graded left R-module and “R-algebra” will mean commutative graded R-algebra. 

7. Split Hopf algebroids 

In Section 8 we shall give an algebraic construction of the May spectral sequence 
under suitable conditions. Here we prepare the way to identifying the resulting E2- 
term. 

Recall [4, 211 that if E is a commutative associative ring-spectrum such that 
f=E,(E) is flat over A =E,, then (A,T) is a Hopf algebroid, i.e., a cogroupoid 
object in the category of commutative graded algebras. Furthermore, E,(X) is 
naturally a r-comodule, and 

E2(X; E) = Extr(A, E*(X)) (7.1) 

where Extr(A,M) is defined (for example - see also [21]) as the homology of a 
suitable cobar construction Q(T, M). We refer the reader to [22] for a description of 
this complex. 

To motivate the next construction, take note of the following class of groupoids. 
Suppose a group G acts from the right on a set X. Define a groupoid XZ G with 

object set X, and, for x,y E X, 

Homxnc(x,Y)=(gEG:xg=Y}. 

Composition comes from multiplication in G. A groupoid is split if it is isomorphic 
to one of this form. 

We shall mimic the dual of this construction in the category of commutative 
graded R-algebras. Thus let S be a commutative Hopf algebra over R with 
involution c, and let A be a right S-comodule-algebra. That is, (A, w) is an S- 
comodule, and the multiplication ,u : A@A+A is an S-comodule map when A@A 

is given the diagonal S-coaction. Thus S is a cogroup object in the category of R- 

algebras, coacting on A from the right. This situation has been studied by P.S. 
Landweber [12]. 
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Now define a Hopf algebroid (A,A @S) with cooperation algebra A @S and 
structure maps 

&=A@:A@S+A@R=A 

LI =A@d : A@S-+A@S@S=(A@S)& (A@S) 

c=(A@p)(@c): A@-A@S@S-‘A@S. 

A Hopf algebroid is split if it is isomorphic to one of this form. 
Landweber goes on to define an A-module over S as a triple (M, (p, V) where 

(M, V) is an S-comodule, and (M, p) is an A-module for which cp : A@M-+Mis an S- 
comodule map when A@M is given the diagonal S-coaction. Such objects, together 
with the obvious morphisms, form a category (A-mod/S), which we claim is 
equivalent to (A@S-comod). To see this, define, for any R-module A4, two R- 
module maps, f and g: 

by 

g:M@S-,(A@S)&M (7.2) 

g(m~s)=(-l)i~~I~Ii~c(s)~m, 

by 

f: (A@)S)O/I M-+M@S (7.3) 

f(a@s@m)=Z( -l)lm~(l~“~+iS~)~‘m~a”c(s) 

where y : A+A@S by ty(a)=Zb’@a”. The reader may check thatfactually factors 
through the tensor product over A. Now it is easy to verify the 

Lemma 7.4. The correspondences 

F: CM, YY)-WV- ‘0 

G:w,~)-_(Mw) 

define inverse funcfors 

(A @ S-comod) F G (A-mod/S). 

Let Q,(.S; M) denote the unnormalized cobar construction of S with coefficients 
in the right S-comodule M. If ME (A-mod/S), then we have a natural differential 
isomorphism 

Q(A @S; M) z Q,(S; M) (7.5) 

(omitting G( -)). Thus 
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Proposition 7.6. For ME (A-mod/S), 

Ext/t @ s(A, M) = Exts(R, M). 

Example 7.7. Let B be the unitary Thorn spectrum MU. Then r= MU,(MU) is free 
over A = MU,(S), so (A,T) is a Hopf algebroid. It is furthermore well known [12] 
that r splits as A@S, where S is the Hopf algebra dual to the algebra of 
Landweber-Novikov operations. Therefore, 

Corollary 7.8. E2(X; MU) z Ext.@, MU.(X)). 

8. An algebraic May spectral sequence 

Let (A, f) be a Hopf algebroid. An ideal IcA is invariant if q~(I)f-= VR(I)T. It 
follows that gut= q~(l’)P i.e., the “left” and “right” I-adic filtrations on f 
coincide. Thus all possible I-adic filtrations on r&t rcoincide. Furthermore, all the 
structure maps preserve the I-adic filtration. Thus (EoA, EoT) is a (bigraded) Hopf 
algebroid. A r-comodule M has a natural I-adic filtration which is respected by 
c : M+r& M, and EoM is an EC-comodule. 

The I-adic filtrations on r and M define a tensor-product filtration F& on 
Q(C M). We modify this filtration by setting 

FS+‘QS(T; M) = F$2S(T; M). (8.1) 

ThendFS+‘SFS+‘+‘, so Eo= El in the resulting spectral sequence. It is easy to check 

that 
EI = Q(Eof; EoM) 

differentially, so 

E2= Ext&,/-(EoA, EoM). (8.2) 

We call this the May spectral sequence; it is analogous to the principal spectral 
sequence of [16], in that it is obtained from the filtration on a (co)bar construction 
induced from a filtration on the (co)algebra. 

Remark 8.3. On indexing: Give EoM bidegree (t,i) where t is the filtration degree 
and i is the degree of the corresponding element in M. Write 

E$+ ‘A’ = Ext22;+ “(Eo.4, EoM), 

where s is the homological degree and (t,s+ u) is the internal bidegree. Then the 
indexing coincides with the indexing in the spectral sequence of Section 3 under the 
correspondence described in Remark 8.14. 
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Remark 8.4. On convergence: The I-adic completion of an A-module M is 

IGi = l@l M/ZM, 

and M is complete at I provided that M-&i is an isomorphism. Assume that f is of 
finite type over A. Then C?(T,M) is complete at Z whenever M is; and then the 
associated spectral sequence converges in the sense of [5, III 8.21. If Z= J-4, where J 
is an ideal in R, then the I-adic and J-adic filtrations (and hence completions) of M 

coincide. If furthermore M is of finite type over R, then A= Z?&zM; and if finally 
A is of finite type over R, then 

Q(p; ti) = R’@R Q(Z; M). 

Since Z? is R-flat, we then have 

Extr(A, fi) = Z? @R Extr(A, M). 

Under these assumptions, then, the spectral sequence for M converges to this 
module. 

Our main application of this spectral sequence will involve the Hopf algebroid of 
cooperations of the Brown-Peterson spectrum BP associated to the prime p. Recall 
[5, II; 10; 61 that 

A=BP,=i2~)[vl,vz,...], Ivil=2@‘- 1) 

Z-= BP.(BP) =A[tI, t2, . ..I. It;/ = 2@‘- 1). 

Thus f is A-flat, so (A,T) is a Hopf algebroid over &,I. For a description of the 
structure maps see [22]. Let I=@, VI, . . . )CA. Z is an invariant maximal ideal with 
quotient field F,. Passing to associated graded objects, we obtain a Hopf algebroid 
with 

Q=EoA=[F,[qo,ql,qz,...], jqiJ=(1,2@i-1))t 
(8.5) 

EoZ-= Q[tl,tz,...l, Itil=(O,2(p’- 1)) 

(using the indexing of Remark 8.3) where qi is the class of vi, and vo=p. In [22, 
Lemma 4.51 we showed that in Eof @Q Eof, 

At,= i ti@t:Lia 
i=O 

(8.6) 

Similarly, the right unit UR : Q-*EoT is given by 

ffRqn= i qitf:i. (8.7) i=o 

This implies that Eof splits as Q&P, where P is the Hopf algebra F,,[tl, t2, . ..] with 
diagonal given by (8.6), and Q is given the right P-coaction 

n 
P’ ylqn= C 4iOtn-i* 

I=0 
(8.8) 
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Consequently, by Proposition 7.6, the May Ez-term is 

E2 = Extp(ff,, EoM). (8.9) 

Note that P is just the dual of the Hopf algebra of Steenrod reduced powers; ti is 
conjugate to Milnor’s ri (<f for p = 2). 

We shall now give several applications of this spectral sequence. First we have a 
vanishing line, which has also been obtained by R. Zahler [29], for the BP-Adams 
Ez-term. Let 4 = 2@- 1). 

Theorem 8.10. If M is an (m - I)-connected r-comodule, then ExtF(A,M) is 
(T(s) + m - 1)-connected, where ifp = 2 T(s) = s and ifp is odd 

T(2r) =pqr 

T(2r+ 1) = (pr+ l)q. 

Proof. If N is an (n- I)-connected P-comodule, then by [2] Ext’&ff:,N) is 
(T(s) + n - I)-connected. Since EhM is (m - I)-connected for all t 2 0, E$+‘*’ in the 
May spectra1 sequence is (T(s) + m - I)-connected. For M of finite type the result 
then follows by (8.3) and (8.4); but any comodule is a union of comodules of finite 
type ([21, Corollary 2.131) so we are done. 

We offer the following as a sample calculation; it is used in Theorem 4.4 above. 
We shall compute dz on 

E:. ’ = Ext;( [Fp, IF,), 

which by [l] and [ 131 is additively generated by 

hl,j= { [tf’]), jr0. (8.11) 

Recall the classes 

[@‘l ty-oP’] 

in Es2; thus bl,j= :, h ,.forp=2. 

Lemma 8.13. In the May spectral sequence for the comodule A, 

d2hl,j=-qObl.j- I. jrl. 

Proof. Compute in Q(r, A): 

(8.12) 

#‘I = -‘f ’ 0 pi [t:l ty-q. 
k=l k 
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The result follows since mod p2, 

ifpj-t {k, 

if k=pj-‘1. 

Remark 8.14. Let H be the modp Eilenberg-MacLane spectrum and let 0 : BP-H 
denote the Thorn reduction. Then I= ker(8, : BP, +H,). If X is connective and 
H,(X; 8~)) is free, then BP&Y splits as a wedge of suspensions of BP; so X is 
(BP, H)-primary, and furthermore the I-adic filtration on BP,(X) = n.(BP/\X) 
agrees with the H-Adams filtration. It follows that the May spectral sequence of 
Section 3 coincides with the spectral sequence of this Section. This coincidence holds 
for certain other spectra as well: for the Moore spectrum V= SoUp et, for example. 

Remark 8.15. To complete this circle of ideas, we construct algebraically a spectral 
sequence coinciding in certain cases with the Mahowald spectral sequence of Section 
2. Let (A,T) be a Hopf algebroid, and let 

O-‘A+N-*&J+O 

be a short exact sequence of I--comodules, with N flat over A. Then 

0_1YosOM~NOmOsOM,m~‘(s+ t)@M-+O 

(with tensor-products over A) is exact for all s. Splicing these together, we have a 
long exact sequence 

O-M-+N@M~N@N@M+... (8.16) 

and applying Extr(A, -) we get a spectral sequence converging to Extr(A,M). 
This situation occurs geometrically when C is an associative commutative ring- 

spectrum such that r= C,(C) is flat over A = C,, and B is a ring-spectrum such that 
C is B-injective and N= C,(B) is flat over C,. Then the spectral sequence agrees 
with the Mahowald spectral sequence, whose Ez-term thus depends algebraically on 

C*(X). 
Suppose for example that B = BP and C= H is the mod p Eilenberg-MacLane 

spectrum; so ris the dual Steenrod algebra. Then it is easy to see that the spectral 
sequence associated to (8.16) is the Cartan-Eilenberg spectral sequence of the 
coalgebra extension 

where P is as above and E is an exterior algebra. For p odd, this spectral sequence is 
well known to collapse if X is torsion-free or if X= V (see e.g. [20, Section 41). 
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9. Localization of the May spectral sequence 

In this section we shall use the spectral sequence of Section 8 to combine the 
homology localization theorem of [20] with the theory of formal groups associated 
with the Brown-Peterson spectrum. We obtain a new proof of the BP localization 
theorem of [21], and a computation of the differential required for Theorem 4.8. 

We begin by recalling the statement of the BP localization theorem. Fix a primep 
and for n 2 0 define 

K(n) = Q n = 0, 

ffp[vn, vi’] n>O, 

and 
f(n) = K(n)@ Z&I K(n) 

where A = BP, and f = BP,BP. f(n) is then a K(n)-Hopf algebra, and by [251, 

f(n)=K(n)[tl,tz,...]/(t~‘=v$-‘ti) (9.1) 

as algebras. 
Let I,=@, VI, . . . , v,,_~)cA. We shall say that a I’-comodule M is of height n 

provided that I&= 0 and vn 1 A4 is bijective. 

Theorem 9.2 [21]. The natural map 

Extr(A,M)~Extrcn)(K(n), K(n)& M) 

is an isomorphism if M is of height n. 

Proof. As in [21], we begin by noting that it suffices to prove this for M=B(n)= 
vi ‘A/I,. For n = 0 this is trivial, so suppose n > 0. 

Give A and f the I-adic filtration, and give K(n) and f(n) the resulting (doubly 
infinite) filtrations. Then as Hopf algebras, 

where 
Eof(n) =EoK(n)@P(n) (9.3) 

P(n) =P/(tf’,t$“, . ..). 

This is true as algebras by (9.1), and the result follows since EEf = P as Hopf 
algebras. Thus we have maps of May spectral sequences 

Extp(F, &B(n)) - Extp(n)(fffiEoK(n)) 
I 

i 6 (9.4) 

Extr(A, B(n)) - ExtrdK(n), K(n)). 

Here we have used the obvious isomorphism 

ExtEdccn)opcn)(EoK(n),EoK(n)) = Ext,qn)(FpEoK(n)). 
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Now the main theorem of [20] implies that the top arrow is an isomorphism. But the 
filtrations defining these spectral sequences are bicomplete, so the map of abut- 
ments is also an isomorphism. 

We turn now to a computation of the differential in the localized May spectral 
sequence 

ExtP(I)([Fp,EoK(l))~Extr(l)(K(l),K(l)). 

As noted in Section 4, 

(9.5) 

Extp(l)(lFp,EoK(I))=EoK(I)OE[hn,o: n? l]@P[bn,o: n? I] 

where in the cobar construction Q(P( 1)) 

[fn] E hn.0, (9.6) 

(9.7) 

We will compute dzh,,,o, and to do this we must study d fn in I’( 1). For this we will 
need a lemma from the theory of p-typical formal groups; an excellent reference is 
[6]. For any collection g-= {X;) of indeterminates, write 

where 

c.(r)=; ((Z;ui)“--Z(X;)) 

E p 

I 

if n=p’for some i, _ 

‘- 1 otherwise. 

Let A denote a commutative ring, let G,(X, Y) =X+ Y be the additive formal group, 
and let ye(T) = T denote the standard curve. 

Proposition 9.8. Let F be a formal group over A. Suppose JCA is an ideal such 
that J2 = 0, and that Fr G, mod J. 

(a) (Lazard). Then 

F(X, Y)=X+ Y+ C unCncl(X, Y) (9.9) 
nzl 

for unique elements u,, E J. 
(b) The Frobenius operator & satisfies 

&MT1 = - C 4 u.Q-, Tk 
knl &kq 

(9.10) 

for any qr2. 
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(c) Suppose that p is a prime number and that A is a Z@,-algebra. Then F is p- 
typical if and only if u,, = 0 for all n not of the form pi- 1. If F is p-typical, and 

then 

spyotT)= C’=viT’-‘, 
izl 

(9.11) 

F(X, Y) xX+ Y- C vL’~~(X, Y). 
ikl 

(9.12) 

Proof. Part (a) is Lazard’s main lemma; see [5, II Section 71. (b) is a straight- 
forward calculations using the definition of 04, and (c) follows from (b). 

Remark 9.13. Equation (9.11) is Araki’s characterization [6] of the Hazewinkel 
generators vi for BP,. Note that (9.12) describes the universal p-typical formal 
group G modulo J2, where J=(vI,v~,... ). It follows from this that VI’E BP, is 
indecomposable for all i (cf. [IO]). 

Remark 9.14. It follows from Proposition 9.8(c) that 

CGyiE C y;- “5, v&p+) mod J2 

where y = { yi} is any collection of curves. 

Now [S, II Theorem 16.11 the diagonal in r is determined by the identity in r[TD 

CG(dtn)TP”= iFz:(t;@tf’)Tp’*‘. (9.15) 
It>0 

Here we have written G for fling. This can be computed modulo (~L(J)T)~ 
(“modulo J2” for short) using Remark 9.14, and if we work furthermore modulo 

(vi, v2, v3, . . . ), 

1 (dtn)TP”- vlC,(T,(dtl)TP, . ..) 
n20 

= LEo(t@t$“)Tp”J- vlC,((t;@tP’)TP’+‘: i, jr0). 
> 

Now pass to r(l), and remember that tz= vf”- ’ tn lies in higher filtration than tn 

does. So working modulo I-adic filtration 2, for p ~2: 

C (dtn)TP’-vlCp(T,(dtl)TP,...)= 
It20 (9.16) 

=T+ C (t,@l+ l@t,)TP”-VIC~(T,(~,@I)TP:(~@~;)T~: ill). 
lIZI 

For p = 2 we must add 

(w10tl)T4 

to the right-hand side. We are interested in the coefficient of TP”. Note that it is 
exactly d tn mod I2 on the left-hand side of (9.16). On the right, we can achieve TP” 
in the obvious way in the first sum, and for n L 2, as 
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-((ln-l~l)PTP”+(l~I,-I)PT~“)J 

in the second. Thus for n12, 

P 

0 P-1 i 
LltnItn@l+l@tn-vl c - rL_,@ttI’; modI 

i=l p 

unless n = 2 and p = 2, when 

drz=Zz@l+l@f2 modZ2. 

It follows that in the localized May spectral sequence (93, 

(9.17) 

(9.18) 

dzhn,o=-qlbn-1.0. nr2 (9.19) 

for p>2. This is the assertion required to complete the proof of Theorem 4.8. It 
shows also that in (9.5) 

Em=E3=[Fp[q,,q;110E[h,,ol. 

Since this is a free commutative algebra, no extensions are possible, and we have 
reobtained H*(Z(l)) [26]. Similarly, for p = 2, 

dzhn.o=-q,h;_,,o, nz3 (9.20) 

and 

E3=[Fz[q,,q;‘lOiFzIh,,olOE[h~ol. 

hzolifts to v:QI=(~~-~:)+v;’ vztr, so no further differentials are possible, and we 
have computed H*(Z( 1)) for p = 2 as well (cf. [26]). 
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