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Introduction. In (l), J. F. Adams showed that for p odd, the Adams 2?2-term for a
sphere, Ext5*(Fp, Fp), is zero for s < t < (2p-l)s-l, while Ext^s(Fj,, Fp) is the one-
dimensional vector space generated by ql, where gr

0GExt^1(Fp, ¥p) corresponds to the
Bockstein.

We can express part of this result as a statement about the ^-localization of the
cohomology of the Steenrod algebra: namely, that qo1'ExtA(fp, Fp) is one-dimensional
over Fp[q0, gjf1]. The purpose of this paper is to prove a generalization of this theorem.
It turns out that under fairly general circumstances, the localization of the cohomology
of an algebra obtained by inverting a polynomial generator in homological degree one
can be expressed as the differential Ext of an associated differential algebra. Then
standard homological methods can be brought to bear on its calculation.

This result should be regarded as a first step in a program to reinterpret results on
vanishing lines (e.g. (3)) as degenerate cases of localization theorems.

The procedure of localization has been rather highly developed ((li), (12)) as a
computational tool in the study of the Novikov 2?2-term, motivated by the funda-
mental results of Jack Morava(l4). Morava expresses certain localizations of the
Novikov E2-term as the continuous cohomology of certain ^j-adic Lie groups. In
as sense the differential algebras encountered here are a replacement for (or
approximation to) Morava's Lie groups. We shall explore this connexion in future
work.

Our proof of the localization theorem relies on the construction of a certain multi-
plicative resolution for semi-tensor product algebras. This construction is carried out in
section 1 in considerable generality, and is perhaps of independent interest. Then we
prove the localization theorem (Theorem 2-2) and in section 3 give examples of its
application to the Steenrod algebra. In section 4 we reinterpret these examples slightly
and notice that often the localization map is an isomorphism in a range. In particular
we compute E x t ^ t f ^ / S 0 Up el),Wp) for t ^ p(p- 1) s-p2 when^j > 2; this is the odd-
primary analogue of a result of M. Mahowald(9). Finally, in section 5 we indicate
briefly how these results can be fed into a systematic computational program
analogous to (12). This is the 'chromatic' spectral sequence, and it shows how the
cohomology of the Steenrod algebra is built up out of periodic constituents.

Most of this work was carried out in the spring of 1974. I t began as an attempt to
understand certain parts of Joe Neisendorfer's thesis (Princeton University, unpub-
lished). The influence of my thesis advisor John Moore is quite evident in section 1 and
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Remark. In the body of this paper we shall work with coalgebras and Cotor rather
than with algebras and Ext. This substitution simplifies consideration of the algebra
structure in Ext, it is more closely related to actual computational procedures, and it
can be related to geometry in more generality. We remind the reader that if A is an
algebra of finite type over a field k and M is an .4-module of finite type, then

A* = Homk(A,k)

is a coalgebra, M* = Homfe(J!f, k) is an ,4*-comodule, and

ExtA(M, k) = Cotor^(&, M*).

1. A loop construction for semi-tensor products. Suppose a group G acts by auto-
morphisms on another group S. Then we may form the semi-direct product group
A = SUG; and a G-equi variant $-space X is exactly an A -space. If EH denotes a free
contractible .ff-space for a group H, then there is a well-known homotopy equivalence

EAxAX~EGxo(ESxsX). (1-1)

Our object in this section is to prove an analogue of (1-1) in an algebraic setting. A
very special case of this construction will be used in Section 2 to prove the localization
theorem. A by-product of this work is a very rigid construction of a change-of-rings
spectral sequence for certain extensions of coalgebras.

We shall work in the differential-graded setting, although for the application it
suffices to suppose d = 0 in all the coalgebras involved.

Let R be a commutative ring and let G be a DG i2-Hopf algebra with commutative
multiplication. The category of (left) Cr-comodules then has an internal tensor product
®A; if M and N are Cr-comodules then M ®A N is the G-comodule with underlying
DG i2-module M ® N and with G-coaction

G®G®M®N >G®M®N,

where i]fL is the coaction map for the comodule L, T is the signed switch map, and fi is
multiplication in G. The augmentation coaction on R provides a unit for this tensor
product. A coalgebra S with respect to ®A will be called a coalgebra over G; this is
sometimes called a G-comodule-coalgebra (16). Thus S is a (?-comodule and a DG
coalgebra, with diagonal Aa; = Sx' ® x", counit ex = x, and 6r-coaction \jrx = Xx, ® x»,
related by the equations

S( - 1)K' Wx, X, ® X'K ® Xn = SZ, ® Xn ® X",

SaF/ Xn = x.

A (left) S-comodule, still with respect to ®A, will be called an *S-comodule over G.
Let M be a right $-comodule over G and N a left /S-comodule over G.
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Then
M OsN = ker(^M ®*N-M ®*i/rN: M ®&N-+M ®A£ ®*N)

is the kernel of a G-comodule-map and hence, if G is i?-flat, it supports a G-comodule
structure.

Given such G and S we may form their semi-tensor product (10) coalgebra

A = S ® G.

As a DG i?-module A = S ® G. The diagonal is the composition

AA ^ soro Sps
A:SG >SSGG *SGSGG >SGGSG -8GSQ,

where we have omitted' ® '. Thus, again using upper primes to denote S-coactions and
lower primes to denote G-coactions,

® s"g, ®sl® g«.

There are natural coalgebra maps

n = S® e:A-+8 and cr = e ® G: A->G;

and if S is supplemented by tj: R->8 over G then o- is split by i: G->A: i(g) = r/(l) ® ^.
Write J<Sf = coker (i/: i? -+8).

Let ilif be an <S-comodule over G. Define an ^4-coaction on M by means of the
composite

M -8®M >S®G®M.

Conversely, given an ^4-comodule M with coaction map r]r, define 8- and G-coactions
i/rs and \jra by means of the composites

It is easy to check that M then becomes an S-comodule over G, and that these
constructions establish an equivalence between the category of .4-comodules and
the category of /S-comodules over G.

Let 8 be a supplemented DG i?-coalgebra. Then the relative differential right-
derived functor of -RQg^fS-comodJ-^-R-mod), denoted by Cotors(i?,-), is the
homology of the cobar construction 0.(8; -). For a description of this functor see (8),
n, §3, where 0.(8;M) is written as ClS®rM. We will use the standard notation
[Sj| ... \Sp]x, with SteS &ndxeM, for a decomposable tensor in Q(#; M).

We must also recall the theory of twisted tensor products. Our reference remains (8).
Let 8 be a DG supplemented .R-coalgebra and B a DG supplemented .R-algebra. A
twisting morphism is an .R-linear map d:8->Bof degree — 1 satisfying the ' differential
equation' dd + dd = 6 U 0 and the 'initial conditions' dv = 0 = ed. Here given
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For example, [ ]: S -> Q.S by s y-+ [s] is a twisting morphism; indeed, it is universal in the
sense that there is a bijection between twisting morphisms 6:8->B and supplemented
DG algebra homomorphisms/: CIS->B so that/corresponds to the twisting morphism
8)-*f[s]. W r i t e / = 9 .

Given a twisting morphism 6: S->B and a 5-module N, the total space S ®eN is the
S-comodule with underlying /^-module S ® N and differential

d = d®N + S®d-de,

where dg = (S ® <j>) o (S ® 8 ® iV) o (A ® iV). Then for example the total space of the
universal twisting morphism, S ®{] Q(/S; il/), is contractible for any $-comodule M.

If S is a supplemented DG coalgebra over a DG Hopf algebra G, and Jf is an S-
comodule over G, then in the diagonal 6?-coaction Q.8 is a supplemented DC? algebra
over G and O(<S; Jf) is a £LS-module over G. Thus Cotors(i?, R) is naturally an algebra
over the Hopf algebra H(G), and Cotors(i?, M) is a Cotors(iJ, i2)-module over H(G).

With these preliminaries, we can now state the main result of this section.

PROPOSITION 1-2. Let G be a DG Hopf algebra with commutative multiplication and
let Sbea supplemented DG coalgebra over G. Then there is a twisting morphism

0:S®G-+Q.(G;QS)

such that the total space (8 ® 6?) ®g &((?; Q(S; M)) is contractible for any S-comodule M
over G.

To describe the algebra structure on £l(G; QS) intended here, we back off slightly.
Let S and T be supplemented DG iJ-coalgebras, let M be an S-comodule, and let N
be a T-comodule. Then S ® T is naturally a coalgebra, M ® N is naturally an 8 ® T-
comodule, and there is a differential pairing

; M) ® Q(T; N) -^Q(S®T;M® N)

determined by the equation

[*il ••• \SP\X • lh\ ••• \tq]y = z ± [«i ® i | . . . h , <8 i|*to ® M ••• K> ® y % D ® y.
(1-3)

Here Sa;(1) ® ... ® a:(g+1> 6 <S®9 ® M is the g-fold diagonal of x e .M, and the sign is the
usual one required to pass the tt'a across the x^'s. This formula is obtained by consider-
ing the Alexander-Whitney map for the cosimplicial DG i?-modules of which Cl(S; M)
and O.(T; N) are the normalizations. I t is clearly natural and associative.

Now suppose G is a DG Hopf algebra; then for (r-comodules M and N we have an
internal pairing given by the composite

Q(G; M) ® C1(G; N) -+Q(G®G;M®N)->

For example, if G is the dual Steenrod algebra and M = H+(X), N = H*( Y), then this
is the smash-product pairing at Ex of the Adams spectral sequence. This formula is
presumably well-known, but I have not located it in the literature.

In particular, if B is an algebra over G then Cl(G; B) is a DG algebra, and if N is a
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5-module over G then Cl(G;N) is an O(G;5)-module. In Proposition 1-2, we take
B = CIS a,nd N = Q(S;M).

The twisting morphism 6: (S ® G)^-C1(G; CIS) is determined by d(s ® 1) = - [ ] [s],
0(1 ®g) = -[#][]> and 6\JS®JG = 0. The check that 0 is in fact a twisting
morphism is an amusing exercise which we leave to the reader.

A contracting homotopy for (S ® G) ®d C1(G; Cl(S; 31)) is given by c such that

c((s®g)[h1\...\hp][t1\...\tg\x)

(s®gh1)[hi\...\hp][t1\...\tQ]z if p>0

= • S ± («<! ®gtr...tq,x,)[][tr\ ... \tq-]x» if # = 0 and q>0

0 if )̂ = q = 0. (1-4)

Here g = t\eg 6 G and similarly for s; and the sign is the usual one required to achieve the
indicated permutation.

To avoid distracting flatness assumptions we assume in the following Corollary that
k is a field.

COROLLARY 1-5. Let Gbe a DG k-Hopf algebra with commutative multiplication, let S
be a supplemented DG coalgebra over G, and let M be an S-comodule over G. Write

A=S®G,

and assume that S, G and M are zero in negative dimensions. Then
(a) d: O.A -> £1{G; CIS) is a homology isomorphism of algebras and

is a homology isomorphism of modules over 6;
(b) Cotor^(&, k) s CotorG(&, Q.S) as algebras and

Cotor^(&, M) ~ Cotor^fc, C1(S; M))
as modules; and

(c) there is a spectral sequence with

E2 = CotoTH{G)(k, Cotors(fc, M)) => Cotor^(&, M).

Proof, [a) follows from J. C. Moore's spectral comparison theorem ((5), theorem B),
and (a) implies (6). The spectral sequence is the Eilenberg-Moore spectral sequence
((7), theorem 9-2), where we have rewritten the limit term Cotoro(/fc, Q(S; M)) using
(b).

2. The localization theorem. To describe the principal result of this section we need
some notation.

Let E be the exterior Hopf algebra over the field k with a single generator e of
dimension n. Then Q.E = k[q], a polynomial algebra with a single generator q = [e]
of dimension n — 1, with trivial differential. If X is a DG 2?-comodule then, neglecting
the differential, C1(E;X) = O.E ® X. Let K = kfaq-1], and define a differential K-
module

tX - q-lCl(E; X) = K ®aE C1(E; X).

Since localization is exact,
q-1 CotoTE(k, X) = H(tX). (2-1)
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THEOREM 2-2. Let E be an exterior algebra over k on one generator, and let q, K and t be
as above. Let 8 be a supplemented DG coalgebra over E and let M be an S-comodule over
E. Write A = S ® E. Assume that E, S and M are zero in negative dimensions. Then
there is a natural isomorphism

q^QoiorJk,M) ~ Cotorts(K,tM).

Proof. We compute:

q-1 Cotor^(&, M) = q-1 Cotor^fc, Q(S; if))

= H(tQ(S;M)) = H(Q(tS;tM))

= Cotorts(K,tM).

The first equality comes from Corollary 1-5, and the second is (2-1). The third equality
holds because tQ(S;M) = Cl(tS;tM). Here we have extended somewhat the usual
range of applicability of the cobar construction by allowing the ground-ring to be
graded; tS is a If-coalgebra. The last equality holds by definition. I

One can now attempt to compute this localization by means of the usual algebraic
Eilenberg-Moore spectral sequence:

E2 = Cotor&gs,(Z, H{tM)) => Cotoif^tf, tM). (2-3)
p

This is obtained by filtering the cobar construction Q(tS; tM) by homological degree.
I t is a cohomological spectral sequence lying in the right half-plane. I t converges in the
sense that a map (S',M')->(8,M) inducing an isomorphism at E2 induces an iso-
morphism Cotorts-(Z, tM') -> GotoTts(K, tM).

3. Examples from the Steenrod algebra. Let k be the field withp elements and let P
be the Hopf algebra &[£i,£2,...], |£J = 2(pn- 1), with diagonal

A£n= £&*-««£„
i=0

where £0 = 1. Let i?(0) be the exterior Hopf algebra generated by

Give E{0) the structure of a Hopf algebra over P by requiring

i=0

Write ^4(0) for the semi-tensor product Hopf algebra. If p > 2 then .4(0) is simply the
dual A of the Steenrod algebra. For comments on the situation when p = 2 see Remark
4-9.

More generally, let E(n) = E[Tn,Tn+1,...]; it is a quotient Hopf algebra over P of
2?(0). Let -4(?2.) = E(n) ® P; it is a quotient Hopf algebra of .4(0). By dualizing (6),
xvi, §5 (2)2, we have a spectral sequence

E2 = Cotor^Cotor^i, A(0)), N) => Cotor,(n)(&, N)
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for any ^4(0)-comodule N. By the theorem of Milnor and Moore (13), ^4(0) is an injective
^4(»)-comodule, so the spectral sequence collapses and

CotorA(0)(knAin)M0),N) = Cotor^(n)(&, i r -

i t i s easy to see that the left-hand side is isomorphic to

fc, (.4(0)

and that ^4(0) D^n)& = E[T0, . . . . T ^ J .

Suppose th&tp > 2 and that V(n— 1) is a spectrum such that

as an ^4-comodule. Then we have seen that Cotor̂ (n)(&> H+ X) is the E2-term of the
Adams spectral sequence for n^.( V(n — 1) A X). In any case Cotor^(n)(fc, k) is of interest
algebraically; in section 5 we will see that it is central to an understanding of the
cohomology of the Steenrod algebra. For the present, notice that rn e A {n) is primitive
and so determines an element qneCotor]i^"~1(k>k) represented by [rn]eQA(n). Our
goal is now to understand g^1 Cotor^(n)(fc, N).

The Hopf algebra A(n) may be obtained as a semi-tensor product

A(n) = A(n+l)®E[en]
where E[en] coacts by

•' • - — * > ! (3-1)

(i ^ 0); here x is the Hopf conjugate of xeA(n+ 1). Thus by Theorem 2-2,

qn1 GotovAin)(k, N) = CotoTtA(n+J)(K(n), tN) (3-2)

where K(n) = k[qn,q~x]. The spectral sequence (2-3) involves H(tA(n+ 1)), which we
compute by means of (3-1) to be K{n) ® P(n), where

r y n ) — - r / y t , ! > & 2 > • • • / — - r / v s i > & 2 . •• •)•

Thus (2-3) reads Cotorp<n)(&, H(tN)) => q^1 CotoTA(n)(k, N) (3-3)

Suppose for example that n = 0. Then the spectral sequence collapses at E2 = H(tN);
so for p > 2 the ^-localization of the Adams E2-term for X is just the same as the
Bockstein J572-term for the homology of X.

Remark 3-4. In fact, the two spectral sequences coincide. To see this note that the
homology Bockstein spectral sequence for X may be regarded as the Adams spectral
sequence for H A X based on the ring-spectrum F(0); here H is the integral Eilenberg-
MacLane spectrum. I t is easy to construct a map of Adams resolutions from the usual
Adams resolution for X into the F(0)-Adams resolution for H hX. This induces a map
of spectral sequences agreeing at E2 with the map shown above to localize to an
isomorphism. The result follows.

Notice that the natural projection tA(n+ l)->K(n) ®P(n) is a homology isomor-
phism and a map of differential iT(»)-coalgebras. Therefore, whenever this map can be
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covered by a homology isomorphism tN^-H(tN), the spectral sequence (3-3) collapses.
This is the case for example when N = k (so tN = K(n)). Thus:

COROLLARY 3-5. The natural Hopf algebra map A(n) ->E[fn] ® P{n) induces an iso-
morphism in Cotor after localizing at qn:

, k)-^-> K ® Cotorp^fc, k).

The first interesting case here is n = 1. Since P(l) is biprimitive,

Cotorp^fc,k) = E[hit0:i ^ 1] ® P[bit0:i > 1]

with hi>0 = {[I,]} 6 Cotor^fif '-"(k, k)

Thus we have

COROLLARY 3-6. Forp > 2, the Adams E2-termfor a Moore space localizes at q± to

Notice that P(2) is the odd-primary analogue of the Hopf algebra whose cohomology
is the 2?2-term for MSp. Its cohomology thus may be expected to be quite complicated.

4. Bigradings and vanishing lines. It is convenient to study A(n) by means of the
semi-tensor product decomposition A(n) = E(n) ® P. By Corollary 1-5 there is an
algebra map £L4(TC)->- ii(P; £lE(ri)) which is a homotopy equivalence.

Let Q{0) = P[q0, qx, •••] be the algebra over P with coaction determined by

and with zero differential. Then /„ = (q0,..., qn_i) is an invariant ideal (i.e. an ideal and
a sub P-comodule) so Q(n) = Q(0)/In is again an algebra over P. There is a twisting
morphism 6: E(n) -> Q(n) sending^ to q}. It is a map of P-comodules and the associated
total space E(n) ®gQ(n) is acyclic.

It follows from these two remarks that the composite

QA(n) -+ fi(P; QE(n)) -+ Q(P; Q(n))

is an algebra map and a homotopy equivalence, and that, for any bounded below
(̂TC)-comodule M, the composite Q(A(n);M)->Q{P; Cl(E(n);M))-+Cl(P;Q(n) ®gM)

is a module map and a homotopy equivalence. In particular,

Cotor (̂n)(&, h) s CotorP(A;, Q(n)) (4-1)

as algebras and Cotor (̂n)(&, M) ~ CotorP(&, Q(n) ®fl M) as modules.
The equah"ty (4-1) follows also from the fact that the extension spectral sequence for

k-+P->A(n)-+E(n)-+k (4-2)

collapses at E2 = CotorP(k, Q(n)) since rn can be endowed with an extra 'Cartan
degree' so that the i?2-term lies along a diagonal. This phenomenon was I believe first
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noticed by Novikov ((15), theorem 12-1). The above proof has the advantage of
providing a more explicit isomorphism and a more satisfactory explanation.

Remark 4-3. One can now continue by projecting Q(P; Q(n) ®eM) to the A-algebra
for P with Q{n) ®eM coefficients (4). With M = k, this gives the smallest known
associative algebra resolution for A(n). I t has been studied by S. Rosen and M. C.
Tangora.

In these terms, the localization theorem reads

COROLLARY 4-4. The natural map Q(n) ->• k[qn] is an algebra map over the Hopf algebra
map P->P(n) and for any bounded below A(n)-module M the induced map in Cotor
localizes to an isomorphism

q-1 CotorAin)(k, M) - s - * Cotorp(n)(fc, tM). (4-5)

In particular g"1 Cotor^(n)(&, &)-^-> K(n) ® Cotorp<n)(fc, k). (4.6)

Furthermore, (4-6) is an algebra map and (4-5) respects the module structures.
We need to fix indexing notation. Q(n) is bigraded, with 1̂ 1 = (1,2(^ — 1)); the

first index is the ' Cartan degree' and is respected by the P-coaction. Then

CotoTP(k, Q(n))

is trigraded, say by (s, t, u) with s = homological degree, t = Cartan degree, u = comple-
mentary degree. Thus

8+ta
u+t=b

For s ^ 0 let U(2s) = pqs and U(2s +1) = pqs + q, q = 2 (p - 1), and write

[7 ( - l ) = oo.

Then by (2), Cotor?iu(A;, M) = 0 for u < U(s) + m if M is (m-l)-connected. In
particular, Cotor^"(ifc, Q(rc + 1)) = 0 for u< U(s) + 2(pn+1-l)t. By studying the
long exact sequence associated to the short exact sequence of P-comodules

> 0,

< U(s- 1) + 2(pn+1 - 1)(t + 1)-2(pn-1)
and epic if u < U(s) + 2{pn+1 - 1) (t + 1) - 2(pn - 1). From the definition of localization
it then follows that Cotorji*1 "(fc, Q(n)) ->qn1 CotoT%t>u(k, Q(n)) is monic or epic under
the same conditions. Since Cotor^t>u(&, Q(n)) = 0 generally only for

u < U(s) + 2(pn-l)t,

the localizations described in section 3 become 'visible' in a wedge widening with t.
When n > 1, the U(s) vanishing line (i.e. powers of 61>0) mask the gn-periodicity in

fc, k). However, when » < lwe have by similar methods

PROPOSITION 4-7. (a) Letp > 2 and let M be an A(l)-comodule which is zero in negative
dimensions. Then

CotorAti)(k, M) ->• ql1 Cotor (̂1)(&, M)
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in bidegree (s, t) is epic for t < U(s + 1) - 2p + 1 and an isomorphism for

t < U(s)-2p+l.

(b) Let M be an A(0)-comodule which is zero in negative dimensions. Then

Cotor^(0)(&, M) -+ ft1 Cotor^(0)(fc, M)

is epic for t < (2p — 1) (s + 1) — 1 and an isomorphism for t < (2p-l)s-l.
Part (6) together with Remark 3-4 implies for p > 2 the folk-theorem that for

t < (2p — 1)8 — 2, the Adams spectral sequence coincides with the homology Bockstein
spectral sequence. In future work we shall apply techniques of Novikov(l5) to show
that in the ^-localization of the Adams spectral sequence for a Moore space at an
odd prime,

* ^ i,o (4-8)

for a l i i > 1. Thus Ez = P[g-J ® 2?[Alj0] in bidegree (s,t) such that t < U(s)-2p + l,
and as these classes survive, this is Ea as well.

Remark 4-9. If p = 2 then the dual Steenrod algebra A sits in a non-split extension
of Hopf algebras

The corresponding spectral sequence has

E2 = CotorP(k,Q(0)) ~

but does not collapse. Indeed, it is closely related (15) to the mod 2 Novikov spectral
sequence for the sphere.

5. A chromatic spectral sequence. The localization theorem of section 2 plays a role
in a program to elucidate the structure of the cohomology of the Steenrod algebra
analogous to the role of (11) in the study of the Novikov 2i72-term initiated in (12). We
outline this program in this section. A comparison of this with (12) clarifies some
differences between the Adams and Novikov l?2-terms.

Let Q = Q(0) and let In = (q0, ...,?„_!) c Q. Q is an algebra over P and In is an
invariant ideal, i.e. an ideal and a sub P-comodule. Just as in (11), we prove

LEMMA 5-1. If M is a Q-module over P such that I%M = Ofor some k, then multiplica-
tion by q?n on M is a P-comodule map for all sufficiently large s.

LEMMA 5-2. / / M is a Q-module over P such that for all xeM there exists k ^ 0 for
which 1^, x = 0, then q^M supports a unique P-comodule structure such that M->q~xM
is a map of Q-modules over P.

Now let i?£ = QIIn>
 a n ( i suppose Rn has been defined and is such that for all x e En,

In+sx = 0 f°r some k > 0. Then Q^ = gk+g-R^ is a Q-module over P by Lemma 5-2,
and Rs

n
+1 is defined by the exactness of

0. (5-3)
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Then we have a long exact sequence

Applying GotoTP(k, -), we obtain a spectral sequence converging to

GotorP(k,Q/In) = CotorAin)(k,k),
with

This is the 'chromatic spectral sequence'.
Continuing in analogy with (12), consider the short exact sequence

and its associated 'Bockstein' exact couple linking CotorP(&, Q^) to CotorP(&, <^+\).
By a succession of these exact couples, E{(n) is related to

CotorP(fc, Q°+s) = GotOTP{k,q-\aQ/In+s) = qnlaCotorA{n+s)(k,k).

We finish by pointing out some differences between the Adams and Novikov E%-
terms which are exposed by a comparison of their respective chromatic spectral
sequences.

To begin with, the most striking feature of the BP situation is Morava's theorem
(14): g'~1Ext|p#Bp(BP^,BP„«//„) is a Poincare duality algebra of formal dimension
n2 (so = 0 for s > v?) if (p — 1) does not divide n, and is finitely generated over a poly-
nomial algebra on one generator if (p — 1) divides n .This remarkable finiteness property
is completely lacking in the present case. Indeed, for n > 0, q~l Cotorp(&, Q(n))
is not finitely generated as an algebra, and has infinite Krull dimension. I t enjoys a
kind of stability property, since P(n)<-P(n + 1); so the groups Cotov^^k, k), which
provide the backbone of the qn-periodic subquotient of GotoTAi0)(k, k), converge to the
cohomology of the algebra of reduced powers as n becomes large.

Furthermore, this extra complexity in CotorP(&, Q%) makes the analysis of the
Bockstein exact couples described above much more difficult. For example, it is
almost trivial to obtain E\- *(0) in the BP case ((12), § 4), where as in the present case it
is tantamount to computing Cotor^(

t
0)(i, k) for t > U(s) and appears to be quite

formidable.
Yet the Adams 2?2-term, which is the object of these computations, is less closely

related (at least for p =# 2) to the real object of interest, stable homotopy, than is the
Novikov i?2-term. Many of the algebraic complexities are thus due to the inadequate
image of homotopy theory present in the Steenrod algebra.
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