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The unilateral Laplace transform is widely used to analyze Alternatively, the£_ Laplace transform is given by
signals, linear models, and control systems, and is conse- oo
quently taught to most engineering undergraduates. In our L A{f(t)}=F(s) = f(t)e " dt, )
courses at MIT in the departments of electrical engineerin i ) e o
and computer science, mathematics, and mechanical emin@%er? the domain of integration fully includes the origirdan
ing, we have found some significant pitfalls associated wiffly Singularities occuring at that time. This form is addrte
teaching our students to understand and apply the LapldB&nY texts, such as [8]-{12]. The definition (3) of the Laplac
transform. We have independently concluded that one readfnsform implies the time-derivative rule
sftud_e_nts find the_LapIace trar_lsform difficult is that there ar L_{f'(t)} =sF(s)— f(07), (4)
significant confusions present in many of the standard tekb
presentations of this subject, in all three of our disciggin whereby initial conditions existing before= 0 are brought
A key issue is the treatment of the origin. Many texts [1]-[5t0 the analysis. We refer t¢(0~) as thepre-initial value

- pre-initial condition.
L{f(t)} :/ f(t)e st dt With either (1) or (3) as the definition of the Laplace
0 transform, the initial-value theorem is
without specifying the meaning of the lower limit of integra lim 1 sF(s) = f(07), (5)

tion. Said informally, does the integral include the origiily,

partially, or not at all? This question becomes critical wheinvolving the post-initial value att = 0T, where the nota-
singularities—the delta function and its derivatives—ocatr tion s — oo - 1 indicates that the limit is taken along the
t=0. positive real axis.

In the context of differential equations, singularitiessar  Many books [13]-[17] implicitly adopt th&€ | transform by
from discontinuites in signals that are differentiatedfrom using the derivative property (2), but are not explicit ashie
considering systems driven with singularities in the inpulower limit on the Laplace integral. However, these texit st
Since the analysis of transient response is one of the kégstoffind that the transform of the unit impulse £46(¢)} = 1. In
in dynamic-systems courses, we need to teach techniquies the engineering context, this inconsistency can likelyrheed
handle discontinuities and singularities, including thas the back to the classic text [18], which is cited by the landmark
origin. In particular, any presentation based on the ugitdt control texts [19]-[23]. The resulting conflict is frequignt
Laplace transform should unambiguously specify how thgrcumvented by defining the delta function as occurring
origin is treated. completely to the right ot = 0 [15], [24]-[26]. If the delta

To understand and apply the unilateral Laplace transforfianction occurs to the right of the origin, what then ddégs
students need to be taught an approach that addresseargrbithean, and what time value is associated with the initial-
inputs and initial conditions. Some mathematically oreeht value theorem (5)? With such questions left unaddressed, it
treatments of the unilateral Laplace transform, such aaf€l] is difficult to teach engineering students to reliably amaly

[7], use thel, form transients at the origin in dynamic systems with tBe
o0 transform. Additionally, with theC ;. approach the post-initial
L Af()} = f(t)e > dt (1) value f(0") needs to be determined by independent means.
0F We certainly owe it to students not to leave this issue fuzzy
with the associated differentiation identity by simply avoiding problems that require a discussiordof
Lo{f(1)} = sF(s) — £(07). (2) ando.

These troubles arise from a reluctance to use the genetalize
However, with thisC . form, the transform of the unit impulse derivative. One of the goals of this article is to show that
is zero! This result is often puzzling to students, who fighta formal but easily understood treatment can be based on
expect the impulse response of a linear system to be nonzeyeneralized functions. In brief, the fact that the deriatit a



@]

discontinuity produces a delta function must be embraasd fr
the outset. The subtitle of this article, “Troubles at thigjior”

an alternative impulse functiofy (¢), reaches the conclusion
that the . transform is preferable and théft) at the origin
should be ignored. Thé, (¢) approach is also used by [28].
By disguising the fact that there is a discontinuity at the
origin, such treatments give special treatment tot te- 0 Fig. 1. Schematic of a highpass electrical filter driven by a step from
and complicate the task of distinguishing between funstion 1 to 0 att =0. The initial state of this system is the capacitor voltage
. . . ve(07) =1V, and thus the initial output voltage 15 (0~) =0 V.

such asf(t) = 1 and the unit-step function, which have the Although the unilateral Laplace transform of the inpu(t) is V;(s) =
same Laplace transform and the same vgl(&") but which 0, the presence of the nonzero pre-initial capacitor voltageluces a
have different derivatives. In addition, this (¢) function lacks ~ dynamic response.
any physical interpretation as an impulse, and we know of
no theory of distributions that includes one-sided singtyla
functions; introducing them represents a significant depar
from standard mathematical theory.

While it is not possible to devote full attention to generadiz ,
functions in a typical undergraduate course, this confusié®XtPoOK literature.
surroundingd™ and0™ — this “skeleton in the closet” as [10]
calls it — needs to be brought out fully into the light. The goa |. LAPLACE ANALYSIS EXAMPLES
of this article is to highlight Laplace transform definitoand  The need for careful definitions for the unilateral Laplace
properties that allow a readily taught and correct analg$is transform can perhaps be best appreciated by two simple
dynamic systems incorporating nonzero initial conditiansl examples. The first example is an RC circuit. The second
where the system is driven by signals that include singylariexample is a simplified model of an automobile suspension.
functions at the origin. To this end, we advocate the use
of the £_ Laplace transform (3), along Wlth_ its derivative _ Circuit Example
rule (4). We present reasonable mathematical support ftor ] i ] o ]
this approach, along with an accessible theory of genexliz Consider the highpass filter shown in Figure 1 driven by the
functions, including how singularity functions are definedw  Voltage
these functions are combined with regular functions to form vy (t) = { 1V, t<0,
generalized functions, and how mathematical operations on 0V, t>0.
these generalized functions can be consistently defineid. Ti/e also specify the pre-initial condition, (0~) = 0 V, and
treatment is suitable for most engineering uses. thus the capacitor is initially charged t@;(0~) = 1 V. This

The occurence o™ in (4) commits us to specifying circuit is described by the differential equation
the value f(0~) and, if we wish to differentiate further,

the valuesf(™(0~) as well, wheref(™ indicates then™® Ci(w —vp) —

derivative. With this viewpoint, initial conditions are meo d

clearly defined as pre-initial conditions. This extensidrihe ©f, equivalently,

data inherent in a function provides a natural represemtaif dvo | vo = @ (6)

pre-initial conditions, describing the state “just before 0. dt RC dt

In many applications the signgl(t) is assumed to be zero This example is solved by means of time-domaln, andL_

for t < 0; this choice represents thiest pre-initial conditions approaches to illuminate their advantages and disadvesitag

f™(07) = 0 for all n. In this case, the derivative rule takes on 1) Physical ReasoningAn experienced analyst might ap-

the simpler formZ_{f’(t)} = sF(s). However, nonzero pre- proach the problem using the following time-domain argu-

initial conditions are frequently encountered, and thusdn@ ment: With the given input, the capacitor voltage is cortimsi

be addressed systematically in any transform approach. at¢ = 0 since there are no impulsive currents: that is,
With this overview in place, the remainder of this article'c(07) = vc(07) = 1 V. With the input step of-1 V, the

is organized as follows: We first motivate the discussioPutput thus takes a step efl V att = 0, and thusio (07) =

with two simple examples that might be presented in al V. Furthermore, in steady state with the inputt) equal

sophomore dynamic-systems course. The responses of tH{@sgero, the loop current is zero, and thiisy vo(t) =0 V.

systems are calculated with both time-domain and Laplatle system has a single time constant RC; these initial

transform techniques. We also use these examples to dtastrand final values are satisfied by the homogeneous response

the advantages of th&_ form. The section “A Brief Treatment v (t) = —e~*/7 for t > 0. This function is shown in Figure 2

of Generalized Functions,” presents a theory of geneidlizalong with the input waveform.

functions incorporating nonzero pre-initial conditiort$sing This approach has the advantage that it is physically based

this brief theory, properties (4), (5) and some extensiaes and doesn’t require any signficant mathematical machinery.

|| V,
was inspired by Section 3-6 of [27], which identifies the 1 ° "0
necessity of distinguishing betweén and0™. However, the 1V.t<0
subsequent reasoning in [27], which relies on the definitibon Y (t) — { ) R

oV, t>0

developed more fully in the section “Generalized Functions
and the Laplace Transform”. Finally, we comment further
on the treatment of the unilateral Laplace transform in the

Vo

=0
R



system order grows, this approach is even harder to teach tha

2 osf , one based on physical insight. An example of this approach
% oo . for a second-order system is given in [29], pp. 342-3.
é o4r il In any case, we now have the post-inital valug(0") =
= ] —1 V. Furthermore, with the input step from 1 to@,(0") =
ool . - : - . — . 0 V. Using these results, we obtain
Time _1
02 Vols) = s+ 1/7

and
vo(t)=—e"t/", t>0,

Output Voltage vo(t)

which is the same result derived earlier.
3) The £L_ Approach: The circuit solution using the _
Time ' ' version of the transform (3) proceeds as follows: The Laplac
Fig. 2: Response of the highpass filter driven by a step from 1 to transform of the differential equation (6), using the time-

0 att = 0, with RC = 1 s. The presence of the nonzero pre-initial ~derivative rule (4), yields
capacitor voltage produces the dynamic response shownigirg the

£_ transform produces the correct result shown here withayirig sVi(s) —vr(07) +vo(07)

a separate calculation of the transient at 0. Vo(s) = s+ 1/7, . (8)

The associated initial values avg(0~) =1 V andvp(0) =
However, such intuition is difficult to teach, particulaityan 0 V.
introductory course, where this approach appears to mequir With V;(s) = 0 and vo(0~) = 0V the expression (8)
feats of insight that are hard for students to generalize.  simplifies to
2) TheL, Laplace Transform ApproachThe circuit prob- Vo(s) = -1 _
lem can be solved systematically using the Laplace tramsfor s+1/7

Using the £, version of the transform (1), we proceed agerting this transform gives the output waveform
follows: The Laplace transform of the differential equatio

9)

(6), using the time-derivative rule (2), is vo(t)=—e "7, t>0,
Vo(s) as before. We can further apply the initial-value theorei{®jo
_ +y o Yo\S) vy +
SVO(S) UO(O ) + RC S‘/z(s) UI(O )? Calculating
which yields vo(0F) = Tlim sV, (s) = —1.
sVi(s) — vi(0%) + vo(0F) e
Vo(s) = s+1/7 : () The £_ Laplace transform solution has the advantage that

it is general; students can apply this approach to any linear
constant-coefficient differential equation. This techugigcan
L {vr(t)} = Vi(s) =0, be rea_ldily taught and useq by students at the introduct_aglr,_le
i ) and yields correct results in the presence of nonzero itiatin
which certainly seems useless; however, we have not Ygfes or input functions containing singularities.
considered the effect of initial conditions. Of course, both forms of the Laplace transform yield correct
“Unfortunately, theL, approach requires the values ofagits. However, theC approach requires the additional
signals att = 0T. Since thg _|n|t|al conditions are givengien of findingvo (0+), which is not required with thet_
naturally at¢ = 07, the post-inital values ai™ need to be {5 of the transform. This disadvantage is true in general.
determined so that the Laplace results can be caIcuIated.Uging the £_ transform (3) and the properties (4) and (5),
fact, determination of thé* values requires additional effort, all singularity functions at = 0 are included in the domain
which depends either on some physical insight or the tectenic¢ analysis, yielding parallel advantages over e form.
of impulse matching [29]. Theé™ values are determined baseq:urthermore, students attempting to use the form should
on physical reasoning in the time-domain solution presentge rightly puzzled by the null identitg, {5(¢)} = 0, whereas

above. . . L6} =1
Impulse matching is based on the insight that a differential

equation must maintain equality at all times, and in paldicu ] ]

must be balanced in all orders of singularity functions. Fé3- Automobile Suspension Example

the first-order differential equation (6), with the inpukiteg Another example that illuminates the use of #he Laplace

a step of—1 V at ¢ = 0, the input term isdv;/dt = —46(t). transform with pre-initial conditions is the idealized sed-

To balance this term, the output must then contain a steparfler automobile-suspension system shown in Figure 3. In
—1V att = 0 so that thedvo/dt term yields a matching this simplified model, we assume that the center of the
—4(t). We thus recognize thato(0") = —1 V. Since the wheel follows the step contour exactly, such that the input
required reasoning becomes increasingly convoluted as thetion z(t) takes the form of a unit step. We are then

The transform of the input is
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Fig. 3: An idealized automobile-suspension system approaching a -
rectangular speed bump. In the analysis, the center of theslwhe
assumed to follow the bump exactly. Analyzing the effect of thput

in the presence of an arbitrary initial state illustrates #ivantages of

using the£_ form of the Laplace transform. % 0 s 10 15
Time (c)

Position y(t

Fig. 4: Response of the idealized suspension system (plotted for
. . . . . m = 1000 kg, b = 500 N-s/m, andk = 1000 N/m) to an input
interested in CaICUIatmg the reSUItmg Car'bOdy mOtmm)' unit step with three sets of initial conditions: (a) initi@st; (b) initial

We examine this response under three sets of initial camditi  position y(0~) = 1 m, zero initial velocityj(0~) = 0 m/s; and (c)

to provide insight into the types of solutions that might be initial position y(0~) = 1 m and initial velocityj(0~) = —b/m.
lculated using Laplace techniques. The alternativ r The last set of initial conditions results in immediate cogeeice to

Ca.CU a g A p q : ) emmh. final value.

using the£ form is more cumbersome here than in the first-

order case above, and so is not discussed further.

~ The differential equation describing the system in Figure gosition is continuous acrogs= 0, while the velocity takes
IS ) o a step with valué)/m. These actions occur independently of
mij = b(& —y) + k(z — y), initial conditions and thus apply to all three cases stutiie.

wherenm is the mass of the cab,is the damping coefficient of The second set of initial conditions consists of the initial

the suspension, aridis the spring constant of the suspensiof?0Sition ¥(0™) = 1 m with zero initial velocity y(0~) =
The Laplace transforms of the derivatives are 0 m/s. That is, the system position starts at the level to which

it settles in steady state. In this case, the output tramsfor

L _{i} =sX(s)—z(07), expression from (10) is
L = 1 b

LAy} =sY(s) —y(07), Y(s)= -4 ——-—.

q s ms24+bs+k
an . . . . . .
9 _ - Inverting this expression gives the time response shown in
LA} =57V (s) = sy(07) = §(07). Figure 4(b). The observed motion results from the force
Therefore, the differential equation transforms to impulse b (t) that the damper applies to the mass at the

9 _ Lo moment of the step. Applying the initial-value theorenyt(s)
ms”Y (s) —msy(07) —my(07) = andsY (s), respectively, yields the post-initial valug&*) =
b(sX(s) —x(07) = sY(s) +y(07)) + k(X (s) = Y(s)). 1 m andy(0F) = b/m. The post-initial velocity is simply an
expression of the change in momentum induced in the mass
by the force impulse applied from the damper; this change in
Y(s) = (bs + k)X (s) | —ba(07) + (ms +b)y(0~) +my(0~) momentum occurs in all three cases studied here.

ms? +bs+k ms?+bs+k The third set of initial conditions is selected to yield

. . . A (10) immediate convergence to the final value of the responseé. Tha
Using this solution, we can readily find the system reSPONRE \ye choose the initial position ag0~) = 1 m and set the

to arbitrary Laplace-transformable inputs and generdlaini initial velocity to§(0~) = —b/m, such that the initial velocity

conditions. _ is exactly canceled by the force impulse from the damper. For
We now assume that the input takes the form of a one-mejft.qe jnjtia| conditions, the output transform (10) is

stepx(t) = u(t), which has the transfornX (s) = 1/s and a )
pre-initial valuez(0~) = 0 m. The solution under this step is Y(s) = 8 tbstk 1
then calculated for three sets of initial conditions. Thstfget

Solving for the outpuly’(s) gives

 s(ms2+bs+k) s

of initial conditions for the output and its derivative afget \y, recognize this result as the transform of the unit step,
initial-rest conditionsgy(0~) = 0 m andy(0~) = 0 m/s. From \ynich gives

(10) the resulting output transform is y(t)=1m, t>0.

bs+ k

Yis) = s(ms2 +bs+ k)

This waveform is shown in Figure 4(c), along with a pre-atiti
velocity of —b/m as indicated by the straight line segment
Inverting Y'(s) yields the zero-state step response shown @f position for¢t < 0. Of course, in the analysis we do not

Figure 4(a). Note that in this system, for a step input, tt@ncern ourselves with exactly how this pre-initial vetpds



established, nor any details of the time variation priortte t at every element of. Thus, part of the data of a piecewise-
transient. The only required prior knowledge is the velpcitsmooth function o0, co) is the sequence of valugs™ (0~),

and position immediately before the transient at 0. forn =0,1,2.... These data are not implied by valuesf¢f)
for t > 0. In fact, the series formed using these values,
Il. A BRIEF TREATMENT OF GENERALIZED FUNCTIONS >, Fm(0-)
Many engineering and mathematics textbook discussions of Z n! ’

n=0

the unilateral Laplace transform treat singularitiest at 0 ) i .
differently from singularities at > 0. These inconsistenciesMay not be the Maclaurin series of any function; it may have

arise from a reluctance to use the generalized derivatif@dius of convergence zero. Normally, however, these salue
However, a consistent and easily understood treatment ean@§€ 9iven as the limiting values of a function definedtfer 0.
based on the uniform use of generalized functions [30]. In N this setting, the unit-step functian?) is defined to take
this section, we provide an accessible mathematical acco@R the value 1 for ali > 0 and have zero pre-initial conditions
of a portion of the theory of generalized functions that i% n)(o_) = 0 for all n > 0. The value of a generalized
broad enough for most engineering applications and free fypction at any single point is not significant, as explained
mathematical technicalities. elow. _ _ _ _ o
The treatment of generalized functions presented below® Singularity functions:A singularity functionis a formal
is just a small part of the standard mathematical theory 8fm of the form
distributipns, but what we present.is. both sufficiently qene £o(t) = Z k10 (t — ay),
to be quickly understood, and sufficiently general to be Wide ol
useful. Our treatment is axiomatic in the sense that thexdelt . .
function and its derivatives are treated purely symbdicale where a;, is a non_d_ecreasmg sequence [inoo). For each
describe the behavior of singularity functions in a way tnat Yalue Of &, only finitely many of thec,, are allowed to
believe supports the common intuition about them. be nonzero. The sum can be over a f|n|tg or |_nf_|n|te range
Because of our focus on the unilateral Laplace transforr‘ﬁf, vglues Ofkf' If the range of_values ok is infinite, we
we consider generalized functions on the intergabo). On  '€dUiré that lim a;, = oo. In this treatment, the symbal
the other hand, the applications presented above indibate i used symbolically. A virtue of this axiomatic approach is
desirability of incorporating nonzero pre-initial coridits, and that it implements pre-existing intuitions the user mayehav
we build this possibility into the theory by incorporating/ithout introducing distracting artifices. Of coursé¢) refers
into the information carried by a generalized function th® the unit impulse, and®) is its I*" derivative. In particular,
pre-initial values att = 0~ of the function and all of its 6 (t) = &(t).
derivatives. We note, however, that this choice is not well- The constantsy, for which somec;; is nonzero are the
suited for a discussion of convolution. Restricting to rest- singular points off,(¢). The singularity att = a of f,(¢) is
initial conditions f(™(0~) = 0, without further changes, the part of the sum corresponding é@ = a. If this sum is
results in a satisfactory treatment of convolution and thero €MPpty, fs(t) is nonsingular att = a.

advantages as well, but loses the flexibility of non-rest pre We comment here that the unit-step functiert) =
initial conditions. Both theories are useful. §(=1(t) is taken as dimensionless. Succeeding derivatives in-

troduce units of increasing negative powers of time. Thésuni
of the singularity functionsY(¢) are thus second§'*+%). If
we wish to associate these functions with physical quastiti
1) Sparsity: A setS of numbers issparseif every interval then the functions must be multiplied by weighting termshwit
of finite length contains only finitely many elements $f appropriate units. For example, in a voltage waveform, the
2) Piecewise continuity:A function f(¢) on [0,00) is functionsé®(t) must be multiplied by weighting terms; ;
piecewise continuoui there is a sparse s&t C [0,00) such that have units of V&), As another example, a force
that f(¢) is continuous on the complement $fand, for every impulseF,d(¢) has a weighting terniy, with units of N-s. The
a € [0,00), the one-sided limitsf(a*) and f(a™) exist. term Fj then corresponds to the area under a finite-duration
The expressiory (0~) requires special interpretation, sincdorce event, such as a hammer blow, which we might model
the usual meaning given to the one-sided limit, namely,  with an impulse function.
_ . 5) Generalized functionsA generalized functions a for-
fla™) = Elﬁlf(t) ’ mal expression

A. Definitions

is unavailable to us becaugt) is defined only fort > 0. f@) = fr(t) + fs(2),
Rather, the valug (0~) represents additional information thawhose regular parf, (¢) is determined by a piecewise-smooth
must be specified to completely specify the function. Thisinction and whose singular paft(¢) is a singularity func-
information is a pre-initial condition. tion. The regular part contributes the pre-initial corafit

3) Piecewise smoothnesg function f(¢) defined on the ™ (0~) = £™(07).
interval [0,00) is piecewise smootlif there is a sparse set There is a subtlety here. Two piecewise-smooth functions
S C [0,00) such that all of the derivatives of(¢) exist on define the same generalized functions if and only if theyediff
the complement of5 and have left and right limits at 0 andfrom each other on a sparse set. This fact is why the value of



the unit-step function at = 0 is irrelevant. Consequently, theContinuing in the same way leads by induction to the identity
values attained oany sparse set are irrelevant to the identity n

of thg correspondmg_generahz_ed fgn_cnon. When viewing g (4)s() (¢ — a) = Z(_l)k (”) g®(a) 6P (t —a). (13)
function as a generalized function, it is best never to reder =0 k

specific valuesf(a), which are always irrelevant, but ratherTh_ ; la defi h lized function i b
to the one-sided limitsf(a*) and f(a~), which are always ' "> 'ormuia defines how a generalize unction is to be

defined (even fow € ), even if a finite number of values multiplied by a smooth function(¢). In addition, (13) explains

. . (n) (¢ —
of f(t) are changed. This caveat is necessary to ensure tﬂg‘f;i smoothy({) must be so that_the pr_Odl.JQ(t)é (t(n) @)
the standard uniqueness theorem for solutions of diffeaentMakes Sense, spemflcalg@t) and its denvat_lves up t9 . (t).
equations holds for generalized functions must exist and be continuous at= a. This perspective is
6) Generalized differentiationGeneralized functions can @ken by [31]; see Equation 3.26.

be differentiated to give additional generalized funcsiofo  Having arrived at a definition of the product of a smooth
begin with, let f(¢) be a piecewise-smooth function that idfunction with a genera_hzed function, we now check that the
smooth on the complement of a sparse$eThe generalized product rule (11) does in fact_ hold. The product rule can'be in
derivativeof a piecewise-smooth functiof(t) is a generalized tegrated to obtain the usual integration-by-parts formuaid

function that is denoted by the standard notatigit) for for any smooth functiory(t) and any generalized function

the derivative. The regular part of () is smooth on the /(t), given by

complement ofS, and is (by definition, in this treatment) s bt bt

given by the ordinary derivative of,.(t) on the complement f(t)g(t)dt = f(t)g(t):| - f®)g' () dt. (14)
of S. The pre-initial values are specified kgy’)™ (0~) = a- a=  Ja~

r(nH)(O*)_- The singular part off’(t) is given by summing To apply (14) to the case = 0, we use the valueg(0~) and
delta functions that arise from the jumps in the graply@), (0-) that are included in the definitions of these functions.

that is, It follows from the definition of smoothness (as opposed to
F(t) = Z(f(Cﬁ) — f(a™))s(t —a). piecewise smoothness) that0~) = ¢(0). Hence
a€S bt bt
The generalized derivative of a singularity function siynpl F(®)g)dt = (f(bT)g(b) — f(07)g(0))— [ f(t)g'(t)dL.
follows the notation o” 0" (15)
DY (t—a)=6"D(t—a). 2) Convolution: The convolution product cannot be defined
on the whole of our space of generalized functions so as to
B. Properties of Generalized Functions have expected properties. Convolution witft — a), where

N . .
1) Multiplication: Generalized functions cannot necessarilg = 0, should be a shift, that is
ft—a) it t>a,

be multiplied together, and such products never occur in B _
applications of the Laplace transform. Howevergit) is a ot —a)xf(t) = 0 if t<a. (16)
smooth function then its product with any generalized fiomct

£(t) is defined, and the product rule Whena > 0, the right-hand side determines the values of the

convolution and its derivative @t= a—, independently of the
(f-9) (@)= f(t)gt)+ f(H)g () (11) valuesf(™(07); these values areot shifted, but rather are
simply lost.

holds in this generality. The following paragraphs re-exsst dThe best option is to define the convolution product only

this product in the standard form we use to define generalize . . . L
on the subspace of generalized functions with rest preinit

functions. " . ;
Since we want the product (11) to be linear in each variabl%o,nd't'ons' Equation (16) together with
and of course we want the product ¢f(¢)g(t) to be the S (t) % £(£) = £ (1) 17)

usual product of functions, it suffices to defirfét)g(t) for

g(t) smooth andf(t) = 6™ (t — a). To decide how to define which is valid for all generalized functiongt), and the asser-
g(t)8(™) (t—a) for g(t) smooth, we begin with the case= 0, tion of associativity and commutativity define the convimnt
and simply define the produgtt)d(t—a) to be what we expect product on this subspace. Note that (17) fiqt) = 6™ (¢)
it to be, namely, gives the equation™ (t)* 5™ (t) = 6(*+™)(¢). In particular,

9(t)o(t — a) = g(a)d(t — a). (1z) OO x0(t)=0(t).

It turns out that (12), along with the product rule (11), dete
mines expressions for all products of the fogiit)6(™ (t —a),
where g(t) is a smooth function, as linear combinations of
terms of the forms—*)(¢ — ) with constant coefficients. ~Laplace transforms can be defined for generalized functions
To see this result, we differentiate (12) and apply this sarfatisfying appropriate exponential growth conditionse Ha-
identity with ¢/(¢) replacingg(t) to find sic singularity functions satisfy

g(t)d'(t — a) = g(a)d'(t — a) — ¢'(a)d(t — a). LA{s™ ()} =s",

IIl. GENERALIZED FUNCTIONS AND THE LAPLACE
TRANSFORM



which we take as a definition. Specifying these values is approaches that provide alternative insights. We show two
that is required to develop a useful theory of the Lapla@pproaches below, which are based upon a formal application
transform of generalized functions, as shown below. of the derivative rule and thanitial-singularity theorem In
Convergence of the improper integral defining the Lapla@aldition, a qualitative argument based on the sifting priype
transform requires conditions on both regular and singulaf se=* can be found in [10], p. 12.
functions. One requirement for a piecewise-continuougfun The initial-value theorem extends to the situation in which
tion f,.(t) is that it beof exponential typemeaning that there F'(s) fails to converge to zero as— oo-1, but can be written
exists a constand/ such that|f,(t)| < eM! for all larget. as
Then the integral converges fie(s) > M. . N "
A convenient and sufficiently general condition on singu- F(s) = F(s) + Zans ’
larity functions that guarantees convergence of the Laplac n=1
transform in a right-half plane is given as follows. Firste w\yhere the functionﬁ(s) converges to zero in the limi —

require that the singularity function is @hite order,meaning o - 1. In this case, the post-initial value gfis given by
that there is a largest for which 6() (¢ — a) occurs. Then,

in the expression im sF(s) = f(07).
fs(t) = ch,lé(”(t —ag), Said another way, the occurence of singularity functions in
k,l f(t) does not preclude a well-defined limitat 0", and the

we require thatf, () also be of exponential type, meanind’alue of this limit i_s cgptured ?y th.elljaplace transform.
that there exists a constant such that|cy, ;| < eNax for all 1) From the Derivative RuleThe initial-value theorem can

large k and for alll. With these assumptions, the sum defining€ derived from the derivative rule (4), which implies
L_{fs(t)} converges for allRe(s) > N. % st -

For a generalized functiofi(t) = f,(t) + f.(t), we require sF(s)= [ [f(t)e”>dt+ f(07).
that the regular parf,.(t) be of exponential type and that the o 0 o o
singular partf,(t) be of finite order and of exponential type_Takmg the limit ass goes to infinity along the real axis gives

lim sF(s) = lim < oof’(t)e““dt)—i—f(o_)

A. The Time-Derivative Rule s—00-1 s—oo-1 \ fo-
The time-derivative rule (4) can be directly derived from ) 0" 1 0 % st -

the definition (3) when applied t¢(1), that is, = Jm () fedts | FBedt |+ F(O

o +

Lo{f :/ f(yet dt | 0 .
or= T = m (70| +o)+s0)
Integrating by parts following (15) £(0%) 0~
!/ _ _ — _ /
with 2) From the Initial-Singularity Formula:The initial-value
g(t) = =t theorem can perhaps best be thought of as a special case of
what we call thanitial-singularity theoremwhich asserts that
and F(s) is asymptotic, as increases through the real numbers,
g'(t) = —se to a polynomial that carries information about the singtyar
ields of f(t) att = 0. To express this relation we use the notation
y F(s) ~ G(s) to represent
. fltye=tat = —f(O‘)e°+/07 f(t) se™*tdt lim (F(s) = G(s)) = 0.
= —f07) +sLAf()} The initial-singularity formula asserts that if the singpity of
With systematic use of the generalized derivative, thisida /() att =0 is
is valid for any generalized functiofi(¢) of exponential type Z clé(l)(t) ,
provided thats has real part sufficiently large for the improper l
integrals to converge. then, with F(s) = £_{f(t)},
B. The Initial-Value Theorem F(s)~ Y as'.
1

The initial-value theorem (5) is perhaps more accurately
called thepost-initial-value theoremsince it yields the result  This result comes out of the relatiofi_ {5 ()} = s"
at 0. However, since there is no “pre-initial-value theotogether with the two facts
rem,” we retain standard terminology and refer to (5) as the
initial-value theorem. This result can be derived by sdvera lim £ {f.(t)} =0

s—o00-1



and, for alla > 0, “should be defined fromt = 0~,” but then incorrectly reasons
lim £ (5™ _0 that the “fine point of usingd~ or 0" never needs to be
Jim L{8™(t —a)} =0. addressed,” and continues to ueeeverywhere. The most

The initial-value theorem arises by applying the initiall€cent edition [44] does not clarify this issue.
singularity theorem tof’(¢). The singularity off’(¢) att =0 As discussed earlier, th€, form of the transform has
is the critical disadvantage that it leaves transients at 0
(F(0T) = F(07)8(E) + Y as™ (), as essentially an exercise for the reader (or worse yet, the
. student). Some books such as [45] and [46] add to the
confusion by showing botl . and £_ forms, with little or

with Laplace transform
no comment as to when to choose between them. These books

fOH) —f(07)+ chsl“ : also say that thet, form must be used to derive the initial-
l value theorem, which, as shown above, is false. The systems
Hence the time-derivative rule (4) implies book [47] states that using the one-sided transform is theesa

) L, 8s assuming that signals are zerofetr 0, which is not true,
sF(s) = f(07) = LAf' ()} ~ F(0") = f(07)+ > _as™ . as can be seen in the context of the examples in this article.
{ The book [25] states that both forms are acceptable as long

Canceling thef (0~) terms yields as the corresponding properties are developed in a comisiste
N - fashion. However, this approach leads to some convoluted
sF(s) ~ f(07) + Z as . reasoning associated with the derivative property and thith
! transform of the unit impulse.
In particular, if f(¢) is nonsingular at = 0, then The first two editions of [48] usé~ in the lower limit on

the Laplace integral and in the derivative property. Howeve
the statement of the initial-value theorem in [48] notifiee t

More generally, with the above analysis, we can see that tiader that “in general, the valugg0~), y(0), and y(0™)
value f(0+) can be read off direcﬂy from an expression fofor a Laplace'tranSformable function can differ,” but dowd

the Lap|ace transform. That iS,R(S) is a p0|yn0mia| p|us a SpeCify which value is calculated by the initial-value thexo.
function F(s) converging to zero as — oo - 1, then In the third and fourth editions [49] the initial-value them

is given incorrectly aslim sY'(s) = y(07).

lim sF(s) = f(0%).

lim sF(s) = f(07).
ool (s) = £(07) The first edition of [50] uses thé&. convention and includes

For example, consider the first-order transform an example where the initial conditions are conveniently bu
sta a—b unrealistically given in terms ofi(0"). The sixth edition still
F(s) = T 1+ P uses thel, convention, but theC_ convention is used in the
S S

seventh [51] and later editions (although without commeant o
This function has a post-initial valug¢(0™) = « — b, even impulses att = 0 or even a discussion of the initial-value
though f(¢) includes an impulse at = 0, as can be seentheorem). The first edition of the popular signals and system
using our result above, or through inversion of the tramsfor book [52] briefly covers the, form of the the unilateral
Laplace transform, while the second edition [53] includes a
IV. COMMENTS ON THETEXTBOOK LITERATURE much more thorough discussion using the transform and
an example withj(¢). While the first edition of [54] use8™

The textbook literature is surprisingly random in its trea i ' -
ment of the origin in the unilateral Laplace transform; man{ the lower limit on the Laplace integral, th0) term in the

otherwise-excellent texts fumble this issue. We found odfi€rivative property is unclear. The third [55] and subseque

selves confused by various textbook accounts, and our exfg!tions contain a clear and complete discussion of fhe
riences provided the initial impetus for writing this aric ~ convention, including the derivative property (4), explag,
Textbooks that use “It is the transform of the unit impulse that lead us to choose

the £_ transform rather than th&, transform.”

L{F' ()} = sF(s) — f(0) A rigorous foundation for the&_ convention of the Laplace
or transform requires a supporting treatment of singularitycf
lim sF(s) = f(0) tions. The ;idebar “Distinguishing, 0+, and0~" discusges
§—00 the application of the Laplace transform to abstract sgnal

without further clarification must be considered suspehbese independent of any dynamic-systems context, to clarify the
expressions appear in many texts on differential equationsed for consistent definitions of derivatives and the Lapla
[32]-[36] and as well as control books such as [37]-[40fransform. Recently, some authors [56], [57] have sugdeste
The control book [41] use$ in these expressions, but therthat the theory of generalized functions is far too compdida
inexplicably switches t@®)* when transforming the unit stepfor use in control education. We believe the treatment of
and 0~ when transforming the unit impulse. The first thregeneralized functions presented in the previous section is
editions of [42] usé) everywhere. In the fourth [43] and laterbrief enough to be quickly understood, yet sufficiently gahe
editions, the author correctly states that “strictly” thensform to be widely useful. Reference [57] further suggests that



singularities such asg(t) must be avoided in undergraduate[4]

teaching, and introduces a somewhat convoluted procedure _
] R. N. Bateson,Introduction to Control System Technolog§th ed.

for handling derivatives of discontinuous functions withinis

unusual perspective. This approach is simply not practicajs

either at the elementary or advanced levels, for teaching or 943, _
[7] A. H. Zemanian,Distribution Theory and Transform Analysis New

research.

Remarkably, the first control text to explicitly and con-[s]

sistently use the_ form is also one of the first control
books, the landmark classic text [58]. Starting on page %1 is 9

complete discussion of the definition of th&_ transform,
the correct derivative rule, the initial-value theoremgd am
simple statement of the initial-singularity theorem (atling

[10]
(11]
(12]

Heaviside'sp instead ofs as the Laplace variable, as i3
common in older texts). Notably, [58] does not reference the

misleading [18].

V. CONCLUSION

(14]

[15]

While all of the textbooks referenced above have much fs]

recommend them, the issue of Laplace techniques requires y !
e . . 17] C. L. Phillips and R. D. HarborfFeedback Control System4th ed.
clarification in many of these references, as well as in the

teaching of systems. It is important to introduce a treatroén [18]

the unilateral Laplace transform that includes transianthe

origin. As made clear in the above discussions, we regard #Hd
L_ form as the best approach for studying dynamic systenpsy]

since it easily incorporates nonzero pre-initial conaiiand
inputs that include singularity functions. This form is atked

J. Van de VegteFeedback Control Systen®3rd ed. Englewood Cliffs:
Prentice Hall, 1994.

Upper Saddle River: Prentice Hall, 1999.
G. Doetsch;Theorie und Anwendung der Laplace-Transformatidtew
York: Dover, 1943.

York: McGraw-Hill, 1965.
L. A. Zadeh and C. A. Desoet,.inear System Theory New York:
McGraw-Hill, 1963.

] R. H. Cannon, Jr.Dynamics of Physical System&lew York: McGraw-

Hill, 1967.

T. Kailath, Linear Systems Englewood Cliffs: Prentice-Hall, 1980.

N. S. Nise,Control Systems EngineeringNew York: Wiley, 1992.

G. C. Goodwin, S. F. Graebe, and M. E. Salga@ontrol System Design
Upper Saddle River: Prentice Hall, 2001.

W. R. LePage,Complex Variables and the Laplace Transform for
Engineers New York: McGraw-Hill, 1961.

H. H. Skilling, Electrical Engineering Circuits2nd ed.
Wiley, 1965.

J. J. D’Azzo and C. H. Houpis,inear Control System Analysis and
Design: Conventional and ModerBrd ed. New York: McGraw-Hill,
1988.

R. N. Clark, Control System Dynamics
University Press, 1996.

New York:

Cambridge: Cambridge

Upper Saddle River: Prentice Hall, 2000.

M. F. Gardner and J. L. BarneSransients in Linear Systems New
York: Wiley, 1942.

G. S. Brown and D. P. CampbeRrinciples of ServomechanismdNew
York: Wiley, 1948.

H. Chestnut and R. W. Mayegervomechanisms and Regulating System
Design New York: Wiley, 1951.

21] W. R. Ahrendt and J. F. TapliMiutomatic Feedback Control New

and correctly treated in many texts, such as [8]-{12], [29k2]

[51], [53], [55], and [58]. We also note that the trend is todva
the increased and explicit use 6t in the revisions of many 23

books, for example, from [50] to [51], from [52] to [S3], and24)
from [54] to [55]. We hope that the discussion in this article

helps to convince controls educators to continue this trend

(25]

In summary, for a set of properties for the unilateral Laplagog)
transform that are useful to engineers, we advocate uniform

use of the definition
£ty = [ e tan

the derivative rule involving pre-initial conditions
L{f'(t)} = sF(s) — f(07),

and the initial-value theorem

lim sF(s) = f(0").

s—o00-1

(27]

(28]
(29]

(30]

(31]
(32]

(33]

These properties give students general tools that can lik use

to solve differential equations with both nonzero initiane

ditions and inputs. These properties also work correctlthe

presence of input singularities and non-rest pre-init@idi-

tions. We find other presentations of the unilateral tramsfo

to be more difficult to apply and often confusing.
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gz = the derivative f/(t) must be interpreted as the generalized
2, H derivative of f(t), which includes the singularity function
< < (f(t3) — f(tg))a(t — to)
-2 -1 0 1 2 -2 -1 0 1 2
, " , " at every pointt, at which f(¢) is discontinuous. In particular,
g R R g A1 if f£(07) # f(07) then the derivative includes a delta function
£ o : 2 o : at the origin.
£ ' e ] In the following example, adapted from Problem 11.17 of
ER oo 2 R o 1 2 [29], we apply the unilateral transform to three signals and
2 2 their derivatives. This example clarifies that the need &ngl
£ £ 42 the Laplace transform (3) and properties (4) and (5) is yeall
£ 0‘,\ g0 | a matter of properly defining signals and their transforms, a
£ ‘ g ‘ is not fundamentally connected to the solution of diffeiant
= -1 [) 1 2 = -1 0 1 2 equations_
Time Time . . .
_ ' Consider the three signal§t), ¢(t), and h(t) defined for
Fig. 5: Three functionsf(t) = e~ %, g(t) = e~ %u(t), h(t) = all time
e~ %u(t) —u(—t), and their derivatives, plotted fer = 1 and defined
for all time. Impulses are represented by the red arrows, with t i —at
impulse area denoted by the number next to the arrowhead. Since f(t) = ¢ )
all three functions are identical for positive time, they &audentical g(t) — efatu(t)
unilateral Laplace transforms. However, their derivatidiffer at the ‘ ’
origin. Therefore the Laplace transforms of their derivegialso differ. h(t) = e *u(t) —u(-t),

which are plotted for the value = 1 in Figure 5. Since

_ _ _all three functions are nonsingular and agree for positive
[42] B. C. Kuo, Automatic Control Systems Englewood Cliffs: Prentice-

Hall, 1962, time, they have the same Laplace transform by means of (3).
[43] B. C. Kuo, Automatic Control Systemdith ed. Englewood Cliffs: However, their derivatives include different impulse \edu
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[45] K. Ogata,Modern Control Engineering4th ed. Englewood Cliffs: give consistent and correct results when operating on these
Prentice-Hall, 2002. signals and their derivatives. The associated transfonmras a

[46] gbglgata'sysmm Dynamicsith ed.  Englewood Cliffs: Prentice-Hall, -5 jated below to show that this consistency is found. We

[47] W. J. Palm Ill, Modeling, Analysis, and Control of Dynamic SystemsAlSO demonstrate the initial-value theorem in the contéxt o
2nd ed. New York: Wiley, 2000. these signals_
[48] G. H. Hostetter, C. J. Savant, Jr., and R. T. StefBeisign of Feedback
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theorem are

VI. SIDE BAR f(07) = lim =1
DISTINGUISHING 0™, 0, AND 0 st sta
and
While the unilateral Laplace transform is frequently asso- F(07) = lim 5 _ .
ciated with the solution of differential equations, the dee s—ools+a

to clearly distinguish0—, 0, and 0™ is independent of any The time-domain and Laplace-domain calculations are thus
dynamic-systems context. For a discontinuous funcii¢f), consistent.
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B. Properties ofy(t) VIlI. THE AUTHORS

The functiong(t) = e~%*u(t) has an associated pre-initialKent H. Lundberg (kl und@ri t . edu) received his Ph.D.
value g(0~) = 0. The Laplace transform qf(t) is the same in electrical engineering from the Massachusetts Institut
as for f(t), namely, of Technology in 2002, where he was a lecturer with the

1 Department of Electrical Engineering and Computer Science
. from 2002 to 2005. His research interests include the
s+a L . . .
) o ) ) application of control theory to problems in analog circuit
H(_)V\_/ever, the time derivative now includes an impulse at thf‘esign and the development of educational toys (such as
orgin ) o lecture demos, web applets, and low-cost lab kits) for sttsle
g'(t) = 6(t) —ae™"u(t). in control engineering. He is the associate editor for jsto
of IEEE Control Systems Magazinkle consults for several
industry corporations and organizations, and he collects
, a s -
LAdt)}=1- = , old textbooks on radar, nuclear energy, analog computing,
sta sta and control. He can be reached at MIT Lincoln Laboratory

which is different from the result (18) above. Using thg)-362A, 244 Wood Street, Lexington, MA 02420 USA.
derivative rule (4),

G(s) =L {e "u(t)} =

The Laplace transform of this time derivative is

, B N Haynes R. Miller is professor of mathematics at the
LAg (1)} = 5G(s) = 9(0 )_s+a 0_5+a’ (19) Massachusetts Institute of Technology. His research

we obtain the correct result. The initial-value theoremegiv SPecialty is algebraic topology. Over the past decade he
s has taught the major ordinary differential equations oeurs
g(0") = lim =1, several times, and has developed a series of “Mathlets”
s—oo-1 S+ a i . . .

. (http://wwwmath. mt. edu/dainp) for use in
producing the value at = 0. We can also apply the morejecture demonstrations and in homework assignments. He is
general initial-value theorem to the transform of the d&ile a Margaret MacVicar Faculty Fellow and the 2006 School
as follows. Expanding out the nonsingular part of the tramsf of Science winner of the Graduate Student Council teaching

gives u ) award.
G(s)=1- =1+ G(s),
sta David L. Trumper joined the MIT Department of Mechanical
and thus . Engineering in August 1993 and holds the rank of professor.
g(07) = lim sG(s) = —a, He received the B.S., M.S., and Ph.D. degrees from MIT in

electrical engineering and computer science, in 1980, 1984
and 1990, respectively. Professor Trumper’s researctecent
on the design of precision electromechanical systems with a

which is the correct value.

C. Properties ofi(t) specialization in mechatronics, precision motion contnah-
Finally consider the function performance manufacturing equipment, and magnetic suspen
sions and bearings. He is a member of the IEEE, ASME,
h(t) = e~ u(t) — u(—t) = { __1{,} t<0, and ASPE (past-president), is an associate editéretision
e, t>0, Engineering,and is a corresponding member of CIRP (The
which has an associated pre-initial valag0~) = —1. The International Academy for Production Engineering).

Laplace transform of this signal is the same as the Laplace
transforms off andg. Computing the time derivative gives
R'(t) = 25(t) — ae” “tu(t).
The Laplace transform of this time derivative is
a 25+ a
L {n(t)}=2- = :
{r'(t)} ra - sta

which is different from the results (18) and (19) above. |dsin
the derivative rule (4),

S 2s+a
+1= ,

s+a sta
gives the correct result. Finally, the initial-value thexor gives
a correct result for both and its derivative,(07) = 1 and
1/ (0%) = —a, although we don't show the details here.

The formulas (3), (4), and (5) give consistent results. We
hope that the signal examples presented above help toyclarif
the need for and application of these formulas.

L AN (t)} = sH(s) = h(07) =




