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The unilateral Laplace transform is widely used to analyze
signals, linear models, and control systems, and is conse-
quently taught to most engineering undergraduates. In our
courses at MIT in the departments of electrical engineering
and computer science, mathematics, and mechanical engineer-
ing, we have found some significant pitfalls associated with
teaching our students to understand and apply the Laplace
transform. We have independently concluded that one reason
students find the Laplace transform difficult is that there are
significant confusions present in many of the standard textbook
presentations of this subject, in all three of our disciplines.

A key issue is the treatment of the origin. Many texts [1]–[5]
define the Laplace transform of a time functionf(t) as

L{f(t)} =

∫ ∞

0

f(t)e−st dt

without specifying the meaning of the lower limit of integra-
tion. Said informally, does the integral include the originfully,
partially, or not at all? This question becomes critical when
singularities—the delta function and its derivatives—occurat
t = 0.

In the context of differential equations, singularities arise
from discontinuites in signals that are differentiated, orfrom
considering systems driven with singularities in the input.
Since the analysis of transient response is one of the key topics
in dynamic-systems courses, we need to teach techniques that
handle discontinuities and singularities, including those at the
origin. In particular, any presentation based on the unilateral
Laplace transform should unambiguously specify how the
origin is treated.

To understand and apply the unilateral Laplace transform,
students need to be taught an approach that addresses arbitrary
inputs and initial conditions. Some mathematically oriented
treatments of the unilateral Laplace transform, such as [6]and
[7], use theL+ form

L+{f(t)} =

∫ ∞

0+

f(t)e−st dt (1)

with the associated differentiation identity

L+{f
′(t)} = sF (s) − f(0+). (2)

However, with thisL+ form, the transform of the unit impulse
is zero! This result is often puzzling to students, who rightly
expect the impulse response of a linear system to be nonzero.

Alternatively, theL− Laplace transform is given by

L−{f(t)} = F (s) =

∫ ∞

0−

f(t)e−st dt , (3)

where the domain of integration fully includes the origin and
any singularities occuring at that time. This form is adopted in
many texts, such as [8]–[12]. The definition (3) of the Laplace
transform implies the time-derivative rule

L−{f
′(t)} = sF (s) − f(0−), (4)

whereby initial conditions existing beforet = 0 are brought
into the analysis. We refer tof(0−) as thepre-initial value
of f . In the context of differential equations this term is the
pre-initial condition.

With either (1) or (3) as the definition of the Laplace
transform, the initial-value theorem is

lim
s→∞·1

sF (s) = f(0+) , (5)

involving the post-initial value at t = 0+, where the nota-
tion s → ∞ · 1 indicates that the limit is taken along the
positive real axis.

Many books [13]–[17] implicitly adopt theL+ transform by
using the derivative property (2), but are not explicit as tothe
lower limit on the Laplace integral. However, these texts still
find that the transform of the unit impulse isL{δ(t)} = 1. In
the engineering context, this inconsistency can likely be traced
back to the classic text [18], which is cited by the landmark
control texts [19]–[23]. The resulting conflict is frequently
circumvented by defining the delta function as occurring
completely to the right oft = 0 [15], [24]–[26]. If the delta
function occurs to the right of the origin, what then does0+

mean, and what time value is associated with the initial-
value theorem (5)? With such questions left unaddressed, it
is difficult to teach engineering students to reliably analyze
transients at the origin in dynamic systems with theL+

transform. Additionally, with theL+ approach the post-initial
value f(0+) needs to be determined by independent means.
We certainly owe it to students not to leave this issue fuzzy
by simply avoiding problems that require a discussion of0−

and0+.
These troubles arise from a reluctance to use the generalized

derivative. One of the goals of this article is to show that
a formal but easily understood treatment can be based on
generalized functions. In brief, the fact that the derivative at a
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discontinuity produces a delta function must be embraced from
the outset. The subtitle of this article, “Troubles at the origin,”
was inspired by Section 3-6 of [27], which identifies the
necessity of distinguishing between0− and0+. However, the
subsequent reasoning in [27], which relies on the definitionof
an alternative impulse functionδ+(t), reaches the conclusion
that theL+ transform is preferable and thatδ(t) at the origin
should be ignored. Theδ+(t) approach is also used by [28].
By disguising the fact that there is a discontinuity at the
origin, such treatments give special treatment to tot = 0
and complicate the task of distinguishing between functions
such asf(t) = 1 and the unit-step function, which have the
same Laplace transform and the same valuef(0+) but which
have different derivatives. In addition, thisδ+(t) function lacks
any physical interpretation as an impulse, and we know of
no theory of distributions that includes one-sided singularity
functions; introducing them represents a significant departure
from standard mathematical theory.

While it is not possible to devote full attention to generalized
functions in a typical undergraduate course, this confusion
surrounding0− and0+ — this “skeleton in the closet” as [10]
calls it — needs to be brought out fully into the light. The goal
of this article is to highlight Laplace transform definitions and
properties that allow a readily taught and correct analysisof
dynamic systems incorporating nonzero initial conditionsand
where the system is driven by signals that include singularity
functions at the origin. To this end, we advocate the use
of the L− Laplace transform (3), along with its derivative
rule (4). We present reasonable mathematical support for
this approach, along with an accessible theory of generalized
functions, including how singularity functions are defined, how
these functions are combined with regular functions to form
generalized functions, and how mathematical operations on
these generalized functions can be consistently defined. This
treatment is suitable for most engineering uses.

The occurence of0− in (4) commits us to specifying
the value f(0−) and, if we wish to differentiate further,
the valuesf (n)(0−) as well, wheref (n) indicates thenth

derivative. With this viewpoint, initial conditions are more
clearly defined as pre-initial conditions. This extension of the
data inherent in a function provides a natural representation of
pre-initial conditions, describing the state “just beforet = 0.”
In many applications the signalf(t) is assumed to be zero
for t < 0; this choice represents therest pre-initial conditions
f (n)(0−) = 0 for all n. In this case, the derivative rule takes on
the simpler formL−{f

′(t)} = sF (s). However, nonzero pre-
initial conditions are frequently encountered, and thus need to
be addressed systematically in any transform approach.

With this overview in place, the remainder of this article
is organized as follows: We first motivate the discussion
with two simple examples that might be presented in a
sophomore dynamic-systems course. The responses of these
systems are calculated with both time-domain and Laplace
transform techniques. We also use these examples to illustrate
the advantages of theL− form. The section “A Brief Treatment
of Generalized Functions,” presents a theory of generalized
functions incorporating nonzero pre-initial conditions.Using
this brief theory, properties (4), (5) and some extensions are

vI (t) =

vO

+
−

 1 V, t < 0

0 V, t > 0

C

R

Fig. 1: Schematic of a highpass electrical filter driven by a step from
1 to 0 att = 0. The initial state of this system is the capacitor voltage
vC(0−) = 1 V, and thus the initial output voltage isvO(0−) = 0 V.
Although the unilateral Laplace transform of the inputvI(t) is Vi(s) =
0, the presence of the nonzero pre-initial capacitor voltageproduces a
dynamic response.

developed more fully in the section “Generalized Functions
and the Laplace Transform”. Finally, we comment further
on the treatment of the unilateral Laplace transform in the
textbook literature.

I. L APLACE ANALYSIS EXAMPLES

The need for careful definitions for the unilateral Laplace
transform can perhaps be best appreciated by two simple
examples. The first example is an RC circuit. The second
example is a simplified model of an automobile suspension.

A. Circuit Example

Consider the highpass filter shown in Figure 1 driven by the
voltage

vI(t) =

{

1 V, t < 0 ,
0 V, t > 0 .

We also specify the pre-initial conditionvO(0−) = 0 V, and
thus the capacitor is initially charged tovC(0−) = 1 V. This
circuit is described by the differential equation

C
d

dt
(vI − vO) −

vO

R
= 0

or, equivalently,
dvO

dt
+

vO

RC
=

dvI

dt
. (6)

This example is solved by means of time-domain,L+, andL−

approaches to illuminate their advantages and disadvantages.
1) Physical Reasoning:An experienced analyst might ap-

proach the problem using the following time-domain argu-
ment: With the given input, the capacitor voltage is continuous
at t = 0 since there are no impulsive currents: that is,
vC(0−) = vC(0+) = 1 V. With the input step of−1 V, the
output thus takes a step of−1 V at t = 0, and thusvO(0+) =
−1 V. Furthermore, in steady state with the inputvI(t) equal
to zero, the loop current is zero, and thuslim

t→∞
vO(t) = 0 V.

The system has a single time constantτ = RC; these initial
and final values are satisfied by the homogeneous response
vO(t) = −e−t/τ for t > 0. This function is shown in Figure 2
along with the input waveform.

This approach has the advantage that it is physically based
and doesn’t require any signficant mathematical machinery.
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Fig. 2: Response of the highpass filter driven by a step from 1 to
0 at t = 0, with RC = 1 s. The presence of the nonzero pre-initial
capacitor voltage produces the dynamic response shown here.Using the
L
−

transform produces the correct result shown here without requiring
a separate calculation of the transient att = 0.

However, such intuition is difficult to teach, particularlyin an
introductory course, where this approach appears to require
feats of insight that are hard for students to generalize.

2) TheL+ Laplace Transform Approach:The circuit prob-
lem can be solved systematically using the Laplace transform.
Using theL+ version of the transform (1), we proceed as
follows: The Laplace transform of the differential equation
(6), using the time-derivative rule (2), is

sVo(s) − vO(0+) +
Vo(s)

RC
= sVi(s) − vI(0

+),

which yields

Vo(s) =
sVi(s) − vI(0

+) + vO(0+)

s + 1/τ
. (7)

The transform of the input is

L+{vI(t)} = Vi(s) = 0,

which certainly seems useless; however, we have not yet
considered the effect of initial conditions.

Unfortunately, theL+ approach requires the values of
signals at t = 0+. Since the initial conditions are given
naturally att = 0−, the post-inital values at0+ need to be
determined so that the Laplace results can be calculated. In
fact, determination of the0+ values requires additional effort,
which depends either on some physical insight or the technique
of impulse matching [29]. The0+ values are determined based
on physical reasoning in the time-domain solution presented
above.

Impulse matching is based on the insight that a differential
equation must maintain equality at all times, and in particular
must be balanced in all orders of singularity functions. For
the first-order differential equation (6), with the input taking
a step of−1 V at t = 0, the input term isdvI/dt = −δ(t).
To balance this term, the output must then contain a step of
−1 V at t = 0 so that thedvO/dt term yields a matching
−δ(t). We thus recognize thatvO(0+) = −1 V. Since the
required reasoning becomes increasingly convoluted as the

system order grows, this approach is even harder to teach than
one based on physical insight. An example of this approach
for a second-order system is given in [29], pp. 342–3.

In any case, we now have the post-inital valuevO(0+) =
−1 V. Furthermore, with the input step from 1 to 0,vI(0

+) =
0 V. Using these results, we obtain

Vo(s) =
−1

s + 1/τ

and
vO(t) = −e−t/τ , t > 0,

which is the same result derived earlier.
3) TheL− Approach: The circuit solution using theL−

version of the transform (3) proceeds as follows: The Laplace
transform of the differential equation (6), using the time-
derivative rule (4), yields

Vo(s) =
sVi(s) − vI(0

−) + vO(0−)

s + 1/τ
. (8)

The associated initial values arevI(0
−) = 1 V andvO(0−) =

0 V.
With Vi(s) = 0 and vO(0−) = 0 V the expression (8)

simplifies to

Vo(s) =
−1

s + 1/τ
. (9)

Inverting this transform gives the output waveform

vO(t) = −e−t/τ , t > 0,

as before. We can further apply the initial-value theorem to(9),
calculating

vO(0+) = lim
s→∞·1

sVo(s) = −1.

The L− Laplace transform solution has the advantage that
it is general; students can apply this approach to any linear
constant-coefficient differential equation. This technique can
be readily taught and used by students at the introductory level,
and yields correct results in the presence of nonzero pre-initial
values or input functions containing singularities.

Of course, both forms of the Laplace transform yield correct
results. However, theL+ approach requires the additional
step of findingvO(0+), which is not required with theL−

form of the transform. This disadvantage is true in general.
Using theL− transform (3) and the properties (4) and (5),
all singularity functions att = 0 are included in the domain
of analysis, yielding parallel advantages over theL+ form.
Furthermore, students attempting to use theL+ form should
be rightly puzzled by the null identityL+{δ(t)} = 0, whereas
L−{δ(t)} = 1.

B. Automobile Suspension Example

Another example that illuminates the use of theL− Laplace
transform with pre-initial conditions is the idealized second-
order automobile-suspension system shown in Figure 3. In
this simplified model, we assume that the center of the
wheel follows the step contour exactly, such that the input
motion x(t) takes the form of a unit step. We are then
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Fig. 3: An idealized automobile-suspension system approaching a
rectangular speed bump. In the analysis, the center of the wheel is
assumed to follow the bump exactly. Analyzing the effect of this input
in the presence of an arbitrary initial state illustrates the advantages of
using theL

−
form of the Laplace transform.

interested in calculating the resulting car-body motiony(t).
We examine this response under three sets of initial conditions
to provide insight into the types of solutions that might be
calculated using Laplace techniques. The alternative approach
using theL+ form is more cumbersome here than in the first-
order case above, and so is not discussed further.

The differential equation describing the system in Figure 3
is

mÿ = b(ẋ − ẏ) + k(x − y),

wherem is the mass of the car,b is the damping coefficient of
the suspension, andk is the spring constant of the suspension.
The Laplace transforms of the derivatives are

L−{ẋ} = sX(s) − x(0−),

L−{ẏ} = sY (s) − y(0−),

and
L−{ÿ} = s2Y (s) − sy(0−) − ẏ(0−).

Therefore, the differential equation transforms to

ms2Y (s) − msy(0−) − mẏ(0−) =

b
(

sX(s) − x(0−) − sY (s) + y(0−)
)

+ k (X(s) − Y (s)) .

Solving for the outputY (s) gives

Y (s) =
(bs + k)X(s)

ms2 + bs + k
+
−bx(0−) + (ms + b)y(0−) + mẏ(0−)

ms2 + bs + k
.

(10)
Using this solution, we can readily find the system response
to arbitrary Laplace-transformable inputs and general initial
conditions.

We now assume that the input takes the form of a one-meter
stepx(t) = u(t), which has the transformX(s) = 1/s and a
pre-initial valuex(0−) = 0 m. The solution under this step is
then calculated for three sets of initial conditions. The first set
of initial conditions for the output and its derivative are the
initial-rest conditionsy(0−) = 0 m andẏ(0−) = 0 m/s. From
(10) the resulting output transform is

Y (s) =
bs + k

s(ms2 + bs + k)
.

Inverting Y (s) yields the zero-state step response shown in
Figure 4(a). Note that in this system, for a step input, the
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Fig. 4: Response of the idealized suspension system (plotted for
m = 1000 kg, b = 500 N-s/m, andk = 1000 N/m) to an input
unit step with three sets of initial conditions: (a) initialrest; (b) initial
position y(0−) = 1 m, zero initial velocityẏ(0−) = 0 m/s; and (c)
initial position y(0−) = 1 m and initial velocity ẏ(0−) = −b/m.
The last set of initial conditions results in immediate convergence to
final value.

position is continuous acrosst = 0, while the velocity takes
a step with valueb/m. These actions occur independently of
initial conditions and thus apply to all three cases studiedhere.

The second set of initial conditions consists of the initial
position y(0−) = 1 m with zero initial velocity ẏ(0−) =
0 m/s. That is, the system position starts at the level to which
it settles in steady state. In this case, the output transform
expression from (10) is

Y (s) =
1

s
+

b

ms2 + bs + k
.

Inverting this expression gives the time response shown in
Figure 4(b). The observed motion results from the force
impulse bδ(t) that the damper applies to the mass at the
moment of the step. Applying the initial-value theorem toY (s)
andsY (s), respectively, yields the post-initial valuesy(0+) =
1 m and ẏ(0+) = b/m. The post-initial velocity is simply an
expression of the change in momentum induced in the mass
by the force impulse applied from the damper; this change in
momentum occurs in all three cases studied here.

The third set of initial conditions is selected to yield
immediate convergence to the final value of the response. That
is, we choose the initial position asy(0−) = 1 m and set the
initial velocity to ẏ(0−) = −b/m, such that the initial velocity
is exactly canceled by the force impulse from the damper. For
these initial conditions, the output transform (10) is

Y (s) =
ms2 + bs + k

s(ms2 + bs + k)
=

1

s
.

We recognize this result as the transform of the unit step,
which gives

y(t) = 1 m, t > 0.

This waveform is shown in Figure 4(c), along with a pre-initial
velocity of −b/m as indicated by the straight line segment
of position for t < 0. Of course, in the analysis we do not
concern ourselves with exactly how this pre-initial velocity is
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established, nor any details of the time variation prior to the
transient. The only required prior knowledge is the velocity
and position immediately before the transient att = 0−.

II. A B RIEF TREATMENT OF GENERALIZED FUNCTIONS

Many engineering and mathematics textbook discussions of
the unilateral Laplace transform treat singularities att = 0
differently from singularities att > 0. These inconsistencies
arise from a reluctance to use the generalized derivative.
However, a consistent and easily understood treatment can be
based on the uniform use of generalized functions [30]. In
this section, we provide an accessible mathematical account
of a portion of the theory of generalized functions that is
broad enough for most engineering applications and free of
mathematical technicalities.

The treatment of generalized functions presented below
is just a small part of the standard mathematical theory of
distributions, but what we present is both sufficiently concrete
to be quickly understood, and sufficiently general to be widely
useful. Our treatment is axiomatic in the sense that the delta
function and its derivatives are treated purely symbolically. We
describe the behavior of singularity functions in a way thatwe
believe supports the common intuition about them.

Because of our focus on the unilateral Laplace transform,
we consider generalized functions on the interval[0,∞). On
the other hand, the applications presented above indicate the
desirability of incorporating nonzero pre-initial conditions, and
we build this possibility into the theory by incorporating
into the information carried by a generalized function the
pre-initial values att = 0− of the function and all of its
derivatives. We note, however, that this choice is not well-
suited for a discussion of convolution. Restricting to restpre-
initial conditions f (n)(0−) = 0, without further changes,
results in a satisfactory treatment of convolution and has other
advantages as well, but loses the flexibility of non-rest pre-
initial conditions. Both theories are useful.

A. Definitions

1) Sparsity: A set S of numbers issparseif every interval
of finite length contains only finitely many elements ofS.

2) Piecewise continuity:A function f(t) on [0,∞) is
piecewise continuousif there is a sparse setS ⊂ [0,∞) such
thatf(t) is continuous on the complement ofS and, for every
a ∈ [0,∞), the one-sided limitsf(a+) andf(a−) exist.

The expressionf(0−) requires special interpretation, since
the usual meaning given to the one-sided limit, namely,

f(a−) = lim
t↑a

f(t) ,

is unavailable to us becausef(t) is defined only fort > 0.
Rather, the valuef(0−) represents additional information that
must be specified to completely specify the function. This
information is a pre-initial condition.

3) Piecewise smoothness:A function f(t) defined on the
interval [0,∞) is piecewise smoothif there is a sparse set
S ⊂ [0,∞) such that all of the derivatives off(t) exist on
the complement ofS and have left and right limits at 0 and

at every element ofS. Thus, part of the data of a piecewise-
smooth function on[0,∞) is the sequence of valuesf (n)(0−),
for n = 0, 1, 2 . . .. These data are not implied by values off(t)
for t ≥ 0. In fact, the series formed using these values,

∞
∑

n=0

f (n)(0−)

n!
xn ,

may not be the Maclaurin series of any function; it may have
radius of convergence zero. Normally, however, these values
are given as the limiting values of a function defined fort < 0.

In this setting, the unit-step functionu(t) is defined to take
on the value 1 for allt > 0 and have zero pre-initial conditions
u(n)(0−) = 0 for all n ≥ 0. The value of a generalized
function at any single point is not significant, as explained
below.

4) Singularity functions:A singularity functionis a formal
sum of the form

fs(t) =
∑

k,l

ck,lδ
(l)(t − ak),

where ak is a nondecreasing sequence in[0,∞). For each
value of k, only finitely many of theck,l are allowed to
be nonzero. The sum can be over a finite or infinite range
of values of k. If the range of values ofk is infinite, we
require that lim

k→∞
ak = ∞. In this treatment, the symbolδ

is used symbolically. A virtue of this axiomatic approach is
that it implements pre-existing intuitions the user may have
without introducing distracting artifices. Of course,δ(t) refers
to the unit impulse, andδ(l) is its lth derivative. In particular,
δ(0)(t) = δ(t).

The constantsak for which someck,l is nonzero are the
singular points offs(t). The singularity at t = a of fs(t) is
the part of the sum corresponding toak = a. If this sum is
empty,fs(t) is nonsingular att = a.

We comment here that the unit-step functionu(t) =
δ(−1)(t) is taken as dimensionless. Succeeding derivatives in-
troduce units of increasing negative powers of time. The units
of the singularity functionδ(l)(t) are thus seconds−(l+1). If
we wish to associate these functions with physical quantities,
then the functions must be multiplied by weighting terms with
appropriate units. For example, in a voltage waveform, the
functionsδ(l)(t) must be multiplied by weighting termsck,l

that have units of V-s(l+1). As another example, a force
impulseF0δ(t) has a weighting termF0 with units of N-s. The
term F0 then corresponds to the area under a finite-duration
force event, such as a hammer blow, which we might model
with an impulse function.

5) Generalized functions:A generalized functionis a for-
mal expression

f(t) = fr(t) + fs(t),

whose regular partfr(t) is determined by a piecewise-smooth
function and whose singular partfs(t) is a singularity func-
tion. The regular part contributes the pre-initial conditions
f (n)(0−) = f

(n)
r (0−).

There is a subtlety here. Two piecewise-smooth functions
define the same generalized functions if and only if they differ
from each other on a sparse set. This fact is why the value of
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the unit-step function att = 0 is irrelevant. Consequently, the
values attained onany sparse set are irrelevant to the identity
of the corresponding generalized function. When viewing a
function as a generalized function, it is best never to referto
specific valuesf(a), which are always irrelevant, but rather
to the one-sided limitsf(a+) and f(a−), which are always
defined (even fora ∈ S), even if a finite number of values
of f(t) are changed. This caveat is necessary to ensure that
the standard uniqueness theorem for solutions of differential
equations holds for generalized functions.

6) Generalized differentiation:Generalized functions can
be differentiated to give additional generalized functions. To
begin with, let f(t) be a piecewise-smooth function that is
smooth on the complement of a sparse setS. Thegeneralized
derivativeof a piecewise-smooth functionf(t) is a generalized
function that is denoted by the standard notationf ′(t) for
the derivative. The regular part off ′(t) is smooth on the
complement ofS, and is (by definition, in this treatment)
given by the ordinary derivative offr(t) on the complement
of S. The pre-initial values are specified by(f ′)(n)(0−) =

f
(n+1)
r (0−). The singular part off ′(t) is given by summing

delta functions that arise from the jumps in the graph off(t),
that is,

f ′
s(t) =

∑

a∈S

(f(a+) − f(a−))δ(t − a) .

The generalized derivative of a singularity function simply
follows the notation

(δ(l))′(t − a) = δ(l+1)(t − a) .

B. Properties of Generalized Functions

1) Multiplication: Generalized functions cannot necessarily
be multiplied together, and such products never occur in
applications of the Laplace transform. However, ifg(t) is a
smooth function then its product with any generalized function
f(t) is defined, and the product rule

(f · g)′(t) = f ′(t)g(t) + f(t)g′(t) (11)

holds in this generality. The following paragraphs re-express
this product in the standard form we use to define generalized
functions.

Since we want the product (11) to be linear in each variable,
and of course we want the product offr(t)g(t) to be the
usual product of functions, it suffices to definef(t)g(t) for
g(t) smooth andf(t) = δ(n)(t − a). To decide how to define
g(t)δ(n)(t−a) for g(t) smooth, we begin with the casen = 0,
and simply define the productg(t)δ(t−a) to be what we expect
it to be, namely,

g(t)δ(t − a) = g(a)δ(t − a). (12)

It turns out that (12), along with the product rule (11), deter-
mines expressions for all products of the formg(t)δ(n)(t−a),
where g(t) is a smooth function, as linear combinations of
terms of the formδ(n−k)(t − a) with constant coefficients.
To see this result, we differentiate (12) and apply this same
identity with g′(t) replacingg(t) to find

g(t)δ′(t − a) = g(a)δ′(t − a) − g′(a)δ(t − a).

Continuing in the same way leads by induction to the identity

g(t)δ(n)(t − a) =
n
∑

k=0

(−1)k

(

n

k

)

g(k)(a) δ(n−k)(t − a). (13)

This formula defines how a generalized function is to be
multiplied by a smooth functiong(t). In addition, (13) explains
how smoothg(t) must be so that the productg(t)δ(n)(t − a)
makes sense, specifically,g(t) and its derivatives up tog(n)(t)
must exist and be continuous att = a. This perspective is
taken by [31]; see Equation 3.26.

Having arrived at a definition of the product of a smooth
function with a generalized function, we now check that the
product rule (11) does in fact hold. The product rule can be in-
tegrated to obtain the usual integration-by-parts formula, valid
for any smooth functiong(t) and any generalized function
f(t), given by

∫ b+

a−

f ′(t)g(t) dt = f(t)g(t)

]b+

a−

−

∫ b+

a−

f(t)g′(t) dt. (14)

To apply (14) to the casea = 0, we use the valuesf(0−) and
g(0−) that are included in the definitions of these functions.
It follows from the definition of smoothness (as opposed to
piecewise smoothness) thatg(0−) = g(0). Hence

∫ b+

0−

f ′(t)g(t) dt =
(

f(b+)g(b) − f(0−)g(0)
)

−

∫ b+

0−

f(t)g′(t) dt.

(15)
2) Convolution:The convolution product cannot be defined

on the whole of our space of generalized functions so as to
have expected properties. Convolution withδ(t − a), where
a ≥ 0, should be a shift, that is

δ(t − a) ∗ f(t) =

{

f(t − a) if t > a,
0 if t < a.

(16)

Whena > 0, the right-hand side determines the values of the
convolution and its derivative att = a−, independently of the
valuesf (n)(0−); these values arenot shifted, but rather are
simply lost.

The best option is to define the convolution product only
on the subspace of generalized functions with rest pre-initial
conditions. Equation (16) together with

δ(n)(t) ∗ f(t) = f (n)(t) (17)

which is valid for all generalized functionsf(t), and the asser-
tion of associativity and commutativity define the convolution
product on this subspace. Note that (17) forf(t) = δ(m)(t)
gives the equationδ(n)(t)∗δ(m)(t) = δ(n+m)(t). In particular,
δ(t) ∗ δ(t) = δ(t).

III. G ENERALIZED FUNCTIONS AND THE LAPLACE

TRANSFORM

Laplace transforms can be defined for generalized functions
satisfying appropriate exponential growth conditions. The ba-
sic singularity functions satisfy

L−{δ
(n)(t)} = sn,
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which we take as a definition. Specifying these values is all
that is required to develop a useful theory of the Laplace
transform of generalized functions, as shown below.

Convergence of the improper integral defining the Laplace
transform requires conditions on both regular and singular
functions. One requirement for a piecewise-continuous func-
tion fr(t) is that it beof exponential type,meaning that there
exists a constantM such that|fr(t)| < eMt for all large t.
Then the integral converges for<e(s) > M .

A convenient and sufficiently general condition on singu-
larity functions that guarantees convergence of the Laplace
transform in a right-half plane is given as follows. First, we
require that the singularity function is offinite order,meaning
that there is a largestn for which δ(n)(t − a) occurs. Then,
in the expression

fs(t) =
∑

k,l

ck,lδ
(l)(t − ak),

we require thatfs(t) also be of exponential type, meaning
that there exists a constantN such that|ck,l| < eNak for all
largek and for alll. With these assumptions, the sum defining
L−{fs(t)} converges for all<e(s) > N .

For a generalized functionf(t) = fr(t)+ fs(t), we require
that the regular partfr(t) be of exponential type and that the
singular partfs(t) be of finite order and of exponential type.

A. The Time-Derivative Rule

The time-derivative rule (4) can be directly derived from
the definition (3) when applied tof ′(t), that is,

L−{f
′(t)} =

∫ ∞

0−

f ′(t)e−st dt .

Integrating by parts following (15)
∫ ∞

0−

f ′(t)g(t) dt = f(∞)g(∞)−f(0−)g(0)−

∫ ∞

0−

f(t)g′(t) dt

with
g(t) = e−st

and
g′(t) = −se−st

yields
∫ ∞

0−

f ′(t)e−st dt = −f(0−)e0 +

∫ ∞

0−

f(t) se−st dt

= −f(0−) + sL−{f(t)}.

With systematic use of the generalized derivative, this formula
is valid for any generalized functionf(t) of exponential type
provided thats has real part sufficiently large for the improper
integrals to converge.

B. The Initial-Value Theorem

The initial-value theorem (5) is perhaps more accurately
called thepost-initial-value theorem,since it yields the result
at 0+. However, since there is no “pre-initial-value theo-
rem,” we retain standard terminology and refer to (5) as the
initial-value theorem. This result can be derived by several

approaches that provide alternative insights. We show two
approaches below, which are based upon a formal application
of the derivative rule and theinitial-singularity theorem. In
addition, a qualitative argument based on the sifting property
of se−st can be found in [10], p. 12.

The initial-value theorem extends to the situation in which
F (s) fails to converge to zero ass → ∞·1, but can be written
as

F (s) = F̃ (s) +

N
∑

n=1

ansn,

where the functionF̃ (s) converges to zero in the limits →
∞ · 1. In this case, the post-initial value off is given by

lim
s→∞·1

sF̃ (s) = f(0+) .

Said another way, the occurence of singularity functions in
f(t) does not preclude a well-defined limit att = 0+, and the
value of this limit is captured by the Laplace transform.

1) From the Derivative Rule:The initial-value theorem can
be derived from the derivative rule (4), which implies

sF (s) =

∫ ∞

0−

f ′(t)e−st dt + f(0−).

Taking the limit ass goes to infinity along the real axis gives

lim
s→∞·1

sF (s) = lim
s→∞·1

(
∫ ∞

0−

f ′(t)e−st dt

)

+ f(0−)

= lim
s→∞·1

(

∫ 0+

0−

f ′(t)e0 dt +

∫ ∞

0+

f ′(t)e−st dt

)

+ f(0−)

= lim
s→∞·1

(

f(t)

]0+

0−

+ 0

)

+ f(0−)

= f(0+),

which is the expected result.
2) From the Initial-Singularity Formula:The initial-value

theorem can perhaps best be thought of as a special case of
what we call theinitial-singularity theorem,which asserts that
F (s) is asymptotic, ass increases through the real numbers,
to a polynomial that carries information about the singularity
of f(t) at t = 0. To express this relation we use the notation
F (s) ∼ G(s) to represent

lim
s→∞·1

(F (s) − G(s)) = 0 .

The initial-singularity formula asserts that if the singularity of
f(t) at t = 0 is

∑

l

clδ
(l)(t) ,

then, withF (s) = L−{f(t)},

F (s) ∼
∑

l

cls
l .

This result comes out of the relationL−{δ
(n)(t)} = sn

together with the two facts

lim
s→∞·1

L−{fr(t)} = 0
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and, for alla > 0,

lim
s→∞·1

L−{δ
(n)(t − a)} = 0.

The initial-value theorem arises by applying the initial-
singularity theorem tof ′(t). The singularity off ′(t) at t = 0
is

(f(0+) − f(0−))δ(t) +
∑

l

clδ
(l+1)(t) ,

with Laplace transform

f(0+) − f(0−) +
∑

l

cls
l+1 .

Hence the time-derivative rule (4) implies

sF (s)− f(0−) = L−{f
′(t)} ∼ f(0+)− f(0−) +

∑

l

cls
l+1 .

Canceling thef(0−) terms yields

sF (s) ∼ f(0+) +
∑

l

cls
l+1 .

In particular, if f(t) is nonsingular att = 0, then

lim
s→∞·1

sF (s) = f(0+) .

More generally, with the above analysis, we can see that the
value f(0+) can be read off directly from an expression for
the Laplace transform. That is, ifF (s) is a polynomial plus a
function F̃ (s) converging to zero ass → ∞ · 1, then

lim
s→∞·1

sF̃ (s) = f(0+) .

For example, consider the first-order transform

F (s) =
s + a

s + b
= 1 +

a − b

s + b
.

This function has a post-initial valuef(0+) = a − b, even
though f(t) includes an impulse att = 0, as can be seen
using our result above, or through inversion of the transform.

IV. COMMENTS ON THETEXTBOOK L ITERATURE

The textbook literature is surprisingly random in its treat-
ment of the origin in the unilateral Laplace transform; many
otherwise-excellent texts fumble this issue. We found our-
selves confused by various textbook accounts, and our expe-
riences provided the initial impetus for writing this article.

Textbooks that use

L{f ′(t)} = sF (s) − f(0)

or
lim

s→∞
sF (s) = f(0)

without further clarification must be considered suspect. These
expressions appear in many texts on differential equations
[32]–[36] and as well as control books such as [37]–[40].
The control book [41] uses0 in these expressions, but then
inexplicably switches to0+ when transforming the unit step
and 0− when transforming the unit impulse. The first three
editions of [42] use0 everywhere. In the fourth [43] and later
editions, the author correctly states that “strictly” the transform

“should be defined fromt = 0−,” but then incorrectly reasons
that the “fine point of using0− or 0+ never needs to be
addressed,” and continues to use0 everywhere. The most
recent edition [44] does not clarify this issue.

As discussed earlier, theL+ form of the transform has
the critical disadvantage that it leaves transients att = 0
as essentially an exercise for the reader (or worse yet, the
student). Some books such as [45] and [46] add to the
confusion by showing bothL+ andL− forms, with little or
no comment as to when to choose between them. These books
also say that theL+ form must be used to derive the initial-
value theorem, which, as shown above, is false. The systems
book [47] states that using the one-sided transform is the same
as assuming that signals are zero fort < 0, which is not true,
as can be seen in the context of the examples in this article.
The book [25] states that both forms are acceptable as long
as the corresponding properties are developed in a consistent
fashion. However, this approach leads to some convoluted
reasoning associated with the derivative property and withthe
transform of the unit impulse.

The first two editions of [48] use0− in the lower limit on
the Laplace integral and in the derivative property. However,
the statement of the initial-value theorem in [48] notifies the
reader that “in general, the valuesy(0−), y(0), and y(0+)
for a Laplace-transformable function can differ,” but doesnot
specify which value is calculated by the initial-value theorem.
In the third and fourth editions [49] the initial-value theorem
is given incorrectly aslim

s→∞
sY (s) = y(0−).

The first edition of [50] uses theL+ convention and includes
an example where the initial conditions are conveniently but
unrealistically given in terms ofy(0+). The sixth edition still
uses theL+ convention, but theL− convention is used in the
seventh [51] and later editions (although without comment on
impulses att = 0 or even a discussion of the initial-value
theorem). The first edition of the popular signals and systems
book [52] briefly covers theL+ form of the the unilateral
Laplace transform, while the second edition [53] includes a
much more thorough discussion using theL− transform and
an example withδ(t). While the first edition of [54] uses0−

in the lower limit on the Laplace integral, thef(0) term in the
derivative property is unclear. The third [55] and subsequent
editions contain a clear and complete discussion of theL−

convention, including the derivative property (4), explaining,
“It is the transform of the unit impulse that lead us to choose
theL− transform rather than theL+ transform.”

A rigorous foundation for theL− convention of the Laplace
transform requires a supporting treatment of singularity func-
tions. The sidebar “Distinguishing0, 0+, and 0−” discusses
the application of the Laplace transform to abstract signals,
independent of any dynamic-systems context, to clarify the
need for consistent definitions of derivatives and the Laplace
transform. Recently, some authors [56], [57] have suggested
that the theory of generalized functions is far too complicated
for use in control education. We believe the treatment of
generalized functions presented in the previous section is
brief enough to be quickly understood, yet sufficiently general
to be widely useful. Reference [57] further suggests that
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singularities such asδ(t) must be avoided in undergraduate
teaching, and introduces a somewhat convoluted procedure
for handling derivatives of discontinuous functions within this
unusual perspective. This approach is simply not practical,
either at the elementary or advanced levels, for teaching or
research.

Remarkably, the first control text to explicitly and con-
sistently use theL− form is also one of the first control
books, the landmark classic text [58]. Starting on page 51 isa
complete discussion of the definition of theL− transform,
the correct derivative rule, the initial-value theorem, and a
simple statement of the initial-singularity theorem (all using
Heaviside’s p instead of s as the Laplace variable, as is
common in older texts). Notably, [58] does not reference the
misleading [18].

V. CONCLUSION

While all of the textbooks referenced above have much to
recommend them, the issue of Laplace techniques requires
clarification in many of these references, as well as in the
teaching of systems. It is important to introduce a treatment of
the unilateral Laplace transform that includes transientsat the
origin. As made clear in the above discussions, we regard the
L− form as the best approach for studying dynamic systems,
since it easily incorporates nonzero pre-initial conditions and
inputs that include singularity functions. This form is adopted
and correctly treated in many texts, such as [8]–[12], [29],
[51], [53], [55], and [58]. We also note that the trend is toward
the increased and explicit use ofL− in the revisions of many
books, for example, from [50] to [51], from [52] to [53], and
from [54] to [55]. We hope that the discussion in this article
helps to convince controls educators to continue this trend.

In summary, for a set of properties for the unilateral Laplace
transform that are useful to engineers, we advocate uniform
use of the definition

L{f(t)} =

∫ ∞

0−

f(t)e−st dt,

the derivative rule involving pre-initial conditions

L{f ′(t)} = sF (s) − f(0−),

and the initial-value theorem

lim
s→∞·1

sF (s) = f(0+).

These properties give students general tools that can be used
to solve differential equations with both nonzero initial con-
ditions and inputs. These properties also work correctly inthe
presence of input singularities and non-rest pre-initial condi-
tions. We find other presentations of the unilateral transform
to be more difficult to apply and often confusing.
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Fig. 5: Three functionsf(t) = e−at, g(t) = e−atu(t), h(t) =
e−atu(t)−u(−t), and their derivatives, plotted fora = 1 and defined
for all time. Impulses are represented by the red arrows, with the
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origin. Therefore the Laplace transforms of their derivatives also differ.
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VI. SIDE BAR
DISTINGUISHING 0−, 0, AND 0+

While the unilateral Laplace transform is frequently asso-
ciated with the solution of differential equations, the need
to clearly distinguish0−, 0, and 0+ is independent of any
dynamic-systems context. For a discontinuous functionf(t),

the derivativef ′(t) must be interpreted as the generalized
derivative off(t), which includes the singularity function

(f(t+0 ) − f(t−0 ))δ(t − t0)

at every pointt0 at whichf(t) is discontinuous. In particular,
if f(0−) 6= f(0+) then the derivative includes a delta function
at the origin.

In the following example, adapted from Problem 11.17 of
[29], we apply the unilateral transform to three signals and
their derivatives. This example clarifies that the need for using
the Laplace transform (3) and properties (4) and (5) is really
a matter of properly defining signals and their transforms, and
is not fundamentally connected to the solution of differential
equations.

Consider the three signalsf(t), g(t), andh(t) defined for
all time

f(t) = e−at,

g(t) = e−atu(t),

h(t) = e−atu(t) − u(−t),

which are plotted for the valuea = 1 in Figure 5. Since
all three functions are nonsingular and agree for positive
time, they have the same Laplace transform by means of (3).
However, their derivatives include different impulse values
at t = 0, and thus the Laplace transforms of their derivatives
must differ. Our choice of Laplace transform properties should
give consistent and correct results when operating on these
signals and their derivatives. The associated transforms are
calculated below to show that this consistency is found. We
also demonstrate the initial-value theorem in the context of
these signals.

A. Properties off(t)

Consider the functionf(t) = e−at with the pre-initial value
f(0−) = 1. The Laplace transform off(t) is

F (s) = L−{e
−at} =

1

s + a
.

The time derivative off(t) is

f ′(t) = −ae−at,

and the Laplace transform of the time derivative is

L−{−ae−at} =
−a

s + a
. (18)

Using the derivative rule (4)

L−{f
′(t)} = sF (s) − f(0−) =

s

s + a
− 1 =

−a

s + a

produces the same result. The results from the initial-value
theorem are

f(0+) = lim
s→∞·1

s

s + a
= 1

and
f ′(0+) = lim

s→∞·1

−sa

s + a
= −a.

The time-domain and Laplace-domain calculations are thus
consistent.
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B. Properties ofg(t)

The functiong(t) = e−atu(t) has an associated pre-initial
value g(0−) = 0. The Laplace transform ofg(t) is the same
as forf(t), namely,

G(s) = L−{e
−atu(t)} =

1

s + a
.

However, the time derivative now includes an impulse at the
origin

g′(t) = δ(t) − ae−atu(t).

The Laplace transform of this time derivative is

L−{g
′(t)} = 1 −

a

s + a
=

s

s + a
,

which is different from the result (18) above. Using the
derivative rule (4),

L−{g
′(t)} = sG(s) − g(0−) =

s

s + a
− 0 =

s

s + a
, (19)

we obtain the correct result. The initial-value theorem gives

g(0+) = lim
s→∞·1

s

s + a
= 1,

producing the value att = 0+. We can also apply the more
general initial-value theorem to the transform of the derivative
as follows. Expanding out the nonsingular part of the transform
gives

G(s) = 1 −
a

s + a
≡ 1 + G̃(s),

and thus
g′(0+) = lim

s→∞·1
sG̃(s) = −a,

which is the correct value.

C. Properties ofh(t)

Finally consider the function

h(t) = e−atu(t) − u(−t) =

{

−1, t < 0,
e−at, t > 0,

which has an associated pre-initial valueh(0−) = −1. The
Laplace transform of this signal is the same as the Laplace
transforms off andg. Computing the time derivative gives

h′(t) = 2δ(t) − ae−atu(t).

The Laplace transform of this time derivative is

L−{h
′(t)} = 2 −

a

s + a
=

2s + a

s + a
.

which is different from the results (18) and (19) above. Using
the derivative rule (4),

L−{h
′(t)} = sH(s) − h(0−) =

s

s + a
+ 1 =

2s + a

s + a
,

gives the correct result. Finally, the initial-value theorem gives
a correct result for bothh and its derivative,h(0+) = 1 and
h′(0+) = −a, although we don’t show the details here.

The formulas (3), (4), and (5) give consistent results. We
hope that the signal examples presented above help to clarify
the need for and application of these formulas.
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