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Abstract. I sketch Mike Hopkins’s proof of the Landweber exact func-
tor theorem, and offer some related perspectives and notations.

In 1966 Pierre Conner and Ed Floyd [3] proved the following remark-
able theorem: Complex K-theory is algebraically determined by complex
bordism. To be precise, there is a ring homomorphism Td : MU∗ → K∗
(the “Todd genus”) and a natural isomorphism from the resulting tensor
product:

MU∗(X)⊗MU∗ K∗ → K∗(X) .

Their proof required prior knowledge of the existence of the homology theory
given by Bott periodicity. But it opened the possibility that other interesting
homology theories might lie hidden inside complex bordism. Ten years later,
Peter Landweber [6] provided a simple condition on an MU∗-module M
guaranteeing that

X 7→MU∗(X)⊗MU∗ M

is a homology theory—and hence (according to George Whitehead and Ed
Brown) is representable by a spectrum. This gives a construction of the Bott
spectrum independent of Bott periodicity. It doesn’t obviate the relevance of
Bott periodicity, since it does not explain the relationship between the theory
thus constructed and complex vector bundles. But Landweber’s theorem
opened the way to the wholesale construction of spectra, many of which
have played dominant roles in algebraic topology throughout the intervening
forty years.

This note has several loosely connected aims, all modest and none very
novel. The theory of formal groups and their occurence in topology has
been expressed many times in quite sophisticated terms ([11, 5, 4, 8, 10]
are some examples). We hope here to achieve the level of generality and
naturality one finds in those sources, without requiring as much infrastruc-
ture. So for example we avoid the language of stacks. On the other hand,
we offer a coordinate-free definition of “formal group” directly suggested by
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the topology. We choose to work in an ungraded setting, which is to say
that we restrict attention to even (“weakly”) periodic theories. We obtain a
grading at the appropriate moment by forming eigenspaces with respect to
an action of the multiplicative group. This is quite standard in the case of
even gradings, but the sign rules of topology—that is to say, the description
in these terms of the symmetric monoidal category of all cobordism comod-
ules (rather than just the evenly graded ones)—deserve further attention,
as was pointed out to us by Jack Morava. We describe an extension of the
Hopf algebroid underlying the theory of formal groups for which the cate-
gory of comodules is equivalent to the category of MU∗MU -comodules as
symmetric monoidal categories. The objects in the stack represented by this
Hopf algebroid might be called spin formal groups, since they consist of a
formal group with the added datum of a square root of the canonical line
bundle.

Then comes an exposition of a proof of Landweber’s theorem due to
Mike Hopkins. It places the fact that height gives a complete classification
of formal groups, up to faithfully flat extension, at the center of the proof,
where it belongs. This proof doesn’t quite give the full result, but it does
cover all cases of interest.

This is a revision of notes that have been around for fifteen years; I spoke
on this topic at meetings in Baltimore and Kinosaki in 2003, for example. I
apologize for the long delay in publication. It’s been long enough that I will
probably forget to mention some of my creditors, but they certainly include
Paul Goerss, Mike Hopkins, Mark Hovey, Gerd Laures, Jack Morava, Amnon
Neeman, Charles Rezk, and Neil Strickland. And I thank the referee and
editor, who have more recently rescued me from some of my more egregious
errors.

I’m glad to have this opportunity to congratulate Paul Goerss and thank
him for his many contributions to our subject!

1. Even periodic ring spectra and formal groups

Definition 1.1. An even periodic ring spectrum is a commutative monoid
R in the stable homotopy category such that (1) π1(R) = 0, and (2) for ev-
ery integer n the multiplication map

π2(R)⊗π0(R) πn(R)→ π2+n(R)

is an isomorphism.

As usual we will write Rn = R−n = πn(R), and R = R0. Since R2 ⊗R
R−2 → R is an isomorphism, R2 is an invertible R-module. We recall some
facts about such modules.

Proposition 1.2. Let P be a module over the ring R. The following
three conditions are equivalent.
1. There exists a module Q such that P ⊗R Q ∼= R as R-modules: P is
“invertible.”
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2. P is finitely generated, projective, and dimk(p)(P/pP )p = 1 for all p ∈
SpecR (where k(p) = (R/p)p): P is “projective of rank one.”
3. There exists a faithfully flat map R → S such that P ⊗R S ∼= S as
S-modules.

Proof. This is standard. See for example [1], II.§5 Ex. 8, pp 147 f. �

Write ω for the invertible R-module π2(R). The homotopy groups of R
are given by

R2n = ωn , n ∈ Z .
We will write R(ω) for the evenly graded “Laurent series ring” with ωn in
degree 2n and the evident product structure. It is commutative, as you can
see by tensoring with a faithfully flat extension R→ S such that ω⊗RS = S.
This is the coefficient ring of R: π∗(R) = R(ω).

For any spectrum X and any integer n, the product map

Rn(X)⊗R ω → Rn+2(X)

is an isomorphism.
When applied to a pointed space, R∗(−) will always mean the reduced

theory. Complex projective space with a disjoint basepoint adjoined will be
denoted by CP∞0 .

Proposition 1.3. Let R be an even periodic ring spectrum, and let

I = ker (R0(CP∞0 )→ R0(S0)) .

Then R0(CP∞0 ) is I-adically complete, and the associated graded ring of
the I-adic filtration is the evenly graded “polynomial ring” R[ω]:

gr2nR0(CP∞0 ) = ωn , n ≥ 0 .

Proof. In fact, the I-adic filtration coincides with the filtration associ-
ated with the Atiyah-Hirzebruch spectral sequence –

Ik = ker
(
R0(CP∞0 )→ R0(CP k−10 )

)
– and this spectral sequence collapses at E2. We omit the details. �

This suggests the following definition.

Definition 1.4. A (one-dimensional smooth) formal algebra over a ring
R is a commutative R-algebra O equipped with an ideal I (the “augmenta-
tion ideal”) such that
(1) O is I-adically complete,
(2) the R-module ω = I/I2 (the “cotangent space”) is invertible, and
(3) the natural map R[ω] → gr∗O is an isomorphism (so in particular
O/I = R).
A morphism of formal R-algebras is an R-algebra homomorphism sending
one augmentation ideal into the other.
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So R0(CP∞0 ) is a formal R-algebra, with cotangent space ω = R0(S2),
and the rest of the graded coefficient ring is a functor of this formal algebra.

Similarly, the skeleton filtration of

R0(CP∞ × CP∞) = R0(CP∞)⊗̂RR0(CP∞)

has associated graded ring given by the polynomial algebra generated by two
copies of ω. The map CP∞ × CP∞ → CP∞ classifying the tensor product
of line bundles induces a completed Hopf algebra structure on R0(CP∞0 )
which, on the associated graded level, is the canonical diagonal defined in
grading 2n by sending ωn to each factor ωi ⊗R ωj (with i + j = n) by the
inverse of the natural isomorphism.

The algebraic structure of R0(CP∞0 ) is captured by the following defini-
tions.

Definition 1.5. A formal Hopf algebra over a ring R is a commutative
filtration preserving completed R-Hopf algebra structure on a formal R-
algebra over R inducing on the associated graded ring the canonical Hopf
algebra structure. A morphism of formal R-Hopf algebras is a map of formal
R-algebras compatible with the Hopf algebra structures.

One should think of a formal R-algebra as the ring of functions or coor-
dinate ring on a (smooth) “formal curve” over R. So the category of formal
curves over R is the opposite of the category of formal R-algebras. Because
of this, we may write OX for a formal R-algebra corresponding to a formal
curve X, and ϕ∗ : OY → OX for the homomorphism corresponding to a
map ϕ : X → Y of curves. Similarly, the category of formal groups over R
is the opposite of the category of formal R-Hopf algebras.

So an even periodic ring spectrum R determines more algebraic data
than merely its graded coefficient ring R∗; one also acquires a formal group
over R = R0, with function ring given by R0(CP∞0 ) with its natural struc-
ture. We will denote this formal group by GR.

For a fixed ring R, denote by FGR the category of formal groups over
R and isomorphisms between them. An isomorphism ϕ induces an isomor-
phism on the cotangent spaces. A ring homomorphism f : R→ S determines
a functor FGR → FGS sending OG to OG⊗̂RS. We will write the image of
G under f as fG: so OfG = OG⊗̂RS.

These are subcategories of a larger category FG, whose objects are pairs
G/R in which G is a formal group over R. A morphism G/R → H/S
consists of a homomorphism f : R → S together with an isomorphism of

formal groups over S, H → fG. Then ωG ⊗R S
∼=−→ωH .

The assignment R 7→ GR/R provides a functor from even periodic ring
spectra to the category of formal groups.

The category FG should be compared with the “category of lines.” For a
ring R let LinesR be the category of invertible R-modules and their isomor-
phisms. A ring homomorphism f : R → S induces a functor f : LinesR →
LinesS , sending ω to ω ⊗R S. These categories fit into the larger category



COMODULES, SHEAVES, AND THE EXACT FUNCTOR THEOREM 5

Lines, whose objects are pairs ω/R and in which a morphism ω/R→ α/S is
a ring homomorphism f : R→ S together with an isomorphism ω⊗RS → α.
Formation of the cotangent space provides a functor FG→ Lines.

Write IG for the augmentation ideal in the formal algebra OG, and
d : IG → ω for the natural projection. In the topological situation, this
corresponds to restriction to CP 1:

d : R0(CP∞)→ R0(S2) = R2 .

Definition 1.6. Let O be a formal R-algebra. A parameter is an ele-
ment t ∈ I such that dt generates ω as a free R-module.

Equivalently, t : R → I is an R-module map such that the composite
dt : R→ ω is an isomorphism; or such that the induced map

R[[t]]→ O
is an isomorphism. Since d : I → ω is surjective, a parameter exists exactly
when ω is trivial as an invertible R-module. According to Proposition 1.2,
any formal curve admits a parameter after passing to a suitable faithfully
flat extension.

A parameter t on a formal group G transports the group structure (i.e.
the diagonal) from OG to R[[t]]. The structure of a formal group on the
formal curve R[[t]] is determined by the image of t under the diagonal. This
is precisely a formal group law, that is, a power series

F (s, t) =
∑
i,j

ai,js
itj ∈ R[[s, t]]

such that
F (s, 0) = s , F (0, t) = t ,

F (s, F (t, u)) = F (F (s, t), u) , F (s, t) = F (t, s) .

The dual ω−1 of ω is the tangent space to the curve. If t is a parameter,
there is a unique element

1

dt
∈ ω−1

dual to dt, and it generates ω−1 as a free R-module. The composite

d

dt
: I → R

sends f(t) with f(0) = 0 to f ′(0) ∈ R. In R(ω), dt and 1/dt are inverse
units. The “Euler operator”

x = t⊗ 1

dt
∈ I ⊗R ω−1

is an Euler class, meaning that it maps to 1 under the natural map I ⊗R
ω−1 → ω ⊗R ω−1 = R.

Giving a parameter for a formal curve is equivalent to giving a unit and
an Euler class. We have just obtained a unit dt and an Euler class x = t/dt
from a parameter t. Conversely, suppose we are given an element u ∈ ω



6 HAYNES MILLER

generating it as a free R module and an element x ∈ I ⊗ ω−1 mapping to
1 ∈ R under d⊗ 1. Then t = ux is a parameter with dt = u and x = t/dt.

In the topological context,

O ⊗R R(ω) = R∗(CP∞0 ) ,

and x ∈ I ⊗R ω−1 = R2(CP∞) is a choice of Euler class for complex line
bundles.

The units allow us to define a graded formal group law, lying in degree
2:

F̃ (x, y) dt = F (x dt, y dt) .

That is,

F̃ (x⊗ 1, 1⊗ x) =
∑
i,j

ai,j(dt)
i+j−1xi ⊗ xj .

Topologically, this is the law controlling the Euler class of a tensor product
of line bundles.

2. Cobordism comodules

Let F and G be formal group laws over a ring R. A homomorphism
F → G is determined by a formal power series ϕ(t) such that ϕ(0) = 0
and ϕ(F (u, v)) = G(ϕ(u), ϕ(v)). The corresponding Hopf algebra map ϕ∗ :
OG → OF is determined by sending t to ϕ(t), and hence (ϕ∗f)(t) = f(ϕ(t)).
The map induced on cotangent spaces is given by multiplication by ϕ′(0),
so ϕ is an isomorphism exactly when ϕ′(0) is a unit in R. It is strict if
ϕ′(0) = 1.

The functor assigning to a ring R the groupoid FR of formal group laws
and their isomorphisms over R is representable. The representing object
plays a fundamental role in the topological applications of formal groups.

The universal formal group law is easily constructed: form the symmetric
algebra Z[ai,j : i, j ≥ 1] and divide it out by the ideal generated by the
relations implied by requiring

Gu(s, t) = s+ t+
∑
i,j≥1

ai,js
itj

to be a formal group law. The quotient ring is the Lazard ring L. Given
a formal group law G/R, the set of morphisms in FR into it is precisely
given by the set of invertible power series over R: an invertible power series
ϕ(t) ∈ tR[[t]] is an isomorphism to G from a unique formal group law,
namely Gϕ given by

Gϕ(s, t) = ϕ−1(G(ϕ(s), ϕ(t))).

Thus the functor sending a ring to the set of all morphisms in FR is repre-
sentable by the ring

W = L[b±10 , b1, . . .]
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with universal morphism given by the invertible power series

ϕu(t) =

∞∑
i=1

bi−1t
i

regarded as an isomorphism to Gu.
The structure maps for the groupoid F are represented by ring homo-

morphisms involving L and W :

ηR : L→W represents the source(1)

ηL : L→W represents the target(2)

ε : W → L represents the identity map(3)

∆ : W →W ⊗LW represents composition(4)

The map ηR embeds L as constant polynomials in the bi. The resulting
structure is known as a “Hopf algebroid.” An even cobordism comodule is a
right comodule over this Hopf algebroid.

It is instructive to consider again the category Lines from this perspec-
tive. The category of “parametrized lines” over a ring R is equivalent to
the group of units R× regarded as a groupoid with just one object. This
functor from rings to groups is represented by the Hopf algebra (Z,Z[e±1]),
in which e is grouplike: ∆e = e⊗ e. Given an abelian group M , the data of
a comodule structure ψ : M → M [e±1] on M is equivalent to a splitting of
M into summands indexed by the integers; that is, a grading:

Mn = {x ∈M : ψx = x⊗ en} .

In these terms, ψx =
∑
xn ⊗ en where xn ∈Mn and x =

∑
xn. The formal

group law describing the Euler class of a tensor product in a complex ori-
ented cohomology theory (for example an even periodic theory endowed with
a choice of parameter) is graded, with |s| = |t| = −2. The Lazard ring L ad-
mits a grading such that the universal formal group law over it is graded, and
is the universal graded formal group law. In this grading |ai,j | = 2(1− i−j).
The fundamental theorem of Quillen asserts that this graded ring is canoni-
cally isomorphic to the complex bordism ring MU∗. The groupoid of graded
formal group laws and their strict graded isomorphisms is represented by a
graded Hopf algebroid (MU∗,MU∗MU) with MU∗MU = MU∗[b1, b2, . . .],
and complex bordism determines a functor from spectra to the category of
comodules over this Hopf algebroid. Our conventions make it natural to
consider right comodules.

Not every MU∗MU -comodule is evenly graded, and to handle arbitrary
gradings we extend the Hopf algebroid (L,W ) to (L,W s), in which

W s = L[e±1, b1, b2, . . .] .

W maps to W s by sending b0 7→ e2; e is grouplike, and again we can grade
(L,W s)-comodules using the comodule structure induced by the projection
W s → L[e±1].
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Definition 2.1. A cobordism comodule is a right comodule over the
Hopf algebroid (L,W s).

The category of cobordism comodules is equivalent to the category of
(MU∗,MU∗MU)-comodules. For example, L itself is a cobordism comodule,
with structure map ηR : L→W s = L⊗LW s. The suspension of a cobordism
comodule M is the comodule ΣM with the same underlying L-module but
the coaction multiplied by e. Then

Mn = (Σ−nM)0 .

The geometrical object classified by the Hopf algebroid (L,W s) is cap-
tured by the following definition.

Definition 2.2. A spin formal group over ring R is a triple (G,λ, i)
where G is a formal group over R, λ is an invertible R-module, and i : λ2 →
ωG is an isomorphism.

Spin formal groups overR form a category in which a morphism (G,λ, i)→
(H,µ, j) is an isomorphism of formal groups ϕ : G → H together with an
isomorphism µ → λ of invertible modules that is compatible with i and j.
Write SFGR for this category. Clearly a ring homomorphism f : R → S
determines a functor SFGR → SFGS , and we can define the larger category
SFG of spin formal groups over arbitrary rings in analogy with FG.

The cotangent space of a formal group law over a ring R is canonically
trivialized, and there is, consequently, a canonical “trivial” spin structure
with λ = R. Any spin formal group (G/R, λ, i) becomes isomorphic to such
a formal group law after passing to a faithfully flat extension that trivializes
λ.

A spin parameter for a spin formal group (G/R, λ, i) is a parameter t ∈ I
for G/R together with an element a ∈ λ generating λ as a free R-module
and such that i(a2) = dt ∈ ωG. These data provide an isomorphism with a
formal group law with its trivial spin structure.

A morphism between the spin formal groups associated in this way to
formal group laws, (G/R,R, 1) → (H/S, S, 1), consists of not only a ring
homomorphism f : R → S and an isomorphism of formal group laws ϕ :
H → fG, but also an element a ∈ S such that a2 = ϕ′(0). For example,
let Gm be the multiplicative formal group law, Gm(x, y) = x+ y− xy, with
its trivial spin structure. As a spin formal group, it has an automorphism
that is the identity on the formal group but −1 on the spin structure. This
corresponds to the automorphism of topological K-theory that multiplies
by −1 on odd degrees and +1 on even degrees. This automorphism is
represented by an automorphism of the graded spectrum representing graded
K-theory.

Write FsR for the category of spin formal group laws over R. This
gives a functor from rings to groupoids, corepresented by the Hopf algebroid
(L,W s). The ring W s supports two spin formal group laws, GL = ηLGu
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and GR = ηRGu, and an isomorphism GR → GL given by

ϕu(t) =

∞∑
i=1

bi−1t
i , a = e .

3. Cobordism sheaves

We now give an alternate “coordinate-free” description of the category
of cobordism comodules, using the notion of spin formal groups, that is well-
adapted to a discussion and proof of the Landweber exact functor theorem.
We will often drop notation for the spin structure.

Definition 3.1. A cobordism sheaf is a functor M : SFG → Ab, to-
gether with a right R-module structure on M(G/R) for each G/R ∈ SFG,
such that for any morphism G/R→ H/S of spin formal groups the induced
map M(G/R) →M(H/S) is R-linear (where R acts on the target via the
ring homomorphism R→ S) and extends to an isomorphism

M(G/R)⊗R S
∼=−→M(H/S) .

These form a category with the evident morphisms. The term “cobor-
dism sheaf” is short for “quasi-coherent sheaf over the stack of spin formal
groups.” If we omit the spin structure, we get the category of even cobordism
sheaves.

Example 3.2. The functor assigning to (G/R, λ, i) the R-module λ and
to the morphism (f, ϕ, k) : (G/R, λ, i)→ (H/S, µ, j) the composite

λ−→λ⊗R S
k−→µ

is evidently a sheaf, one we denote by σ. So also is the functor σn assigning to
(G/R, λ, i) the R-module λn. In particular σ0 simply assigns to (G/R, λ, i)
the underlying ring R. This might be called the structure sheaf.

Example 3.3. A spin formal group (G/R, λ, i) determines a commu-
tative ring Ws(G/R, λ, i) such that giving a homomorphism from it to a
ring T is the same as giving a ring homomorphism g : R → T together
with a spin parameter on g(G/R, λ, i) ∈ SFGT . The functor Ws is a sheaf:
Given f : R → S, a map Ws(G/R, λ, i) ⊗R S → T consists of a pair of
ring homomorphisms g : R → T and h : S → T such that hf = g, to-
gether with a spin parameter on g(G,λ, i); but this is the same as a ring
homomorphism h : S → T and a spin parameter on hf(G,λ, i), i.e. a map
Ws(f(G/R, λ, i))→ T .

The identity map on Ws(G/R, λ, i) gives us a ring homomorphism

ηR : R→Ws(G/R, λ, i)

together with a spin parameter (t, a) on ηR(G/R, λ, i). The parameter t
determines a formal group law over Ws(G/R, λ, i), which is classified by a
map

(5) ηL : L→Ws(G/R, λ, i) ,
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along with an isomorphism ϕ : ηRG → ηLGu. The map ϕ descends to an
isomorphism on cotangent spaces sending i(a2) to 1.

A choice of spin parameter on (G/R, λ, i) determines an isomorphism

W s ⊗L R
∼=−→Ws(G/R, λ, i)

as the pushout of the map ηR : R → Ws(G/R, λ, i) and the map W s →
Ws(G/R, λ, i) classifying the isomorphism (t, a) (which is now an isomor-
phism of spin formal group laws). Under this isomorphism the map ηL comes
from ηL : L → W s classifying the target of the universal isomorphism, and
the map ηR is the evident map to the tensor product.

This construction preserves flatness:

Lemma 3.4. Let G/R be any formal group and f : R → T a (faith-
fully) flat ring homomorphism. Then the induced map f : Ws(G/R) →
Ws(fG/T ) is again (faithfully) flat.

Proof. This can be checked after faithfully flat extension, so we may
choose a parameter for G and identify Ws(G/R) with W s ⊗L R. The map
Ws(G/R)→Ws(fG/T ) identifies with 1⊗Lf . The result then follows from
the fact that ηR : L→W s is faithfully flat (in fact free). �

The sheaf condition implies the usual “faithfully flat descent” property:

Lemma 3.5. Let η : R → S be a ring homomorphism, and let ηL, ηR :
S ⇒ S ⊗R S be the left and right S-linear maps. Note that ηLη = ηRη, and
write η2 for this common composite. Then for any cobordism sheaf M we
have a map

M(G/R)→ eq
(
M(ηG/S) ⇒M(η2G/S ⊗R S)

)
that is an isomorphism provided that η is faithfully flat.

Proof. Using the sheaf condition, the equalizer diagram may be rewrit-
ten

(6) M(G/R)→M(G/R)⊗R S ⇒M(G/R)⊗R S ⊗R S .
Now tensor this again with S and observe that the resulting diagram is a
split equalizer. If η is faithfully flat this implies that (6) is an equalizer
diagram. �

This lemma admits a converse. The formula (6) uses the values of M
on Fs to define an extension to all of SFG. We leave the details of the
following lemma to the reader.

Lemma 3.6. A sheaf on Fs uniquely determines a sheaf on the whole of
SFG.

There is an evident symmetric monoidal structure on the category of
cobordism sheaves: Given sheaves M and N , define

(M⊗N )(G/R) =M(G/R)⊗R N (G/R),
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where here we are denoting the tensor product of two right R-modules by
⊗R.

Proposition 3.7. There is an equivalence of symmetric monoidal cat-
egories between the categories of cobordism sheaves and cobordism comod-
ules.

Proof. The comodule associated to a cobordism sheaf M has as its
underlying L-module M = M(Gu/L), where Gu is the universal formal
group law over the Lazard ring L with its trivial spin structure. The coaction
comes from the interaction of two morphisms Fs:

ψL = (ηL, ϕ0, 1) : Gu/L→ GL/W
s

(where ϕ0(t) = t) and

ψR = (ηR, ϕu, e) : Gu/L→ GL/W
s.

These induce the diagonal maps in the diagram

(7) M(Gu/L) //

ψL∗ ((

M(Gu/L)⊗LW s

∼=
��

M(Gu/L)
ψoo

ψR∗vv
M(GR/W

s)

in which the vertical isomorphism is the W s-linear extension of ψL∗. The
resulting map ψ gives a W s-coaction on M(Gu/L).

Conversely, given a cobordism comodule M we define a sheaf, which we
denote byM, as follows. First define its value on the formal group law G/R,
with its trivial spin structure, by

M(G/R) = M ⊗L R.
Next consider functoriality for maps of spin formal groups laws. Let

(f, ϕ, a) : G/R→ H/S

be a morphism of spin formal group laws, so f : R → S, ϕ : H → fG, and
a ∈ S is such that a2 = ϕ′(0). Represent G/R by gG : L → R and H/S by
gH : L→ S. The morphism is represented by a map h : W s → S such that
hηR = fgG, hηL = gH , and he = s. The first identity gives us a ring map
h · f : W s ⊗L R → S, and the second tells us that (h · f)(ηL · gG) = gH ,
where ηL · gG : L → W s ⊗L R is the evident map. Thus we can form the
composite

(f, ϕ, i)∗ : M ⊗L R
ψ⊗1−→M ⊗LW s ⊗L R

1⊗(h·f)−→ M ⊗L S .
This is the map induced by (f, ϕ, a). It is compatible with the ring map
f : R → S since h · f is, and it clearly extends to an isomorphism M ⊗L
R⊗R S →M ⊗L S. We leave to the reader the check of functoriality.

This construction suffices, by virtue of Lemma 3.6. We leave it to the
reader to check that the symmetric monoidal structures match up. �
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Example 3.8. The main topological example is the cobordism sheaf
associated to the MU∗MU -comodule given by the MU -homology of a spec-
trum X. Write MX for this; we get a functor from spectra to cobordism
sheaves.

Example 3.9. The cobordism sheaf σn evaluates at (Gu/L,L, 1) to L,
with the W s-comodule structure given by

enηR : L→W s = L⊗LW s .

Note that in this example, the map ψL∗ in (7) is a ring homomorphism, but
ψR∗ is not (unless n = 0).

Example 3.10. The sheaf Ws corresponds to the cobordism comodule
W s, and the maps ηR and ηL are as described in (1,2).

4. Height

We have so far considered only isomorphisms of formal groups over a
ring R. The category of formal groups over R and homomorphisms between
them (not just isomorphisms) is a pre-additive category; so in particular any
formal group G has an endomorphism [k] for any k ∈ Z. The homomorphism
[k] corresponds to a Hopf algebra map [k]∗ : OG → OG.

Definition 4.1. Let G be a formal group over a ring of characteristic p.
The height htG of G is the largest integer (or ∞) n such that [p]∗(I) ⊆ Ipn .

Definition 4.2. Let G/R be a formal group and p a prime number.
Define an increasing sequence of ideals in R as follows. Ip,0 = 0. Ip,1 = (p).
For n > 1, let Ip,n be the minimal ideal such that over R/Ip,n the formal
group G has height at least n.

The ideals Ip,n are in fact subsheaves of the structure sheaf on FG.

Lemma 4.3. Suppose R is a ring with pR = 0 and G a formal group
over R, and let f : R → S be a ring homomorphism. Then ht(fG) ≥ htG,
with equality if f is faithfully flat.

Proof. The inequality follows from Ip
n

fG = Ip
n

G ⊗RS. We get an equality

for f faithfully flat because f is then injective. �

Thus we can compute the height in general by forming a faithfully flat
ring extension over which ωG trivializes. If G admits a parameter, we can
express the height in terms of the associated formal group law. The endo-
morphism [p] is represented by a formal power series

[p](t) =
∑
i≥1

ai−1t
i , a0 = p .

Then
htG = max{n : ai = 0 for i < pn}

and
Ip,n = (p, a1, . . . , apn−2) .
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Definition 4.4. A formal group G over a ring R with pR = 0 is of exact
height n provided that it is of height n and the diagonal in

I
[p]∗ //

��   

Ip
n

��
ω // ωp

n

is surjective.

Thus a formal group of height (at least) n is of exact height n if and
only if the induced map ω → ωp

n
is an isomorphism. It follows that in this

case ωp
n−1 is canonically trivialized.

A formal group law of height n is of exact height n precisely when the
leading coefficient apn in [p](t) is a unit in R.

We end this section with two basic facts about the notion of height.

Proposition 4.5. Let G/R be a formal group law, p a prime, and
[p](t) =

∑
ai−1t

i , a0 = p. Then

Ip,n = Ip,n−1 +Rapn−1−1

for any n ≥ 1.

Sketch of proof: It suffices to show this in the universal p-typical
case, that is, over BP∗ = Z(p)[v1, . . .]. The generator vi can be taken to be
api−1. �

Proposition 4.6 (Dieudonné and Lazard [7]). Let G/R and H/S be
formal group laws over rings of characteristic p, both of exact height n.
Then there is a ring T and faithfully flat homomorphisms f : R → T and
g : S → T such that fG and gH are isomorphic formal groups.

Sketch of proof: The extensions R → R ⊗ S and S → R ⊗ S are
both faithfully flat, so we may assume that the two formal groups lie over
the same ring. Now inductively construct an isomorphism between them.
At each stage, one must solve a certain equation. Formally adjoining a root
of that equation gives another faithfully flat extension. This is the same as
Lazard’s proof, which classified formal groups over algebraically closed fields
by solving these equations in the field. �

5. Landweber exactness

Definition 5.1. A spin formal group (G/R, λ, i) is Landweber exact if
the functor from cobordism sheaves to R-modules given by evaluation at
(G/R, λ, i) is exact.

This definition is important in topology because a Landweber exact spin
formal group (G/R, λ, i) defines an even periodic ring spectrum R with
π0(R) = R, GR = G, and

Rn(X) =MX(G/R, λ, i)n .
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This is the content of the Landweber exact functor theorem, combined with
Brown representability.

Landweber exactness is invariant under flat base change:

Lemma 5.2. Let f : R → S be a ring homomorphism. If (G,λ, i)
is Landweber exact and f is flat then f(G,λ, i) is Landweber exact. If
f(G,λ, i) is Landweber exact and f is faithfully flat then (G,λ, i) is Landwe-
ber exact.

Proof. By the sheaf condition, M(G,λ, i)⊗R S
∼=−→M(f(G,λ, i)). �

We will use the following criterion for Landweber exactness, due, as far
as I can tell, to Gerd Laures, in terms of the sheaf Ws and the natural
transformation ηL : L→Ws(G,λ, i) of (5).

Lemma 5.3. A spin formal group (G,λ, i) is Landweber exact if and only
if ηL : L→Ws(G,λ, i) is a flat ring homomorphism.

Proof. Both conditions are invariant under faithfully flat extensions,
so we may assume that λ is trivial. Pick a spin parameter for G, so
Ws(G,λ, i) ∼= W s ⊗L R. Suppose that ηL : L → W s ⊗L R is flat, and
let M be a cobordism comodule. The coaction map ψ : M → M ⊗LW s is
an L-module splitting of the map ε⊗L1 : M⊗LW s →M⊗LL = M , natural
in M . ThusM(G,λ, i) = M⊗LR is naturally a retract of (M⊗LW s)⊗LR =
M ⊗L (W s ⊗L R). By hypothesis W s ⊗L R is flat as an L-module, so this
and hence its retract M(G,λ, i) is exact as a functor of M .

Conversely, suppose that M 7→M(G,λ, i) is exact in the sheaf M. Let
N be an L-module. Then

N ⊗L (W s ⊗L R) = (N ⊗LW s)⊗L R = (N ⊗LW s)(G/R).

Since W s is flat (free, in fact) over L the functor N 7→ N ⊗L Ws from L-
modules to sheaves is exact; and the functor evaluating on (G,λ, i) is exact
by hypothesis; so the composite is exact as required. �

By Lemma 5.2, we may restrict our attention to formal group laws with
trivial spin structure. The proof of the exact functor theorem uses the two
properties stated in (4.5) and (4.6), so we begin by establishing some general
ideas about sequences of ideals.

Definition 5.4. An increasing sequence 0 = I0 ⊆ I1 ⊆ · · · of ideals in
a ring R is a scale if there exist elements v0, v1, . . . in R such that for each
n ≥ 0,

In+1 = In +Rvn .

Such a sequence of elements is a defining sequence for the scale.

For example, the sequence Ip,0 ⊆ Ip,1 ⊆ · · · , is a “sheaf of scales,” called
the height scale at p.

Here are two easy lemmas. For the second, recall that a sequence
v0, v1, . . . in a ring R is said to act regularly on the R-module M provided
vn acts monomorphically on M/(v0, . . . , vn−1) for all n ≥ 0.
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Lemma 5.5. Let v0, v1, . . . and w0, w1, . . . define the same scale 0 = I0 ⊆
I1 ⊆ · · · in R. Then for each n the localizations v−1n R/In and w−1n R/In are
isomorphic R/In-algebras.

Proof. If u, v ∈ S generate the same ideal then u−1S = v−1S as S-
algebras. Apply this with S = R/In. �

Lemma 5.6. Suppose two sequences, v0, v1, . . . and w0, w1, . . ., define the
same scale in R, and let M be an R-module. Then v0, v1, . . . acts regularly
on M if and only if w0, w1, . . . does.

Proof. An element s ∈ S acts injectively on an S-module N if and
only if N → s−1N = s−1S ⊗S N is injective. Apply this with S = R/In. �

Definition 5.7. A scale acts regularly on M provided some (hence any)
defining sequence acts regularly on M . If M = R we will call the scale
regular. The scale is finite on M if InM = M for large n, and finite if it is
finite on R.

Here is the main theorem, first proven by a different method in [6].

Theorem 5.8 (P. S. Landweber). Let G/R be a spin formal group such
that for every prime p the scale Ip,0(G/R) ⊆ Ip,1(G/R) ⊆ · · · is finite and
regular. Then G/R is Landweber exact.

Example 5.9. Any spin formal group over Q is Landweber exact.

Example 5.10. The multiplicative formal group law Gm(x, y) = x+y−
xy over Z is Landweber exact. We compute [p](t) = 1− (1− t)p. p is a non-
zero-divisor in Z; and the coefficient of tp in [p](t) is 1, so Ip,2(Gm/Z) = Z.

Remark 5.11. In fact Landweber proves something slightly different.
Recall that an L-module M is coherent if it is finitely generated and ev-
ery finitely generated submodule is finitely presented. Landweber restricts
himself to the category of comodules which are coherent as L-modules, and
shows that the functor M 7→ M ⊗L R is exact on this category if and only
if the height scale in R is regular for every prime. A result from [9] shows
that every comodule is a filtering direct limit of finitely presented comodules,
and it follows that one may dispense with the coherence condition here. The
theorem we prove is thus less general; for us, the height scales have to be
finite at every prime. It is possible to modify the proof to give the general
result ([8], Lecture 16).

The proof of Theorem 5.8 will use the criterion of Lemma 5.3: we must
show that

ηL : L→W s ⊗L R
is flat. We will describe an appropriate flatness condition.

So suppose R is any ring containing a scale 0 = I0 ⊆ I1 ⊆ · · · and let M
be an R-module. Pick a defining sequence v0, v1, . . . for the scale. We have
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a diagram of R-modules

M
v0−→ M −→ v−10 M

↓
M/I1

v1−→ M/I1 −→ v−11 M/I1
↓

M/I2
v2−→ M/I2 −→ v−12 M/I2

↓

· · ·
... · · ·

in which the vertical maps are the cokernels of the left horizontals, and
the right horizontal maps are the localization homomorphisms. Assume the
scale acts regularly on M . The left horizontal maps are then monic, so we
have short exact sequences

(8) 0−→M/In−1
vn−1−→M/In−1−→M/In−→ 0.

If the scale is finite on M , the modules in the diagram are eventually zero.

Lemma 5.12. Assume that the scale I0 ⊆ I1 ⊆ · · · acts regularly and
finitely on M . If in addition

TorRn+1(v
−1
n M/In,−) = 0

for all n ≥ 0, then M is flat over R.

Proof. We prove that TorRn+1(M/In,−) = 0 by downward induction

on n ≥ 0. The induction ends with TorR1 (M,−) = 0, which is equivalent to
the flatness of M . The assumption that M/In = 0 for large n grounds the
induction, so suppose TorRn+1(M/In,−) = 0. The short exact sequence (8)

leads to a long exact sequence in TorR, which reads in part

TorRn+1(M/In,−)−→TorRn (M/In−1,−)
vn−1−→TorRn (M/In−1,−).

By assumption the first term is zero, so vn−1 acts injectively on TorRn (M/In−1,−).
It follows that TorRn (M/In−1,−) embeds in

v−1n−1TorRn (M/In−1,−) = TorRn (v−1n−1M/In−1,−)

which is zero by assumption. This gives us the next step in the induction:
TorRn (M/In−1,−) = 0. �

Write Rn for the R-algebra v−1n R/In. In particular, the ring Ln supports
the universal formal group law over Z(p)-algebras of exact height n.

Lemma 5.13. If the scale I0 ⊆ I1 ⊆ · · · is regular, then Rn has flat
dimension at most n over R; that is, TorRk (Rn,−) = 0 for k > n.

Proof. We use upward induction on n to show that R/In has flat di-
mension at most n over R. The long exact sequence associated to

0−→R/In
vn−→R/In−→R/In+1−→ 0
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reads in part

TorRk (R/In,−)−→TorRk (R/In+1,−)−→TorRk−1(R/In,−).

The inductive assumption is that the left term is zero for k > n and the
right term is zero for k − 1 > n, so the middle term is zero for k > n + 1,
establishing the induction.

Now since localization is exact TorRk (Rn,−) = v−1n TorRk (R/In,−), so the
flat dimension of Rn is at most n. �

Proposition 5.14. If a regular scale I0 ⊆ I1 ⊆ · · · ⊆ R acts regularly
and finitely on the R-moduleM , andMn = v−1n M/In is flat as an Rn-module
for each n ≥ 0, then M is flat as an R-module.

Proof. (Simplified proof, following a suggestion of the referee) Let R→
S be a ring homomorphism and let N be a flat S-module. Then there is a
natural isomorphism

N ⊗S TorR∗ (S,−) ∼= TorR∗ (N,−) .

Apply this with S = Rn and N = Mn. �

To begin the proof of the exact functor theorem (5.8) note that we can
proceed one prime at a time, by virtue of the following standard lemma,
in which A(p) denotes the localization of an abelian group A at the prime
number p: A(p) = A⊗ Z(p).

Lemma 5.15. Let R be a ring. An R module M is flat over R if and
only if M(p) is flat over R(p) for all prime numbers p. �

Proof. See [1] II Exercises §3.8(b), p. 138. �

To show that ηL : L→ W s ⊗L R is flat it will thus suffice to show that
ηL(p) is flat for each prime number p. This map is the factorization through
L(p) of the map ηL associated to the formal group G base-changed to R(p).
The following proposition gives the input needed to apply Proposition 5.14,
using the height scale at p and the fact that Ln carries the universal spin
formal group of exact height n.

Proposition 5.16. For any spin formal group law G of exact height n
over a Z(p)-algebra R, the map ηL : Ln →W s ⊗L R is flat.

Proof. To begin with, notice that we at least have one example of a
formal group law for which this claim is true: the universal formal group
law of exact height n itself. So we are claiming that ηL : Ln → W s

n is
flat. Now ηR embeds L into W s as the constants in W s = L[e±1, b1, . . .], so
(ηR)n : Ln →W s

n is certainly flat. But the anti-automorphism c : W s →W s

swaps ηR and ηL, so (ηL)n is flat as well.
This single example in fact suffices. Let G be any formal group law of

exact height n over a Z(p)-algebra R. Let j : R → T and k : Ln → T be
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faithfully flat maps as in Proposition 4.6, and let

G/R
j−→ jG/T

k̃←−Gu/Ln
be the morphisms as guaranteed by that proposition. Using naturality of
the map ηL, together with the fact that L → Ln is an epimorphism in the
category of rings, we obtain a commutative diagram

Ln
(ηL)G/R

ww
(ηL)jG/T

��

(ηL)Gu/Ln

((
Ws(G/R)

j∗ // Ws(jG/T ) Ws(Gu/Ln) .
k̃∗oo

The map (ηL)Gu/Ln
is flat, as we have seen, and k̃ is flat by Lemma 3.4, so

the composite (ηL)jG/T is flat. The map j is faithfully flat by Lemma 3.4,
and it follows that (ηL)G/R is flat. �

This completes the proof of Theorem 5.8.
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