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Abstract. We observe that Beck modules for a commutative monoid
are exactly modules over a graded commutative ring associated to the
monoid. Under this identification, the Quillen cohomology of commuta-
tive monoids is a special case of André-Quillen cohomology for graded
commutative rings, generalizing a result of Kurdiani and Pirashvili. To
verify this we develop the necessary grading formalism. The partial
cochain complex developed by Pierre Grillet for computing Quillen co-
homology appears as the start of a modification of the Harrison cochain
complex suggested by Michael Barr.

In his book Homotopical Algebra [35], Daniel Quillen described a homo-
topy theory of simplicial objects in any of a wide class of universal algebras,
and corresponding theories of homology and cohomology. Quillen homol-
ogy is defined as derived functors of an abelianization functor, and in many
cases can be computed using a cotriple resolution [4]. Coefficients for these
theories are “Beck modules,” that is, abelian objects in a slice category. The
case of commutative rings was studied at the same time by Michel André
[1].

An example of such an algebraic theory, one of long standing and in-
creasing importance, is provided by the category ComMon of commutative
monoids. The prime exponent of the study of commutative monoids has for
years been Pierre Grillet [18, 19, 20, 21, 24, 25] (but see also [10] and [29] for
example). Among other things, Grillet provided the beginning of a small
cochain complex, based on multilinear maps subject to certain symmetry
conditions, whose cohomology he showed to be isomorphic in low dimen-
sions to the Quillen cohomology H∗CM (X;M) of the commutative monoid
X with coefficients in a Beck module M for X; and in [23] a correspond-
ing resolution in Beck modules was developed. These results are surprising,
since Quillen cohomology is defined by means of a simplicial resolution and
does not generally admit such an efficient computation.

It is well-known ([30, 18] and [39, p. 29]) and easy to see that the category
of (left) Beck modules for X, LModX , is equivalent to the category of
covariant functors from the “Leech category” LX to the category Ab of
abelian groups. The Leech category has object set X; LX(x, y) = {z : y =
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z + x} (writing the monoid structure additively); and composition is given
by addition in the commutative monoid.

In this note, we observe that Grillet’s construction is in fact subsumed
by the theory of Harrison cohomology of commutative rings, slightly aug-
mented as suggested by Michael Barr, once this theory has been extended
to the graded context. As pointed out by Bourbaki [7, Ch. 2 §11], one can
speak of rings graded by a commutative monoid: an X-graded object in a
category C is an assignment of an object Cx ∈ C for each x ∈ X. If C is
the category ModK of modules over some commutative ring K, there is a
natural symmetric monoidal structure on the category ModXK of X-graded
K-modules, and we may define X-graded K-algebras, and modules over
them, accordingly.

The first observation, simple enough as to need no proof, is that there is

a natural X-graded commutative K-algebra K̃X in which, for each x ∈ X,

(K̃X)x is the free K-module generated by an element we will write 1x,
with the evident unit and multiplication. This is the “X-graded monoid
K-algebra” of X.

The next observation, equally simple, is that the category of Beck X-

modules is equivalent to the category of (X-graded) left modules over Z̃X.
These two observations bring into play the entire highly developed homo-

logical theory of commutative rings. Our first main result 5.2 is that

HQ∗CM (X;M) = HQ∗CA(Z̃X;M)

where the right hand term denotes the well-studied André-Quillen coho-
mology [36, 1, 38], extended to the graded context. This generalizes an
observation of Kurdiani and Pirashvili [29], who considered the case of Beck
modules pulled back from the trivial monoid, in which case one arrives at
the André-Quillen cohomology of ZX as an ungraded commutative ring.

André-Quillen cohomology is of course hard to compute, but there are well
known approximations to it. One such approximation is given by Harrison
cohomology [26, 15, 2, 40] Harr∗(A;M). This theory is most neatly ex-
pressed by restricting to Hochschild cochains that annihilate shuffle decom-
posables; or, equivalently, to cochains that satisfy appropriate “partition”
symmetry conditions. This characterization was apparently suggested by
Mac Lane, and was adopted in [26], but Harrison’s original invariance prop-
erty involved a different characterization of the same symmetry conditions,
using “monotone” permutations. The equivalence of these two definitions
can be found as Corollary 4.2 in [15].

This approximation definitely breaks down in finite characteristic: The
André-Quillen cohomology of a polynomial algebra vanishes in positive di-
mensions, but Michael Barr showed [2] that the Harrison cohomology of the
polynomial algebra over a field of characteristic p is nonzero in dimension
2p. Barr himself proposed a variant of the Harrison construction, restricting
Hochschild cochains that not only by vanish on shuffle decomposables but
also on divided powers. This overcomes the obstacle in dimension 2p, but in
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her thesis [40] Sarah Whitehouse proved that this variant also fails to give
André-Quillen cohomology, by showing that Barr cohomology in dimension
5 does not vanish on F2[x].

Our second observation is that exactly the same monotone symmetry and
divided-power annihilation conditions occur in the partial complex described
by Grillet; Grillet’s partial complex is precisely the beginning of the “Barr
complex” for the graded monoid algebra. In later work [24], Grillet proposed
that this complex correctly computes Quillen cohomology in higher dimen-
sions as well, but Whitehouse’s counterexample shows that this conjecture
fails at least in dimension 5.

Grillet’s identification of his cohomology with the Quillen cohomology of
commutative monoids goes well beyond what seems to be known about the
relationship between Harrison cohomology and André-Quillen cohomology
in general, and suggests a variety of questions.

We note that the observation that Beck modules over a commutative
monoid are just graded modules over its graded monoid algebra suggests
that the description of Quillen homology for commutative monoids carried
out in [29] is in fact a special case of a graded extension of Pirashvili’s earlier
work [34].

We begin in §1 with a recollection of Quillen homology, along with the
cotriple resolution that may be used to compute it. §2 sets out some el-
ementary but sometimes surprising facts about X-gradings, and in §3 we
explain how the grading behaves in homological algebra. Change of grad-
ing is explained in §4. The next section is the core of the work, proving the
identifications of Quillen homology for commutative monoids and certain X-
graded commutative rings. We then turn to interpreting the work of Grillet.
This requires developing the Hochschild complex with its shuffle product
and divided power structure (and we provide some new general information
about the latter), and the various indecomposable quotients occuring in the
definitions of Harrison and Barr homology. In §9, we review the motivating
work of Pierre Grillet and relate it to Harrison and Barr cohomology.
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1. Quillen homology

In [36], Daniel Quillen proposed a uniform definition of the “homology”
and “cohomology” of objects in a very general class of categories. The
marquis example was that of commutative algebras, but his definition applies
much more generally and subsumes many of the ad hoc definitions that were
already in use at the time and have been considered subsequently.

Quillen proposed that the construction of “homology” should be a special
case of a general procedure for deriving a functor. One of the motivations
for his development of the theory of “model categories” [35, 28, 27, 17]
was precisely to provide a context for defining derived functors of non-
additive functors. This theory “internalizes” homological algebra, in the
sense that objects playing the role of projective resolutions (called “cofi-
brant objects”) and maps playing the role of quasi-isomorphisms (called
“weak equivalences”) exist in the category (rather than in some auxiliary
category such as a category of chain complexes). One of the axioms as-
serts that an object admits a weak equivalence from a cofibrant object; this
“cofibrant replacement” plays the role of a projective resolution.

In [35, II§4], Quillen establishes the existence of a model structure on
the category of simplicial objects over any one of a very general class of
categories with suitable mild properties. We refer to Quillen’s book or [14]
for the definitions.

Theorem 1.1. [35, II§4, Theorem 4] Let C be any cocomplete category
admitting a set P of small projective generators (a “quasi-algebraic category”
in the language of [14]). Then there is a model structure on the category of
simplicial objects over C in which the weak equivalences are the morphisms
f such that C(P, f) is a weak equivalence of simplicial sets for all P ∈ P.

All normally occurring categories of universal algebras satisfy these ax-
ioms.

This model structure on sC allows us to define derived functors for any
functor E : C → A, where A is an abelian category: For any X in C, let
P• → X be a cofibrant replacement and define

LnE(X) = πn(EP•) .

See [14] for an elaboration of the naturality of this construction. The fact
that any cofibrant replacement can be used is contained, for example, in [14,
Proposition 3.9].

Explicit cofibrant replacements can often be constructed as a “cotriple
resolution” [4]. An adjoint pair

C� D
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defines a triple F on C and a cotriple G on D; see [12, 5]. For example the
free commutative monoid functor N is left adjoint to the forgetful functor –

N : Set� ComMon : u

– and this adjoint pair defines triple uN on Set and a cotriple Nu on
ComMon. The natural numbers (also denoted by N) is a small projec-
tive generator for ComMon, and u(S) = ComMon(N, S).

A cotriple G on C determines a functor G• to the category sC of simpli-
cial objects over C, augmented to the identity functor: this is the “cotriple
resolution”: see [4] or [38, Chapter 8]. To relate it to the model category
structure we need a further restriction: A category C is algebraic (in Fran-
kland’s sense) if it is quasi-algebraic and Barr-exact ([3, p. 35],[14, p. 91]).

Proposition 1.2. [36, p. 69] Let C be an algebraic category and P a set of
small projective generators. When the cotriple G is associated to the adjoint
pair C � SetP , the cotriple resolution G•A → A serves as a cofibrant
replacement of A (regarded as a constant simplicial object) in the Quillen
model structure on sC.

This allows one to calculate the derived functors for any functor E : C→
A to an abelian category:

LnE(C) = πn(E(G•C)) = Hn(chE(G•C))

where ch denote formation of the chain complex associated to a simplicial
object in an abelian category; see [38, Theorem 8.4.1], for example.

Quillen’s definition [36] of homology and cohomology of an object in a
category C involves the notion of Beck modules.

Definition 1.3. [5, Definition 5] A Beck module over an object A in C is
an abelian object in the slice category C/A.

With the evident morphisms, Beck A-modules form a category LModA.
The terminal object in LModA is the identity map idA : A ↓ A with its
unique abelian structure. If C is quasi-algebraic, so is Ab(C/A) [14, 3.40].
Under mild additional conditions Ab(C/A) is an abelian category:

Proposition 1.4. [36, p. 69] 1, [3, Chapter 2, Theorem 2.4] Let C be an
algebraic category and A ∈ C. Then both C/A and Ab(C/A) are algebraic;
Ab(C/A) is abelian; and the forgetful functor Ab(C/A) → C/A has a left
adjoint AbA : C/A→ Ab(C/A).

We are now in position to recall the following definition.

Definition 1.5. [35] Let C be an algebraic category. The Quillen homology
of an object A in C is the sequence of Beck A-modules given by

HQn(A) = LnAbA(idA) = πn(AbA(P•))

1But Quillen inadvertently omits the exactness condition.
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where P• → A is a cofibrant replacement regarded as an object in sC/A.
The Quillen cohomology of A with coefficients in a Beck A-module is the
sequence of abelian groups

HQn(A;M) = Hn(HomA(chP•,M)) .

In terms of the cotriple resolution,

HQn(A) = πn(AbA(G•A))

HQn(A;M) = Hn(HomA(AbA(G•A),M)) .

For example [36, §4] when C is the category ComAlgK of commutative
K-algebras, the category of Beck A-modules is equivalent to the category
of left A-modules: An abelian object over A, p : B ↓ A, first of all has a
section, the “zero-section,” which provides an identification of K-modules
B ∼= A⊕M whereM is the kernel of p as an A-module. The abelian structure
forces the multiplication on A⊕M to be given by (a,m)(b, n) = (ab, an+bm).
Under this identification, a section of A⊕M ↓ A in ComAlgK is given by
a 7→ (a, da) where d ∈ DerK(A,M). The abelianization of id : A ↓ A is the
A-module such that HomA(AbA(A),M) = DerK(A,M); that is, AbA(A) is
the usual module ΩA/K of Kähler differentials. More generally, for B ↓ A in
ComAlgK/A

AbA(B) = A⊗B ΩB/K .

So in that case we have the “cotangent complex”

LA/K = A⊗G•A ΩG•A/K .

The André-Quillen homology is its homotopy –

HQn(A) = πn(LA/K)

– and the André-Quillen cohomology is

HQn(A;M) = Hn(HomA(ch LA/K ,M)) .

In this case we can also define homology with coefficients in an A-module
M :

HQn(A;M) = πn(LA/K ⊗AM) .

2. Gradings

Let X be a commutative monoid, which we will write additively. Fol-
lowing Bourbaki [7, Ch. 2 §11], we say that an X-graded object C• in a
category C is a choice of object Cx of C for each x ∈ X. Write CX for the
category of X-graded objects in C. A morphism C• → C ′• is a morphism
Cx → C ′x for each x ∈ X. A functor F : C → D induces FX : CX → DX ,
and an adjunction between E and F induces a canonical adjunction between
EX and FX .

Structure on C often induces structure on CX . For example suppose that
(C,1,⊗, c) is a closed symmetric monoidal category [6, §6.1]. Assuming that
C has coproducts of large enough sets of objects, there is then a canonical
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symmetric monoidal structure on CX , also closed if C has products of large
enough sets of objects, in which

1x =

{
1 for x = 0

0 for x 6= 0

(C• ⊗D•)z =
∐

x+y=z

Cx ⊗Dy .

The symmetry c : (C• ⊗ D•)z → (D• ⊗ C•)z is such that for all x, y with
x+ y = z,

c ◦ inx,y = iny,x ◦ cCx,Dy

where cC,D : C ⊗ D → D ⊗ C is the symmetry in C. For example, a

commutative monoid in the symmetric monoidal category SetX consists
of a set Tx for each x ∈ X together with an element 1 ∈ T0 and maps
µ : Tx×Ty → Tx+y satisfying evident conditions. This is to be distinguished

from an X-graded commutative monoid, an object of ComMonX !
Let K be a commutative ring. The category of X-graded K-modules

ModXK admits a symmetric monoidal structure given by the “graded tensor
product,” with

(A• ⊗K B•)z =
⊕
x+y=z

Ax ⊗K By

and unit given by the X-graded K-module with K in degree 0 and 0 in all
other degrees. The symmetry sends x⊗y to y⊗x. An X-graded K-algebra is
a monoid for this tensor product. Once again, beware of this use of language;
this is not an X-graded object in ComAlgK . Write ComAlg(ModXK) for
this category. A Beck module for the commutative X-graded K-algebra A•
is an action of this monoid.

The relationship with the Leech category (section 5 below) suggests that
rather than defining a right A•-module as a right action, we should say this:

Definition 2.1. A right A•-module is an X-graded K-module M• together
with homomorphisms

ϕx,y : Mx+y ⊗Ay →Mx

such that ϕx,0(m⊗ 1) = m and

Mx+y+z ⊗Az ⊗Ay
1⊗µz,y//

ϕx+y,z⊗1

��

Mx+y+z ⊗Az+y=y+z

ϕx,y+z

��
Mx+y ⊗Ay

ϕx,y // Mx

commutes.

Write RModA• for the category of right A•-modules. If X has inverses,
so is in fact an abelian group, the category RModA• is equivalent to the
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category of a right A•-modules in the usual sense, using “lower indexing”
Mx = M−x.

Let N• be a left A•-module and M• a right A• module. Their tensor
product over A•, M

• ⊗A• N•, is the K-module defined as the coequalizer of
the two maps

f, g : P =
⊕
x,y

Mx+y ⊗Ay ⊗Nx ⇒
⊕
z

M z ⊗Nz .

Each of these maps is defined by giving the composite with an inclusion
inx,y : Mx+y ⊗Ay ⊗Nx → P :

f ◦ inx,y = inx+y ◦ (1⊗ ϕy,x) ,

g ◦ inx,y = inx ◦ (ϕx,y ⊗ 1) .

3. Graded homological algebra

From now on we will write just A rather than A• and so on. Let A be an
X-graded K-algebra. For each x ∈ X, there is a left A-module P x together
with ι ∈ P xx such that for any left A-module N the map

HomA(P x, N)→ Nx , f 7→ f(ι)

is an isomorphism. Explicitly,

(1) P xy =
⊕
x+z=y

Az

and ι is the image of 1 ∈ A0 under in0 : A0 → P xx . Given n ∈ Nx, the
corresponding map n̂ : P x → N is defined by

n̂ ◦ inz(a) = an , a ∈ Az .

Lemma 3.1. The set {P x : x ∈ X} is a generating set of small projective
A-modules.

Proof. The A-module P x is projective since N 7→ Nx is an exact functor.
An object is small if the functor it co-represents preserves filtered colimits;
this is clear since colimits in LModA are computed component-wise. For
any A-module N , the map ⊕

x∈X

⊕
n∈Nx

P x → N ,

given by n̂ on the component indexed by (x, n), is an epimorphism; this
shows that {P x : x ∈ X} is a generating set. �

It follows that any projective A-module is a retract of a direct sum of
P x’s.

The account of Quillen homology given above goes through in the graded
context without essential change. For an X-graded K-algebra A we have
identified the category LModA with the category of left actions of A, with N
corresponding to the abelian object in ComAlgK/A given by pr1 : A⊕N ↓
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A with unit section a 7→ (a, 0) and product given by (a, x)(b, y) = (ab, ay +
xb). A section of this object of ComAlgK/A is a (degree-preserving)
derivation, that is, an X-graded K-module map d : A → N such that
d(ab) = a db+b da, as usual. The functor N 7→ DerK(A,N) is co-represented
by the (graded) A-module of Kähler differentials: ΩA/K ∈ LModA. Ex-
pressed in terms of generators and relations, this A-module is the cokernel
of the map

d :
⊕
x,y

P x+y →
⊕
z

P z

determined by

d ◦ inx,y = inx ◦ y∗ − inx+y + iny ◦ x∗ .

This is AbAA. To describe AbAB, for p : B → A in ComAlg(ModXK),
notice that for each x ∈ X the right A-module Px can be regarded as a right
B-module through the map p. Then

(AbAB)x = Px ⊗B ΩB/K .

The left A-module structure on AbAB arises from the A-bimodule structure
of P .

Given an X-graded set T , one can construct the free commutative monoid
NT in SetX as

(NT )x =
∐

ΣY=x

∏
y∈Y

Ty

the disjoint union taken over finite subsets Y of X with sum x.
This construction is useful in building the free commutative X-graded

K-algebra generated by T ∈ SetX : It is in degree x just the free K-module
generated by (NT )x. This provides us with an adjoint pair

FX : SetX � ComAlg(ModXK) : uX

giving a cotriple SymX
K on ComAlg(ModXK). Following [4], this in turn

leads to a natural simplicial object SymX
K•A augmented toA, with SymX

KnA =

(SymX
K)n+1A, which can be used to derive functors on ComAlg(ModXK)/A.

The Quillen homology of A ∈ ComAlg(ModXK) is defined as the derived
functors of AbA : ComAlg(ModXK)/A→ LModA, evaluated at the object
idA : A ↓ A. Thus for each n the Quillen homology HQn(A) is itself an
A-module, and HQ0(A) = ΩA/K . Any right A-module M results in the
sequence of K-modules

HQn(A;M) = πn(M ⊗A AbAGX•A) .

For any x ∈ X, we can recover HQn(A)x by using the right A-module Px
for coefficients:

HQn(A)x = HQn(A;Px) .

For N ∈ LModA we can define the André-Quillen cohomology:

HQn(A;N) = Hn(HomA(chGX•A,N)) .
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4. Change of grading monoid

Let α : Y → X be a map of commutative monoids. An X-graded object
C in C determines a Y -graded object α∗C by

(α∗C)y = Cα(y) .

If C has coproducts, the functor α∗ : CX → CY has a left adjoint given by

(α∗C)x =
∐

α(y)=x

Cy .

Let K be a commutative ring. The functor α∗ : ModYK → ModXK is
symmetric monoidal –

α∗(M ⊗N) = α∗M ⊗ α∗N
– so α∗ sends Y -graded commutative K-algebras to X-graded commuta-
tive K-algebras. Let A ∈ ComAlg(ModYK). Then for the same reason α
induces adjoint pairs

α∗ : LModA � LModα∗A : α∗

and

α∗ : RModA � RModα∗A : α∗

Let N be an α∗A-module. It is straightforward to construct a natural
isomorphism

DerK(A,α∗N) = DerK(α∗A,N)

and so a natural isomorphism of α∗A-modules

Ωα∗A/K = α∗ΩA/K .

The adjoint pairs (FX , uX) are compatible under change of grading monoid:
A monoid homomorphism α : Y → X determines the following squares.

SetY ComAlg(ModYK)
uXoo SetY

FY //

α∗
��

ComAlg(ModYK)

α∗
��

SetX

α∗

OO

ComAlg(ModXK)
uXoo

α∗

OO

SetX
FX // ComAlg(ModXK)

The diagram of right adjoints clearly commutes, so the diagram of left ad-
joints does too:

α∗FY (T ) = FX(α∗T ) ∈ ComAlg(ModXK) .

Passing to the cotriples,

α∗SymY
K(A) = α∗FY uX(A) = FXα∗uY (A) = FXuX(α∗A) = SymX

K(α∗A)

and so to simplicial resolutions:

α∗SymY
K•(A) = SymX

K•(α∗A) .

Assembling all this, along with the fact that α∗ is exact, we find:
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Proposition 4.1. Let α : Y → X be a monoid homomorphism. There are
isomorphisms of α∗A-modules natural in A ∈ ComAlg(ModYK)

α∗HQn(A) = HQn(α∗A)

as well as isomorphisms of K-modules

HQn(A;α∗M) = HQn(α∗A;M)

natural in M ∈ RModα∗A and

HQn(A;α∗N) = HQn(α∗A;N)

natural in N ∈ LModα∗A.

An important example is provided by taking X to be the one-element
monoid, e, and α : Y → e the unique map. Then α∗A is the “degrading”
of A, an ungraded commutative K-algebra, and N is a module for it; α∗N
is the “constant” Y -graded K-module with (α∗N)y = N for all y ∈ Y , and
A acting among them in the obvious way; and HQ∗(α∗A), HQ∗(α∗A;M),
and HQ∗(α∗A;N) are the usual André-Quillen groups.

5. Commutative monoids

We now regard commutative monoids as the category of homological in-
terest, rather than as a source of gradings.

Let X ∈ ComMon. It is easy [30, 18] to identify the category of Beck
modules over X in terms of the Leech category, LX , with object set X and
LX(x, z) = {y ∈ X : x + y = z} with unit and composition determined by
the commutative monoid X. Write y∗ : x→ (x+ y) for a morphism in this
category. The category of Beck modules over X is canonically equivalent to
the category of functors from LX to the category Ab of abelian groups.

A map α : Y → X of commutative monoids induces a functor

α∗ : LModX → LModY

which, under the equivalence with functors from the Leech categories, may
be regarded as induced by pre-composition with the functor α : LY → LX .
The left adjoint α∗ is then induced by left Kan extension [31, Chapter X]
along α.

A section of an abelian object over X is a “derivation,” and under the
identification of abelian objects over X with functors on LX a derivation
with values in N : LX → Ab is an assignment of an element s(x) ∈ Nx for
each x ∈ X such that

s(x+ y) = x∗s(y) + y∗s(x)

There is a universal example, the Beck module of “Kähler differentials”
ΩCM
X , which provides a distinguished object of LModX . For any α : Y → X,

AbXY = α∗Ω
CM
Y .
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A commutative monoid X defines a canonical commutative X-graded K-

algebra K̃X in which (K̃X)x = K for each x ∈ X, with generator 1x,

1 = 10 ∈ (K̃X)0, and

µx,y(ax ⊗ by) = (ab)x+y = ab1x+y , a, b ∈ K .

This object of ComAlgXK co-represents the functor sending an object A to
the set of sections a of the grading function A→ X such that axay = ax+y.

For a Beck K-module N over X we may define a left module over K̃X,
which we will again denote by N . The K-module in degree x is Nx and the

multiplication by K̃X is given by the action of elements of X, regarded as
morphisms in LX . The following lemma is simply a change in perspective.

Lemma 5.1. The category of covariant functors LX → ModK is canoni-

cally equivalent to the category of K̃X-modules. The category of contravari-
ant functors LX →ModK is canonically equivalent to the category of right

K̃X-modules.

Of course the usual monoid-algebra is obtained from K̃X as

KX = α∗K̃X , α : X → e .

These isomorphisms are compatible with attendant structure: the functors
induced by a map α : Y → X of commutative monoids agree with the

functors induced by Z̃α : Z̃Y → Z̃X. Under this identification the Kähler
differential objects match up:

ΩCM
Y = ΩCA

Z̃Y

and more generally α∗Z̃Y ∈ ComAlg(ModXK)/Z̃X and

AbX(Y ) = AbZ̃X(α∗Z̃Y )

in LModX = LModZ̃X . As a further example, given a contravariant func-
tor M : LX →ModK and a covariant functor N : LX →ModK ,

M ⊗Z̃X N = M ⊗LX
N

where the right hand side is the usual tensor product over the category LX ,
as considered by Kurdiani and Pirashvili in [29].

In order to express the functoriality of K̃, we need a category of graded al-
gebras in which the grading commutative monoid can vary. So let ComAlg∗K
be the category whose objects are pairs (X,A) where X is a commuta-
tive monoid and A is a commutative X-graded K-algebra. A morphism
(X,A) → (Y,B) consists of a monoid homomorphism α : X → Y together
with a morphism f : α∗A → B in ComAlg(ModYK) (or equivalently a

morphism f̂ : A → α∗B in ComAlg(ModXK)). Given a second morphism
(β, g) : (Y,B) → (Z,C), the composite is defined as (β ◦ α, g ◦ β∗f), (or

equivalently as (β ◦α, α∗ĝ ◦ f̂)). Then the construction K̃ provides a functor

K̃ : ComMon→ ComAlg∗K .
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Theorem 5.2. There are isomorphisms natural in the commutative monoid
X

HQCMn (X) = HQCAn (Z̃X)

where we have identified Beck modules over X with modules over Z̃X. For
any right Beck module M over X,

HQCMn (X;M) = HQCAn (Z̃X;M)

and for any left Beck module N

HQnCM (X;N) = HQnCA(Z̃X;N)

Proof. Let α : Y• → X be a cofibrant replacement of X ∈ ComMon
regarded as a constant simplicial object. We could take the cotriple reso-
lution N•X for example, and for definiteness we will do so. We claim that

α∗K̃N•X → K̃X is a cofibrant replacement for K̃X in sComAlg(ModXK).
The augmentation α : N•X → X is a weak equivalence in sComMon,

which is to say a weak equivalence of simplicial sets. The entire simplicial
set N•X splits into a disjoint union of the pre-images under α of the points
of X, and each of these components is a weakly contractible simplicial set.

Now apply the functor K̃ to N•X, to get a simplicial object in ComAlg∗K
with an augmentation K̃N•X → K̃X; that is, a map

α∗K̃N•X → K̃X

in sComAlg(ModXK). The object α∗K̃N•X of sModXK splits as a direct
sum of the free K-module functor applied to the components of N•X above
the points of X. But a weak equivalence Z• → Y• of simplicial sets induces a

weak equivalence KZ• → KY• [17, III, Prop. 2.16], so the map α∗K̃N•X →
K̃X is a weak equivalence.

The second observation is that α∗K̃N•X is cofibrant in the model category
of simplicial objects in ComAlg(ModXK). Indeed, it is almost free in the
sense of [32], and hence, as observed there, is cofibrant. A simplicial object
Z• ∈ sComMon is “almost free” if there are subsets Gs ⊆ Zs, for each s,
that are respected by all face and degeneracy maps except for d0, and such
that Zs is freely generated by Gs. A cotriple resolution, such as N•X, is

easily seen to be almost free. If we then apply the functor α∗K̃ to it, the
same generating sets, now regarded as in SetX , again generate as objects in
ComAlg(ModXK).

The map α∗K̃N•X → K̃X thus joins SymX
K•(K̃X)→ K̃X as a cofibrant

replacement, and so (e.g. [14, Proposition 3.9]) can be used to compute
Quillen homology. Thus (finally taking K = Z)

AbXN•X = AbZ̃X(α∗Z̃N•X) ' AbZ̃X(SymX
Z•(Z̃X))

as simplicial objects in LModX = LModZ̃X . Applying the functors π∗(−) =
H∗(ch (−)), π∗(M⊗Z̃X−) = H∗(M⊗Z̃X ch (−)), and H∗(HomZ̃X(ch (−), N))
gives us the results. �
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Corollary 5.3 ([29]). Let X be a commutative monoid and let α : X → e
be the unique monoid map to the trivial monoid. There are isomorphisms

α∗H
CM
n (X;α∗M) = HCA

n (ZX;M)

natural in the right X-module M , and

α∗H
n
CM (X;α∗N) = Hn

CA(ZX;N)

natural in the left X-module N .

6. The Hochschild complex

This section reviews well known material (e.g. [38, 41]) in the graded
setting.

Let A be an associative X-graded K-algebra. There is a canonical sim-
plicial A-bimodule (so each level is an X-graded K-module with grade-
preserving left and right actions of A) B•(A) over K with

Bn(A) = A⊗(n+2)

for n ≥ 0, augmented to A, and

di = 1⊗i ⊗ µ⊗ 1⊗(n−i) : A⊗(n+2) → A⊗(n+1) , 0 ≤ i ≤ n

si = 1⊗(i+1) ⊗ η ⊗ 1⊗(n−i) : A⊗(n+1) → A⊗(n+2) , 0 ≤ i ≤ n− 1

where µ : A⊗A→ A is the multiplication and η : K → A includes the unit.
There are also maps

s−1 = η ⊗ 1⊗(n+1) , sn = 1⊗(n+1) ⊗ η : A⊗(n+1) → A⊗(n+2) .

The first is a right A-module map and the second is a left A-module map,
and they provide contracting homotopies of the simplicial object regarded
as either a simplicial right A-module or a simplicial left A-module. In fact
it is just the simplicial bar resolution of A as a left or right A-module. Thus
the chain complex associated to B•(A), chB•(A), is a relative projective res-
olution of A as an A-bimodule, the Hochschild resolution. If A is projective
as a K-module, it’s an absolute projective resolution.

Let QA be the functor from A-bimodules to X-graded K-modules with

QA(M)z = M/K{am−ma : a ∈ Ax,m ∈Mw, w + x = z} .
More generally, given an A-bimodule N , define the functor QAN , or QN if A
is understood, from A-bimodules to X-graded K-modules

QN (M)z = (M ⊗N)z/R

where R is the sub-K-module generated by

{am⊗n−m⊗na,ma⊗n−m⊗an : m ∈Mw, a ∈ Ax, n ∈ Ny, w+x+y = z} .
We recover QA by regarding A as a bimodule over itself using left and right
multiplication. A bimodule is the same thing as a module over Ae = A⊗Aop,
and under this equivalence

QN (M) = M ⊗Ae N .
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In general this is just an X-graded K-module, but if A is commutative then
QA(M) is naturally an A-module, since A is then an (A,Ae)-bimodule.

Apply this functor toB•(A) to get a simplicial object in ModXK , QNB•(A),
equipped with an augmentation to QNA. This is the Hochschild complex
with coefficients in N ,

C•(A/K;N) = chQNB•(A)

and by definition

Hochn(A/K;N) = Hn(C•(A/K;N)) .

When the ground ring K is understood we will drop it from the notation.
When N = A with its natural A-bimodule structure, we may drop it from
the notation as well:

C•(A) = C•(A/K;A) and Hoch•(A) = Hoch•(A/K;A) .

To understand this better, notice the isomorphism

QN (A⊗ V ⊗A)→ V ⊗N
for V ∈ModXK , given by factoring

a⊗ v ⊗ b⊗ n 7→ v ⊗ bna
through QN (A⊗ V ⊗A). The inverse sends v ⊗ x to [1⊗ v ⊗ 1⊗ n].

This isomorphism breaks symmetry. But using it we may write the aug-
mented simplicial K-module QNB•(A) as

QN (A)← N ⇐ A⊗K N W · · · ,
so

Cn(A;N) = A⊗n ⊗K N .

If A and Z are two X-graded K-algebras and M and N bimodules for
them, there is a natural isomorphism

QA(M)⊗QZ(N)→ QA⊗Z(M ⊗N)

under the identity map on M⊗N . The fact that it is an isomorphism follows
from the identity

(a⊗ z)(m⊗ n)− (m⊗ n)(a⊗ z) = am⊗ (zn− nz) + (am−ma)⊗ nz
We get natural isomorphisms of simplicial objects

B•(A)⊗B•(Z)→ B•(A⊗ Z)

QAB•(A)⊗QZB•(Z)→ QA⊗ZB•(A⊗ Z)

If A is commutative we may take A = Z and compose with the K-algebra
map µ : A⊗A→ A to obtain a simplicial commutative A-algebra structure
on QAB•(A), and QNB•(A) becomes a module over QAB•(A).

Passing to associated chain complexes, the Eilenberg-Zilber or shuffle map
([11, p. 64] or [33, p. 39]) results in the structure of a commutative (in the
signed sense) differential graded A-algebra on C•(A) and hence a graded
commutative A-algebra structure on its homology Hoch•(A).
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Dually, denote by RN (M) the K-module of A-bimodule maps from M to
N . The Hochschild cochain complex with coefficients in N is then RNB•(A),
and its homology is the Hochschild cohomology Hoch•(A;N).

It is well known and easy to verify that

Hoch1(A) = ΩA/K = HQCA0 (A)

and
Hoch1(A;M) = DerK(A;M) = HQ0

CA(A;M) .

7. Harrison homology

Then QAA = A; the Hochschild complex C•(A) is augmented to A. Let
I•(A) denote the kernel of this augmentation; this is the ideal of positive-
dimensional elements in the commutative differential gradedA-algebra C•(A).
The Harrison complex [26] is the differential graded module of indecompos-
ables in C•(A), I•(A)/I•(A)2. The Harrison homology of A is the homology
of this chain complex of A-modules:

Harrn(A) = Hn(I•(A)/I•(A)2) .

We can equip it with coefficients in an A-module M :

Harrn(A;M) = Hn((I•(A)/I•(A)2)⊗AM) .

The Harrison cohomology with coefficients in an A-module M is

Harrn(A;M) = Hn(HomA(I•(A)/I•(A)2,M)) .

Clearly
Harr0(A) = 0 and Harr1(A) = Hoch1(A)

The shuffle product defines a sign-commutative graded K-algebra struc-
ture on the N-graded K-module C•(A) with

Cn(A) = A⊗n .

As graded A-algebras
C•(A) = A⊗ C•(A) .

Only the differential depends on the algebra structure, and it is not the
A-linear extension of a differential on C•(A).

The Harrison cochains can be re-expressed in terms of the graded K-
algebra C•(A). Let I•(A) be its augmentation ideal; then

I• = A⊗ I• , I2
• = A⊗ I2

• ,

and so
I•(A)/I•(A)2 = A⊗ (I•(A)/I•(A)2) .

A Harrison n-cochain (for n > 0) with coefficients in M is thus a K-linear
map

s : A⊗n →M

that annihilates decomposables. This may be phrased as a symmetry con-
dition on the cochain: given i, j, both positive and summing to n, let Σ(i, j)
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be the set (i, j)-shuffles; that is, the set of elements of Σn that preserve the
order of {1, . . . , i} and of {i+ 1, . . . , n}. The symmetry condition (i, j) on a
Hochschild cochain s : A⊗n →M is∑

σ∈Σ(i,j)

sgn(σ)s ◦ σ = 0 .

Since the shuffle product is commutative, we may assume that i ≤ j; there
are bn/2c independent conditions.

An alternative symmetry condition (apparently the one originally con-
ceived of by Harrison; the shuffle description is said to be due to Mac Lane)
is described in [15]. Think of an element of Σn as an ordering of {1, 2, . . . , n}.
Let 1 ≤ k ≤ n. An element σ ∈ Σn is a k-monotone permutation if the lead
element is k, the numbers 1, 2, . . . , k occur in decreasing order, and the
numbers k + 1, . . . , n occur in increasing order. There are

(
n−1
k−1

)
of them.

For example the only n-monotone permutation in Σn corresponds to the
sequence n, n− 1, · · · , 2, 1, and the 4-monotone permutations in Σ6 are

432156, 432516, 432561, 435216, 435261, 435621, 453216, 453261, 453621, 456321

Let Mk(n) be the set of k-monotone permutations in Σn. Let dr(σ) be
the sum of the positions occupied by 1, 2, . . . , k − 1 in the permutation
σ ∈Mk(n).

Lemma 7.1 ([15], Theorem 4.1). A map s : A⊗n → M is a Harrison
cochain if and only if

s =
∑

σ∈Mk(n)

(−1)dr(σ)s ◦ σ , 2 ≤ k ≤ n .

So for example a Hochschild 4-cochain s is a Harrison cochain if and only
if

s(a1, a2, a3, a4) = s(a2, a1, a3, a4)− s(a2, a3, a1, a4) + s(a2, a3, a4, a1)

= −s(a3, a2, a1, a4) + s(a3, a2, a4, a1)− s(a3, a4, a2, a1)

= −s(a4, a3, a2, a1)

The 4-monotone and 2-monotone symmetries combine to give

s(a4, a3, a2, a1) = −s(a2, a1, a3, a4) + s(a2, a3, a1, a4)− s(a2, a3, a4, a1)

which is the same as the 3-monotone condition (after rearranging the labels);
so we can dispense with either one of the first two conditions in this list. The
same argument shows that one need only assume the n-monotone condition
together with one condition from each pair {2, n − 1}, {3, n − 2}, . . .: so
bn/2c conditions suffice. This matches with the number of independent
shuffle conditions.
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8. Divided powers and Barr homology

Michael Barr suggested possible variations on Harrison’s symmetry con-
ditions, in an attempt to come closer to Quillen homology. As explained
by Sarah Whitehouse [40], these variations still fail, though they may give
better approximations.

Gerstenhaber and Schack [15, Remark, p. 232] (see also [40]) suggest that
one of Barr’s ideas was to divide the Hochschild complex not just by shuffle
decomposables but by the divided power structure as well. While a divided
power structure on the even homotopy groups of a simplicial commutative
algebra was implicit in the works of Eilenberg and Mac Lane [11] and Henri
Cartan [9, Exp. 8], its construction on the level of the Hochschild complex
was at best a folk result at the time of Barr’s question, and even when
Gerstenhaber and Schack were writing. It seems to have first been set out,
in the associated chain complex of a simplicial commutative algebra B•, by
Siegfried Brüderle and Ernst Kunz [8] in 1994; see also [37] and [16]. The
result is a natural family of maps

γk : B2n → B2kn

such that k!γkx = xk.
From these sources one obtains the following formula for the divided power

structure on Ceven(A), where A is a commutative K-algebra. Let Sk(kn) be
the set of shuffles associated to the partition of {1, 2, . . . , kn} into k intervals
of length n. Let S′k(kn) be the subset of these such that the leading terms
of the k sequences occur in order. Then, for n even,

γk[a1| · · · |an] =
∑

σ∈S′k(kn)

sgn(σ)[a1| · · · |an|a1| · · · |an| · · · |a1| · · · |an] ◦ σ

where the sequence a1| · · · |an is repeated k times. For example

γ2[a|b] = [a|b|a|b] , γ3[a|b] = [a|b|a|b|a|b] ,
γ2[a|b|c|d] = [a|b|c|d|a|b|c|d]− [a|b|c|a|d|b|c|d] + [a|b|c|a|b|d|c|d]

+[a|b|a|c|d|b|c|d]− [a|b|a|c|b|d|c|d] + 2[a|b|a|b|c|d|c|d] .

We can put at least one restriction on the tensors occurring in the expres-
sion for the divided powers. To express it, notice that there is a universal
Hochschild n-chain, [a1| · · · |an] ∈ K[a1, . . . , an]⊗n.

Lemma 8.1. No decomposable tensor with entries chosen from {a1, . . . , an}
occurring with nonzero coefficient in γk[a1| · · · |an] has consecutive occur-
rences of any ai.

Proof. We show how such terms cancel in pairs in the expression for the
divided power, by defining a free involution on the set of terms with neigh-
boring repeated letters with the property that the elements of each orbit
occur with opposite signs. The involution will leave unchanged all the let-
ters up to and including the left-most neighboring repeated pair.
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If the repeated pair is a1|a1, swap the positions of the remaining letters
in the two blocks initiated by these letters. We get an identical word, but
since n is even this is an odd number of transpositions, so the terms cancel.

If the repeated pair is ai|ai for i > 1, just swap those two entries. This
is allowed since the leading term of both blocks precedes both entries in the
repeated pair. �

Since every term in the expression for γk[a1| · · · |an] has leading entry a1,
we obtain:

Corollary 8.2. γk[a|b] = [a|b|a|b| · · · |a|b].

In general the expression for γk seems very complicated. For example, a
computer calculation shows that γ3[a|b|c|d] has 53 terms, with coefficients
ranging from −4 to 6.

Write Barr∗(A) for the homology of the chain complex of A-modules
obtained from C•(A) quotienting out by decomposables and the image of
divided powers. Since k!γk(ω) is decomposable, we have an exact sequence

0→ Harr2k+1(A)→ Barr2k+1(A)→ T2k → Harr2k(A)→ Barr2k(A)→ 0

where k!T2k = 0. Thus

Harr2k+1(A)→ Barr2k+1(A) is injective with cokernel killed by k! ,

Harr2k(A)→ Barr2k(A) is surjective with kernel killed by k! .

We can also form the “Barr cohomology” with coefficients in an A-module.
Its cochains consist of Hochschild cochains s satisfying the Harrison sym-
metry conditions with the additional conditions

s(γk(ω)) = 0 , k > 0 ,

for |ω| even; for example s(a, b, a, b) = 0 in dimension 4; s(a, b, a, b, a, b) = 0
in dimension 6; and in dimension 8 there are two additional symmetries,

s(a, b, a, b, a, b, a, b) = 0

guaranteeing annihilation of γ4[a|b], and

s(a, b, c, d, a, b, c, d)− s(a, b, c, a, d, b, c, d) + s(a, b, c, a, b, d, c, d)

+s(a, b, a, c, d, b, c, d)− s(a, b, a, c, b, d, c, d) + 2s(a, b, a, b, c, d, c, d) = 0

to annihilate γ2[a|b|c|d].

Remark 8.3. It is natural to hope that the natural map of A-modules
Hochn(A)→ HQn−1(A) factors as

Hochn(A)→ Harrn(A)→ Barrn(A)→ HQn−1(A) ,

but this seems unlikely to us except in low dimensions.
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9. Grillet’s work

In a series of papers, Pierre Grillet associates to a commutative monoid
X and a Beck module M over it the beginning of a cochain complex and
proves or conjectures that it computes the low-dimensional components of
the Quillen cohomology HQ∗CM (X;M). We observe that the symmetry
conditions he imposes are precisely the monontone conditions, with two
variations which correspond to Barr’s variation on the Harrison complex.
We will not attempt a complete survey of Grillet’s work on this subject,
but merely note the occurrence of symmetry conditions that we now see as
Harrison or Barr symmetry conditions on Hochschild cochains, and where
in Grillet’s work they are proved to yield cohomology groups isomorphic to
Quillen’s.

To begin with, for any X graded K-algebra and A-module M ,

Harr1(A;M) ∼= Hoch1(A;M) ∼= HQ0
CA(A;M) ∼= DerK(A,M)

so
Harr1(Z̃X;M) ∼= HQ0

CM (X;M) .

In 1974 [18] Grillet used 2-cocycles s with the symmetry

s(a, b) = s(b, a)

to classify extensions of commutative monoids. This is of course the 2-
monotone symmetry. Twenty years later, in [19], he returned to this by
invoking Quillen cohomology as an intermediary, thus showing that

Harr2(Z̃X;M) ∼= HQ1
CM (X;M) .

(Grillet chooses to index Quillen homology following the Hochschild conven-
tion, so he would write HQ2

CM (X;M).)
This paper was supplemented by [20], which confirmed this result by

direct computation and extended it to dimension 3 using the symmetry
conditions

s(a, b, c) + s(c, b, a) = 0

s(a, b, c) + s(b, c, a) + s(c, a, b) = 0 .

Taken together these are equivalent to the k-monotone symmetries for k = 2
and 3. A remarkable calculation then verifies that

Harr3(Z̃X;M) ∼= HQ2
CM (X;M)

This work was consolidated and summarized in his book [21].
After another twenty years, Grillet returned again to this project, in [22],

extending his calculation to dimension 4 using cochains satisfying the sym-
metry conditions simplified in [23] to

s(a, b, c, d)− s(b, a, c, d) + s(b, c, a, d)− s(b, d, d, a) = 0 ,

s(a, b, c, d) + s(d, c, b, a) = 0 ,

s(a, b, b, a) = 0 .
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The reader will recognize the first two as the 2-monotone and 4-monotone
symmetries. The first equation implies s(a, b, a, b) = s(b, a, a, b), so the third
condition is equivalent to the Barr variant s(a, b, a, b) = 0. And here again,
Grillet obtains the surprising result

Barr4(Z̃X;M) ∼= HQ3
CM (X;M) .

This work was quickly followed by [24], in which Grillet proposes sym-
metric conditions on Hochschild cocycles extending into dimensions 5 and
6. In dimension 5 he proposes

s(a, b, c, d, e)− s(b, a, c, d, e) + s(b, c, a, d, e)− s(b, c, d, a, e) + s(b, c, d, e, a) = 0

s(a, b, c, d, e) + s(e, d, c, b, a) = 0 .

We recognize these as the 2-monotone and 5-monotone conditions, which
suffice to determine Harrison cohomology. In dimension 6 his proposed
symmetries are precisely the k-monotone conditions for k = 2, 3, and 6,
augmented by the Barr variant s(a, b, a, b, a, b) = 0.

In these higher dimensions the identifications with Quillen cohomology
are left as conjectures. We can now see that at least the 5-dimensional case
was too optimistic. Write α for the unique map of commutative monoids
N→ e. Then

Barr•(Z̃N;α∗Fp) = Barr•(Z[x];Fp) .
Let c : F2[x]⊗5 → F2 be the non-bounding Barr cocycle described by White-
house [40]. Its composite with Z[x]⊗5 → F2[x]⊗5 is again a cocycle and satis-
fies the same invariance properties, and if this composite were a coboundary
then c would be too. So Barr5(Z[x];F2), which is the cohomology in degree
5 of Grillet’s complex for the free commutative monoid N with coefficients
in α∗F2, is nontrivial.
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tan 1954/1955.



22 BHAVYA AGRAWALLA, NASIEF KHLAIF, AND HAYNES MILLER

[10] M. Calvo-Cervera, A. M. Cegarra, and B. A. Heredia, On the third cohomology group
of commutative monoids, Semigroup Forum 92 (2016) 511–533.

[11] S. Eilenberg and S. Mac Lane, On the groups H(Π, n), I, Annals of Mathematics 58:1
(1953) 55–106.

[12] S. Eilenberg and J. C. Moore, Adjoint functors and triples, Illinois Journal of Math-
ematics 9 (1965) 381–398.

[13] P. J. Fleury, Splittings of Hochschild’s complex for commutative algebras, Proceedings
of the American Mathematical Society 30:3 (1971) 405–411.

[14] M. Frankland, Behavior of Quillen (co)homology with respect to adjunctions, Homol-
ogy, Homotopy and Applications 17:1 (2015) 67–109.

[15] M. Gerstenhaber and S. D. Schack, A Hodge-type decomposition for commutative
algebra cohomology, Journal of Pure and Applied Algebra 48 (1987) 229–247.

[16] W. D. Gillam, Simplicial Methods in Algebra and Algebraic Geometry, preprint.
[17] P. G. Goerss and J. F. Jardine, Simplicial Homotopy Theory, Progress in Mathematics

174, Birkhäuser, 1999.
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