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In the fall of 2000, a group in the MIT Mathematics Department
began work on a suite of computer applets (“MIT Mathlets”) designed
to support basic MIT mathematics education. For a report on this
work and a review of relevant literature see Miller and Upton [3]. The
current state of this collection, along with supplementary material, can
be found at http://math.mit.edu/mathlets/. The intent of this chapter
is to discuss the recent design and application of two new families of
MIT Mathets serving very different audiences:

• Calculus tools designed for self-learners and delivered over the
internet through MIT OpenCourseWare.

• Tools designed for use in an aerospace engineering classroom
workshop to aid in understanding the stability of certain differ-
ence schemes.

We will begin by describing the pedagogical factors guiding the cre-
ation of this family of applets, the history of their early development,
and the background for the recent additions. The next section is de-
voted to the design and usage of calculus applets for self-learners, and
Section 3 to similar treatment of the Eigenvalue Stability applet built
for use in an Aerospace Engineering class. We wrap up each section
with some lessons learned and a sketch of future work in this direction.

1. Background

Development of the MIT Mathlets began in the Fall of 2000 under
a grant from the MIT d’Arbeloff Fund for Excellence in Education.
Initially they focused on material for the large course on Ordinary Dif-
ferential Equations. In the spring of 2003 they were first introduced in
that course as lecture demo material and, more powerfully, as a frame-
work for homework assignments. This initial phase of development is
reported on by Miller and Upton in [3] (available online), where a de-
tailed study of the pedagogical impact of the applets can be found. As
described in that paper, the initial MIT Mathlets began as modifica-
tions of applets created for an earlier project, Interactive Differential
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Equations [4], authored by Beverly West, Steven Strogatz, Jean Marie
McGill, and John Cantwell. The IDE applets were designed and pro-
grammed by Hu Hohn, Director of the Computer Arts Center at Mas-
sachusetts College of Art, and Hohn continued the development of this
initial group and many subsequent applets for the MIT project.
Several well-defined overarching design elements, described in [3],

shaped the creation of these tools and continue to shape the new ones.
They may be summarized as follows. Each applet

• responds in real time to slider or cursor movements determining
system parameters,

• is narrowly focused, providing maximal insight into important
concepts using carefully selected examples, and

• is designed to maximize the visual connections among compo-
nents, using color coding, layout, and other methods.

In the ensuing years many homework problems incorporating these
applets have been written (and many are available at the MIT Mathlets site)
and further applets were added to the collection. Some of the new ap-
plets were again connected with differential equations, but increasingly
attention turned to providing material for use in other courses, espe-
cially in courses outside the Mathematics Department. Most of our
engineering students will have seen these applets in use in the basic
differential equations course and will be familiar with their visual con-
ventions and their philosophy of multiple representation and cursor
controls. They are therefore easier for these students to use, and pro-
vide an attractive link between courses in different departments and
different years of the student’s career.
Here is a list of recent transdepartmental projects. They were all

programmed by Jean-Michel Claus.

• 2007: With Peter Dourmashkin of the MIT Physics Depart-
ment, the applet Series RLC Circuit was designed and imple-
mented as part of the TEAL approach to basic instruction in
electromagnetism. This applet has subsequently also been used
in the Differential Equations course, providing an important
and conspicuous link between courses.

• 2007–2008: Julie Greenberg of the Harvard-MIT Division of
Health Sciences and Technology designed the applet Discrete Fourier Transform.
It is used in the HST course “Biomedical Signal and Image Pro-
cessing.”

• 2008–2009: With John Deyst and Karen Willcox (of the MIT
Aero-Astro Department) the applet Nyquist Plot was designed
and built. A subsequent collaboration with Franz Hover of the
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MIT Mechanical Engineering Department resulted in the applet
Bode and Nyquist Plots.

• 2010: With Karen Willcox and Chad Lieberman, the applet
Eigenvalue Stability was designed and built, and a worksheet
guided students through its use in a class in the course Com-
putational Methods in Aerospace Engineering.

• 2010: With Heidi Burgiel and Jerry Orloff (of MIT Experimen-
tal Study Group), a group of applets illustrating basic calculus
concepts was designed and built for use with OCW Scholar.

In this chapter we shall report in detail on the last two developments.
These two differ greatly in their pedagogical context and in their target
audiences, and together they present a case study of how a common
technology can address diverse pedagogical needs.

2. Calculus Mathlets for Self-Learners

In the spring of 2011, MIT OpenCourseWare launched OCW Scholar,
reorganizing and augmenting the OCW content of a series of founda-
tional undergraduate MIT courses to provide a pathway through the
course suitable for use by self-learners. Two of the first set of OCW
Scholar courses are mathematics courses: Single Variable Calculus and
Multivariable Calculus. Applets were designed and built for use in the
first of these courses.
Visitors to these sites are often working alone, so students must

be able to operate and interpret these mathlets without instructor or
peer support. This isolation results in some surprising requirements.
For example, one student remarked on a chat site associated with the
course:

The mathlets are clear, but when I use them for the
exercises then I get confused. For example, when they
say to find the slope of the tangent line, I don’t know if
they’re talking about the red tangent line or the yellow
tangent line.

The student was referring to the Secant Approximation applet; see
Figure 1. This student does not yet distinguish between tangent lines
and secant lines. The quote illustrates how easy it is for a student to
experience a sense of understanding without actually comprehending
what the visual is designed to convey. This gap in understanding is only
revealed when the student is presented with an exercise that links the
visual with a conceptual or computational task. Labels, color coding,
and layout do not by themselves induce an understanding of the intent
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of the applet. This is a universal characteristic of student response to
applets, but it is perhaps especially severe for self learners.
All the MIT Mathlets have a Help page which details the various

functionalities of the applet. As part of our response to the additional
explanatory demands imposed by the OCW Scholar distance learning
model, we have prefaced that text with a brief description of the con-
ceptual content and intended use of the applet.

Figure 1. The Secant Approximation Applet.

2.1. Design of the Secant Approximation Applet. The applet
Secant Approximation (see Figure 1) illustrates many of the design
features common to all the MIT Mathlets. This applet is designed to
illustrate the convergence of secant lines to the tangent line at a point
on a graph; this is a graphical image of the definition of the derivative
of a function.
A menu offers a choice of five functions. We argue that a few well

chosen functions suffice to illustrate all the aspects of this particular
curricular juncture which one is likely to want to explore. The ad-
vantage of limiting choice is that we have total control over the visual
characteristics of the graph. This principle extends to all the applets
in the MIT Mathlets collection.
The size and shape of the graphing window is independent of the

choice of function, but the units vary. For trigonometric functions, the
horizontal axis is marked off in multiples of π, while the vertical axis
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is in units. The aspect ratio is correct, however, so that a line of slope
one makes a 45◦ angle with the x-axis. Failing to adhere to this kind
of proportion can disrupt student comprehension.
The color cyan is used for three components in the applet: the choice

of function, the graph of that function, and the label y=f(x) of the
graph. These are all representations of the same data, and so are
displayed in the same color.
A slider below the graphing window allows the user to select a value

of x. The slider position is indicated by a red dot, which is repeated on
the graph above and connected to it by a thin vertical red line segment,
to drive home the connection between these two marks. There is also
a red readout of the x value to the right of the slider. Red indicates
the position on the graph.
A yellow checkbox labeled [Secant] offers the option of displaying

data connected with the secant line, all colored yellow: a slider, cen-
tered at the chosen value of x, allowing choice of ∆x; a readout of
the value of ∆x; the secant line itself; a ghosted yellow line segment
indicating the connection between ∆x and x + ∆x; and a readout of
the difference quotient ∆y/∆x. The ∆x slider is centered at the posi-
tion of x. Sliders which slide is a novelty of this tool, and JAVA code
executing it had to be added to the library.
One of the standing conventions, valid in all the MIT Mathlets, is

that clicking on one of the numbered hashmarks sets the value of the
corresponding parameter to that value. Important values are also ar-
tifically enforced: It may not be possible to station the ∆x slider, for
example, exactly at ∆x = 0, because the computer screen is divided
into discrete pixels. But careful programming guarantees that drag-
ging the slider across ∆x = 0 will result in the display appropriate to
∆x = 0. This is one example of the many ways one needs to “cheat”
in order to more accurately reflect the mathematical truth.
When ∆x = 0, the readout for ∆y/∆x reads “Undefined.” What

secant line should be displayed when ∆x = 0? The yellow dot slides
behind the red one, and with no second point for the secant line, there
is no secant line. It disappears. This is another standard convention
of these applets: when a displayed object ceases to have meaning, it
disappears.
Now is the time to take the limit. This is achieved by clicking on

a second checkbox, labeled [Tangent]. Since it pertains to the given
value of x, it is red. When it is checked, the tangent line at this point is
drawn—in red, of course—and the value of the derivative is displayed,
also in red.



A final functionality of this tool, again standard in the MITMathlets,
is the creation of crosshairs over the graphing window centered at the
cursor location (and suppressed by depressing the mouse key) and a
readout of the values of x and of y under the cursor. The intent here
is to allow the user to perform “experiments”—verifying the displayed
value of the slope of the secant line, for example.
The Secant Approximation mathlet incorporates many visual cues

to support student understanding of the relationship between secant
and tangent lines. It is as simple and easy to use as possible.

2.2. Use of the Secant Approximation Mathlet. These applets
can be used in a variety of ways. Experience shows that however charm-
ing they may seem to the professional, free exploration of them does
not work well; the graphical medium is not intrinsically more concep-
tual than the symbolic one, and students tend to be timid in exploring
and unsure what to look for. Individual students need a highly struc-
tured and detailed script. For groups one may be somewhat more open
ended.
We may use Secant Approximation to illustrate the potential usages

of these applets.

Elementary use. A straightforward way to get students involved
with the MIT Mathlets is to invite them to make some measurements
and then verify them computationally. We illustrate this approach
using Secant Approximation. The main point of this applet is to help
students grasp the trick needed to make sense of the tangent line at
a point on a curve, here the graph of a function: You have to pick a
different point on the graph, consider the “secant line” through those
two points, and then look at the limit as the second point approaches
the first. The elementary problems begin with that.

(1) Select f(x) = 0.5x3 − x from the pull-down menu, and be sure
that the [Secant] checkbox is checked and that the [Tangent]
checkbox is unchecked. Set x = 1.0 (by clicking on the hash-
mark, for example). Move the ∆x slider and observe the secant
line. Make a small table of values of ∆y/∆x as ∆x ranges from
−0.1 to +0.1. What is your prediction about the slope of the
tangent line? Why is ∆y/∆x “undefined” (and why does the
secant line vanish) when ∆x = 0?

(2) Now check [Tangent] and uncheck [Secant]. (There is no
need for the ∆x slider anymore, so it disappears!) Drag the x
handle and observe that the red line is indeed always tangent
to the cyan graph. Use the applet to estimate to within 0.01
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the values of x for which dy/dx = 0. These are locations of
extrema for the function f(x)!

(3) Now compute the difference quotient ∆y/∆x = (f(x + ∆x) −
f(x))/∆x by hand for this example, and take the limit as ∆x →
0. Does the calculation agree with the experimental prediction
when x = 1? Does it agree with the observed values of x for
which dy/dx = 0?

Intermediate use. One of the attractive features of carefully con-
structed computer manipulatives, such as the MIT Mathlets, is that
they often invite questions which elucidate the educational point at
hand but which one might not have been able to ask without them.
These can take the form of a game, and can greatly help the student in
absorbing what the applet has to offer. Again, the Secant Approximation
applet provides some examples.

(1) Continue with f(x) = 0.5x3 − x. Check both [Secant] and
[Tangent]. Position the x slider at x = 1.5, and observe the
range of values of the slope of the secant line as ∆x moves
across the range allowed by the applet. Record the extreme
values. The difference between the extreme values gives an
indicator of how small ∆x has to be to obtain a good estimate
for dy/dx. Now set x = 0.5 and x = −1.0, and make the same
observations.
(a) What features of f(x), near these three values of x, can
explain the differences you observe?
(b) Sometimes the slope of the secant for ∆x > 0 is greater
than the derivative, and sometimes it’s smaller. What features
of f(x) account for this?

(2) With the same settings, take x = 1.0, where the slope of the
tangent line is f ′(1) = 1/2. Make a table of values of ∆y/∆x−
dy/dx for ∆x = −0.3,−0.2, . . . , 0.3. Use the quadratic approx-
imation of f(x) at x = 1.0 and this table to estimate the value
of f ′′(1), and compare this experiment with a hand calculation.

Advanced use. The applets can also be used to explore issues beyond
the immediate curriculum for which they were designed. In fact it has
been our experience that these applets reveal phenomena we had not
previously recognized, even in very elementary settings.
An example using Secant Approximation: Select f(x) = cos(x) from

the pulldown menu, and check [Secant]. Select a nonzero value for
∆x. What is the maximal value of the slope of the secant line, as you
vary x? (This will be a function of ∆x.) [Answer:

√

2(1− cos(∆x))/|∆x|.]
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2.3. Other Calculus Mathlets. We briefly mention several other in-
novative applets designed along the same principles, also for use in
calculus courses.
• Creating the Derivative begins with the graph of a function (chosen
from a pull-down menu). Checkboxes toggle displays of the tangent
line, the graph of the derivative, the best approximating parabola, and
the graph of the second order Taylor polynomial. The graph is drawn
from some initial value of the independent variable up to some value
which is controlled by a slider or by an animation; the graphs are
“created.”
• Graph Features uses sliders to control the coefficients of a cubic poly-
nomial, which is graphed. Checkboxes toggle colored indications of
regions where the graph is rising, falling, concave, or convex.
• Riemann Sums illustrates the geometric significance of a variety of
versions of the Riemann sum, and illustrates the convergence properties
of these approximations of the Riemann integral. One selects a function
from a drop-down menu, and then selects a method using radio but-
tons from the options Evaluation point, min, max, trapezoidal, and
Simpson’s. In the case of Evaluation point, a slider opens by which
one can choose where in each interval the function is to be evaluated.
A second window illustrates the values of the corresponding sums as n
increases. This tool can be very useful in helping students understand
these choices, that for continuous functions they don’t matter in the
limit, and the improvement in rate of convergence offered by Simpson’s
rule.

2.4. Lessons learned. Part of the challenge of assessing the effective-
ness of online education is the difficulty of observing student responses
directly. Consequently, we have little data on student reactions to
the applets designed for self-learners. The majority of our information
comes from students using the OpenStudy study group associated with
our online Single Variable Calculus materials.
OpenStudy represents an attempt to replicate in distance learning

the kind of help one gets from friends or study groups on campus.
OpenCourseWare Scholar has provided links to OpenStudy and en-
couraged formation of OpenStudy groups studying the OCW Scholar
courses.
The OpenStudy interaction differs from a campus interaction in

many ways, however. On June 18, 2011, there were 418 students en-
rolled in the Single Variable Calculus study group, but there are rarely
more than 3 students online simultaneously. So at any given time the
level of activity on this site is less than would be found in a small group
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exercise in a classroom. On the other hand, questions persist and an-
swers do too, and this somewhat compensates for a lack of immediacy.
It also provides a valuable reference for students.
A review of questions posted to the study group reveals that students

are more likely to discuss specific homework problems than general
concepts A typical question is “What is the linear approximation of
sin(x) at x = 0?”; questions like “How are tangent lines related to
secant lines?” are rare.
Questions such as the student quote given in our introduction have

led to improvements in the MIT Mathlets. For example, in an ear-
lier version of the Secant Approximation applet, there was no toggle
invoking the secant line; in fact the term “Secant” never appeared
on the applet. Adding the Secant checkbox (in yellow) increases the
self-explanatory value of the tool, improves its logic, and encourages a
better pedagogical sequencing.
No amount of on-screen information will make these tools self-explanatory

for all or even most students, however. In their use on campus, it was
found that using them in class helped students understand the sig-
nificance of various elements and made it much easier for students to
use them in homework assignments. An easy on-line analogue would
be voice-over screen movies illustrating their use, and this is an en-
hancement which will accompany applets in subsequent OCW Scholar
courses.

3. Aerospace Engineering Mathlet

In the spring semester of 2010, we developed an applet specifically
for use in the Computational Methods in Aerospace Engineering course
in the Department of Aeronautics & Astronautics at MIT. Although
the mathlet was developed for this particular use, it is general to the
pedagogy of eigenvalue stability (also known as absolute stability), an
important concept for numerical methods courses in the advanced un-
dergraduate curriculum [1, 2].
In our experience teaching undergraduate juniors and seniors in aerospace

engineering, we have found that many students struggle with eigenvalue
stability analysis, often focusing on the procedure instead of under-
standing the concept. With the applet, students are able to extricate
themselves from laborious calculations and obtain real-time responses
to variational modifications (e.g., by changing the time step or domi-
nant eigenvalue magnitude for a given scheme). Whereas many of the
MIT mathlets are self-contained and can be used to learn a mathemati-
cal concept from scratch, the eigenvalue stability mathlet is intended to
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accompany traditional instruction. Its primary role is to deepen under-
standing of the topic rather than to teach the process of the analysis. In
the Computational Methods in Aerospace Engineering course we used
the mathlet as part of an in-class laboratory experiment after students
were taught the mathematical procedures of eigenvalue stability anal-
ysis.

This section is organized as follows. First, we give some of the basic
foundational material on eigenvalue stability analysis. It is necessary
to understand the basic theory in order to appreciate the functionality
in the applet. In Section 3.2 we discuss the design considerations of
the eigenvalue stability applet, emphasizing ease-of-use and maximizing
the number of ways a user can interact with the applet. In Section 3.3
we discuss the use of the applet in three levels of difficulty (elemen-
tary, intermediate, and advanced) by drawing on lessons learned from
an interactive laboratory assignment performed in the Computational
Methods in Aerospace Engineering course in the spring semester of
2010. Lastly, we present a few directions for future work.

3.1. Theoretical Background. Differential equations provide the lan-
guage in which the laws of nature are expressed, and, consequently,
the mathematics by which we understand the behavior of systems. In
aerospace engineering, e.g., differential equations describe the unsteady
fluid flow around an airfoil, permitting engineers to estimate lift and
drag, quantities of interest that play an important role in aircraft de-
sign.
In most realistic applications, the differential equation does not ad-

mit solutions that are expressible in terms of elementary functions, and
the only way to get an accurate understanding of the solution is via nu-
merical methods. Often, the differential equation has many (thousands
or more) degrees of freedom, e.g., the pressures and temperatures at
many locations in the computational domain.
There is a well-established family of numerical integration schemes,

and understanding their diverse applications is part of any engineering
course in numerical methods.
Stability is one important consideration in selecting a numerical in-

tegration scheme.1 A numerical integration method is stable if the
numerical approximation to the solution of the system of ODEs does
not grow without bound. There are two forms of stability:

1Accuracy is another important, but separate, issue. Indeed, accuracy of a nu-
merical scheme does not imply that its numerical solution to an ODE will be eigen-
value stable.



Zero stability: A numerical integration scheme is zero stable if
the numerical solution is bounded as the number of time steps
goes to infinity in the limit of zero time step.

Eigenvalue stability: A numerical integration scheme’s appli-
cation to a particular system of ODEs is eigenvalue stable if
the numerical solution is bounded as the number of time steps
goes to infinity for finite time step.

Eigenvalue stability depends both on the numerical integration scheme
and on the governing equations to be integrated, in particular, through
the associated eigenvalues of the linearization about an equilibrium.
For a given numerical integration scheme, eigenvalue stability analysis
leads to a stability criterion that restricts the choices of time step.
In this section we sketch the analysis of eigenvalue stability for a

linear system of equations with the forward Euler integration scheme
and the midpoint method. This section is not intended to be a com-
prehensive primer on eigenvalue stability (see e.g. [1, 2] for this), but
rather to give the reader a sense of the mathematics involved and a
greater appreciation of the discussion of the applet in the next section.

Consider the autonomous nth-order linear system of ODEs,

(1) ẏ(t) = Ay(t), y(0) = y0,

where ẏ(t) = dy/dt is the vector of time-derivatives of the unknown
variables y(t) = [y1, y2, . . . , yn], and A is the n × n system matrix.
Generic (non-defective) square matrices can be diagonalized. This im-
plies that a change of variables replaces (1) with a decoupled set of
scalar equations of the form

(2) ẋ(t) ≡ f(x) = λx(t), x(0) = x0,

where x(t) is the scalar unknown variable and λ is an eigenvalue (gen-
erally complex) of A.

In applying a numerical method, one chooses a time step ∆t. Then
one computes numbers xk which approximate x(k∆t) inductively, start-
ing from the given value of x0 = x(0).



Example 1: Forward Euler Method

Let ∆t be the time step and xk be the numerical approximation to
x(k∆t) for each non-negative integer k. The forward Euler integration
scheme approximates the time-derivative at xk to first-order; i.e.,

(3)
xk+1 − xk

∆t
= λxk;

that is to say, xk+1 = (1 + λ∆t)xk. Given x0 and a time step ∆t, one
can calculate the approximate value of the unknown x at each time
interval by iteration.

The multiplicative factor relating xk to xk+1 is the amplification

factor. It is a function g(z) of the product z = λ∆t. In this scheme,
xk = g(z)kx0, which stays bounded provided |1 + z| = |g(z)| ≤ 1. This
imposes a restriction on time step ∆t in terms of the eigenvalue λ. For
a system of equations, this inequality must hold for all eigenvalues of
the system matrix A.
This sets the pattern for more complex numerical schemes. The

forward Euler is a single-stage numerical integration scheme. There
are also multi-stage schemes that use data from more than one time
step to estimate the solution at each step. The midpoint method is an
example of a multi-stage scheme.

Example 2: Midpoint Method

The midpoint method for the equation ẋ = λx uses the scheme

(4) xk+1 = xk−1 + 2∆tλxk

This is a homogeneous second order difference equation. Its solutions
will be linear combinations of solutions of the form xk = gkx0 for
suitable values of g. To find them, substitute this expression for xk

into (4) to see
gk+1x0 = gk−1x0 + 2λ∆tgkx0.

Dividing by gk−1x0 we find a quadratic equation for g:

g2 − 2zg − 1 = 0

The quadratic formula gives g(z) = z ±
√
1 + z2.

The amplification factor in this case is the multivalued function
g(z) = z ±

√
1 + z2. In applying the midpoint scheme to (1), the

time step ∆t will satisfy eigenvalue stability provided that z = λ∆t
satisfies |g(z)| ≤ 1 for both solutions to the quadratic equation and all
eigenvalues λ of A. In this scheme, the region of stability is small: it
is easy to see that |g(z)| ≤ 1 if and only if z is purely imaginary of
modulus at most 1. This scheme is therefore eigenvalue stable only for



systems with purely imaginary eigenvalues. These features of the mid-
point method are dramatically represented in the Eigenvalue Stability
applet.
The study of the amplification factor for a variety of numerical in-

tegration schemes, governing equations, and time steps is a critical
component in any numerical methods course in the undergraduate cur-
riculum.

In the next section, we describe the design of the Eigenvalue Stability
applet.

3.2. Design of the Eigenvalue Stability Mathlet. The primary
design considerations for the Eigenvalue Stability Mathlet included the
ability to understand the stability analysis from several distinct per-
spectives, options to toggle between a handful of well-known numerical
integration schemes, and also the ability to control the position of one
eigenvalue of the governing equation and the time step of the numerical
integration.

Figure 2. The Eigenvalue Stability Applet.

There are three graphical perspectives from which eigenvalue stabil-
ity can be viewed (Figure 2).

• In the upper right, the g-plane displays the unit disk, i.e., the
stability region, and also the complex point z mapped through
the amplification factor g(z). The angle θ can be scrolled to
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outline the unit circle in the g-plane and observe the tracing of
the corresponding stability boundary in the z-plane.

• The large graph on the left shows the location of the point
z = λ∆t in the complex plane and the stability region, which
is the inverse map of the unit disk in the g-plane. The angle ϕ
is the phase of the eigenvalue λ.

• Finally, in the lower right, a plot of |λ| against ∆t shows the
shaded region corresponding to the points where z = |λ|∆teiϕ

lies in the stability region of the z-plane.

All of the perspectives are dynamically integrated so that a modifi-
cation in one plot is immediately reflected in the others.
The Eigenvalue Stability Mathlet illustrates these three perspectives

and the relationships between them for six commonly used numerical
integration schemes. For any of these methods, one can choose to show
or hide the formula for the amplification factor with a radio button that
appears just below the drop down menu for the numerical method.

One approach to using the applet is to begin by specifying an eigen-
value in the governing equations of interest. This can be performed as
follows:

(1) Specify the magnitude of the eigenvalue using the scrollbar on
the lower right plot. This produces an orange circle in the
z plane indicating all of the values of z associated with that
magnitude.

(2) Select the phase of the eigenvalue using the ϕ scrollbar to the
left of the z plane. Once selected, an orange dot appears at the
intersection of the circle and the ray defined by ϕ.

(3) Select a numerical integration scheme and find the range of
time steps for which the integration will be eigenvalue stable by
adjusting ∆t until the orange dot moves outside the blue-shaded
region.

3.3. Use of the Mathlet. In this section we present a set of exercises
of varying difficulty demonstrating how the eigenvalue stability applet
can be utilized by students. The applet can be used as the primary
apparatus in a series of laboratory experiments, can play an integral
role in a homework assignment, or can be used in lecture to perform a
real-time demonstration of the analysis of numerical methods. Some of
the exercises discussed below were inspired by the laboratory worksheet
used in class in the spring of 2010.

Elementary use. A critical component of eigenvalue stability anal-
ysis, and one that has often been a source of confusion for students,

http://math.mit.edu/mathlets/wp-content/uploads/lieberman-worksheet.pdf


is the mapping of a region or boundary in one complex plane to the
corresponding region in another. Eigenvalue stability is determined by
the magnitude of the amplification factor g(z), but it is the z-plane
that contains the scaled eigenvalues. Thus, one needs to determine the
region in the z-plane corresponding to the unit circle in the g-plane.
This complex mapping can be explored by students for the six numer-
ical schemes available in the drop-down menu:

(1) Select a numerical integration scheme from the drop-down menu
and sketch the stability region in the z-plane by rewriting g =
eiθ and evaluating for several angles θ ∈ [0, 2π).

(2) Grab the θ slider to the right of the g-plane plot and slide it
from θ = 0 to θ = 2π. The dots on the g- and z-plane plots turn
yellow and the stability boundary is traced out in both planes.

(3) Verify the accuracy of your sketch of the stability region by
comparing to the blue-shaded region in the z-plane.

Intermediate use. In the numerical solution of ODEs, it is necessary
to balance, or tradeoff, accuracy, stability, and computational cost.
Many schemes will be stable and accurate for very small time step, but
then more time steps are required and therefore more computational
resources will be used. For a set of governing equations and a given
numerical integration method, it is therefore necessary to obtain the
maximum time step for which the integration is stable.

(1) Calculate by hand the eigenvalues of the system matrix

A =

[

0 1
−2 −1

]

.

(2) Select Forward Euler (RK1) from the drop-down menu.
(3) For one eigenvalue, set the phase ϕ and magnitude |λ| using the

scrollbars in the applet.
(4) Determine the maximum allowable time step ∆t by dragging

the ∆t scrollbar in the lower right plot. Observe as z changes
magnitude and eventually crosses over the stability boundary.

(5) Does the maximum allowable time step change if you repeat
the analysis with the other eigenvalue? Why or why not?

Advanced use. Although eigenvalue stability is often binary (either
the scheme is stable or not for a particular problem), the eigenvalue
stability applet can be used to demonstrate some additional nuances in
the application of numerical methods. Even when a numerical scheme is
eigenvalue stable, it still may not be accurate for a given mathematical



model. In this example we consider the simulation of a simple harmonic
oscillator, e.g., an undamped pendulum.

(1) Using the small angle approximation sin(θ) ≈ θ, the dynamics
of an undamped pendulum (with well-chosen parameters) can
be written d2θ/dt2 = −θ. At time t = 0, the pendulum is at
rest at θ(0) = π/6. Rewrite this second-order ODE as a system
of ODEs by introducing the two-dimensional state vector y =
[θ, dθ/dt].

(2) Implement the trapezoidal scheme and the midpoint scheme to
simulate the pendulum, e.g. in Matlab, from time t = 0 to
t = 10π. Determine by hand the eigenvalues of the system
of ODEs you derived in (1), and use the applet to choose a
time step to preserve eigenvalue stability for each numerical
integration scheme. (Do not select a time step that is too small
since computational resources are limited.)

(3) What is the difference between the simulated responses? Which
simulation is more consistent with the model of an undamped
pendulum?

(4) Analyze the eigenvalue stability for the trapezoid and midpoint
schemes once again using the applet. In particular, consider the
position of the orange dot in the g-plane. What is the effect of
the amplification factor in this problem?

3.4. Future work. Unfortunately, having used this applet only during
one semester, we do not have much feedback from students. It is es-
sential that we better understand students’ abilities to learn eigenvalue
stability through the use of our applet so that we can design additional
teaching tools (lectures, homework problems, and laboratory assign-
ments) and make improvements to the applet itself. In the future, we
would like to integrate the eigenvalue stability applet into more of the
numerical methods courses taught across other departments at MIT.

4. Conclusion

Carefully designed computer applets can be integrated into course
work in a variety of contexts and subjects. We have detailed the de-
sign considerations and use of one applet used in a distance learning
beginning calculus class and one used in a classroom workshop in com-
putational methods in aerospace engineering. Other examples could
easily be given. From OCW Scholar Single Variable Calculus we call
attention particularly to Riemann Sums, and from engineering subjects
Nyquist Plots and Bode and Nyquist Plots. The JAVA library devel-
oped to support these applets makes it quite easy to build new applets.

http://ocw.mit.edu/courses/ocw-scholar/
http://ocw.mit.edu/courses/mathematics/18-01sc-single-variable-calculus-fall-2010/
http://math.mit.edu/mathlets/mathlets/riemann-sums/
http://math.mit.edu/mathlets/mathlets/nyquist-plots/
http://math.mit.edu/mathlets/mathlets/bode-and-nyquist-plots/


As is often the case with educational software, the greater challenge is
in using them effectively within a course.
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