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Haynes Miller

Several authors ([4], [6], (7], [8], [12]) have considered a stable
"transfer" map

E: u:P'g Bt gl

and it is of interest to develop techniques by which to compute its effect in
stable homotopy. In this note we begin an attack on this problem via the
Novikov spectral sequence-([Z], [13]) Er(-).

We shall study t by means of its unique factorization through the Moore
spectrum for @/Z :

e A s? —Y s sg/zm

0

The behavior of 9 in the Novikov spectral sequence is quite well understood

[13], and our principal result here, Cor. 3.10, describes E* on the standard
(=]

generators in MU*EPD. The analogous result for K*EP:

understand that Knapp now has a proof for the present case also.

appears in [8], and I

In [16], D. M. Sepal gave generators for Eg(mP;). In Section 4 we
describe these elements together with a simplified proef of their properties.
Their images under ﬁﬁ turn out to be "universal Bernoulli numbers," in the
sense that they are to the formal group for MU, which is universal, as the
usual Bernoulli numbers are to the multiplicative formal group. A construction
of these classes, and a computation of their denominators, is carried out in
.Section 1.

As 'a corollary, we recdver the fact, due to Becker and Schultz, that for

k >0 neither nor the generator of the image of the J-homomorphism in

g1 _
dimension 8k - 1 1lies in the image of t. It isg to be hoped that this work
will lead to a complete computation of the image of t, ia Eg(so), providing

a context for the germinal result of K. Knapp [7].
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I have been helped in this worlk by conversations and correspondence with
A. Liulevicius, V. Giambalvo, N. Koblitz, and S. Mitchell, and I thank them
all.

Section 1. BERNOULLI NUMBERS ATTACHED TO A FORMAL GROUP.
We assume the reader is familiar with the basic properties of formal
groups as exposed for instance in [2] or [3]. As an illustration, for any

element u in a ring A, one has a formal group

Gu(X,Y) = ¥+ Y - uXY.
The additive formal group Ga is then the case u = 0, .and the multiplicative
formal group Gm is the case u = 1. If A is torsion-free, embed it in

@

over A,, and let exp_(T) its inverse. For example, log. (T) = -1n(l - T)
% *Pr Gy

AL=A0f@, let lugF: F - Ga be the (unique) isomorphism of formal groups

and exp,, (1) =1-¢
m

DEFINITION 1.1. Let A be a torsion-free ring and T a formal group

over A, The Bernoulli numbers associated to F are the coefficients

Bn(F) € AQ in the powerseries expansion

T = Bn(F)

epr(T) - n=0 n!

™. '

The divided Bernoulli numbers are Bn(F)/n.
EXAMPLE 1.2. (a) BO(F) =1 for all F. (b) Bn(Ga) =0 for all n > 0.

(c) Bn(Gm) is the usual Bernoulli number, occuring in

T % Bn(Gm) n
e el
l-e n=0 '
Recall [5] that the reduction of Bn(Gm)/n in @/Z has order dn’
where
v fﬁ)+1
dn = Il P P for even n
(p-1) [n
=2 ° for n=1
=1 for odd n > 1.

These denominators are universal:
THEOREM 1.3. If F 1is a formal group over a torsion-free ring A, then

B (F)

n n

d

€ A.

We begin our proof of this theorem with a lemma.

LEMMA 1.4,
free ring A,
PROOF. Le

where U = eXpy

where U/p(U) =
assertion that
all i 20 anc
Leibnitz' form
A ring-hot
formal group |
pairs (A,F),
recall a wellz}
let ®(T) = Z
i=(
this is a form:

THEOREM 1.

is a Cartesian

For a proc
{

(p: Gm d me

have the same

for G by the
REMARK 1.1

possibly with

vid

where TnN: L -+

Section 2. TH

We give a
examples usefu
exhaustive ace:

[14]) of the f.
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id I thank them
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i for all n > 0.

order d_,
n

t ring A, then
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LEMMA 1.4, If F and TF' are formal groups isomorphic over a torsion-
free ring A, then Bn(F)/n = Bn(F')/n mod A.

n

PROOF. Let @: F =+ F' be the isomorphism, so that epr,(T) = p(U)
where U = epr(T). Then

=]
T T T U T n-1
= =% —me ===+ T ) al
epr,(T) p(U) U o(U) epr(T) nep @
co
where U/p(U) = I anUn, a, = 1, a e A. The lemma is equivalent to the

assertion that tgzovalue at 0 of the iEE derivative of " lies in A for
all 1 20 and n 2 1. This is well-known for U = expp(T), and follows by
Leibnitz' formula for larger n. 0

A ring-homomorphism £: A + B carries a formal group F over A to a
formal group f,F over B. There is an initial object in the category of
pairs (A,F), namely [2] the Lazard group G over the Lazard ring L. We now
recall a wall;know? integrality statement for I. Let A = E[bl,bz,...] and
lec o = J b 1™ i by = L. Let %G (X,1) = u(e (6" (%),0 L(1)));
this is a foizgl group over A. Let n: L + A classify me. Then we have:
THEOREM 1.5. (Stong-Hattori) 1In this situation, the diagram

L —T0 4

o

is a Cartesian square. In particular, L is torsion—free. O

ﬂg AQ

For a proof, see [10]. Theorem 1.3 follows as a corollary. For
@ Gm -+ me is an isomorphism, so by Lemma 1.4 Bn(Gm)/n and Bn(me)/n
have the same denominators; but Bn(¢bm)/n = H*BH(G)/n, so the theorem holds
for G by the Stong-Hattori theorem. The general case follows immediately. [J
REMARK 1.6. Consequently, if T is a formal group over a ring A,
possibly with torsion, then "Bernoulli numerators" Nn(F) € A are defined,
viz.,

B (G)
NP = (4 —2—)

where mn: L + A classifies F.

Section 2. THE TRANSFER.

We give a brief description of the transfer construction, focussing on

examples useful to us here. The reader is referred to [12, 14] for more

exhaustive accounts of the transfer. We end with a proof (due to §. Mitchell

[14]) of the fact, stated in [7], that «t: EP: A Sl - S0 is the cofiber of a
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natural collapse map.
Let m: E -+ B be a smooth map, and let £ + E and z + B be vector
E =+ m% of T to an embedding

(with normal bundle v(j)) into a trivial vector bundle over B together with

bundles. A relative framing is a 11ft 3

a bundle-isomorphism
0 E® RS > L@ ).
Given this data, application of the Pontrjagin-Thom collapse gives a stable

map
(2.1) £: B+ g

of Thom spaces, called the transfer. An obvious modification allows us to
suppose that [ and £ are merely virtual bundles.

EXAMPLE 2.2, Let Ln denote the complex dual‘of the tautologous complex
line-bundle over CP". TFor - = < q £ r <o define

r g, U
Te, = (op™ Ay~ A

For r = s, the bundle-map L + L

induces a map
r—-q 5-q

i: TP + pp®
q q

of Thom spaces. For p £ q, recall that the inclusion j: gt o gptP

has normal bundle (qup)Lr_q. Taking £ = qu_ and [ = er—p’ we obtain a

transfer map
c: CP' -+ P,
P q

It is not hard to see that if p, 9, r, and s are all nonnegative then

under the usual homeomorphism

EP: = (pp"/optYy
these maps coincide with the natural ineclusion and collapse maps. Also, their

obvious compatibility allows us to include the possibility of r =® or s = o,

Given i+ j=qe Z and ‘k 20, the bundle map A: qu + iLk X ij
covering the diagonal of EPk induces
(2.3) b wpd*e o EP;+k A gpdte
. b

These maps are clearly associative, unitary, commutative, and behave well with

respect to i and c.

EXAMPLE 2.4. let T: 52n+l + CP" be the usual projection map. The

bundle T(m) of tangents along the fiber is complementary to the normal bundle

of m, and is

Thus we obtain

The projection

7.Hopf's theorem

are compatible

This map
THFEOREM 2

the composite

Recall al
PROPOSITI
cation by =z
the identity.
We end tl
LEMMA 2.0

is a cofibrat
PROOT.
associated to
null-homotopi
a bundle over
increases, th
and hence is

There re

to the mappin
dimensions.

1 (gp ;A s%)
J-homomorphis
invariant 1
B0(c(t)) as



+ B be vector
o an embedding

B together with
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allows us to
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pT™4 o gp™P

- we obtain a

iegative then

s. Also, their
r=®gr s = o,
* ALy, * JLy

k

shave well with

1 map. The

te normal bundle °

e - - — P — e
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of 1, and is trivialized by the infinitesimal generator of the 5l — action.

Thus we obtain a stable transfer map

= n 1 2n+l
t: EPO A ST = S+ %

S2n+-l

The projection to has degree 1 and is of no further interest, by

.Hopf's theorem, so we consider the other factor, EPS A Sl -+ SO. These maps E

are compatible over n, and yield a stable map !

t: mpg a st > g0,

This map was studied by J. C. Becker and R. E. Schultz, who proved:
THEOREM 2.5. [4] There is a stable map j 1t u -+ EP; A Sl such that
gl
the composite t o jSl is adjoint to the composite

J

. * 0

jm: U —s leo —--——>-[1] Qs-. ]
Recall also

PROPOSITION 2.6. [12] If A: EP: A Sl + U carries (%,z) to multiplii-

cation by =z in the line &, then the composite @ A is homotopic to

3 1
s
the identity. |

We end this section with:

LEMMA 2.7. [7] The diagram

o, A st % opy 4 st E O

is a cofibration sequence.
PROOF. [14] First note that fe: me®) A g"+ 527

is the transfer
2n+l n _ln
+ TP ~ CP . Since this composite is

associated to the composite 8§ i
null-homotopic, tc factors up to homotopy through the Thom space 52n+; of
a bundile over a point. Since the null-homotopies are compatible as n

increases, the composite tc factors through the contractible spectrum Sm,

and hence is null-homotopic. Therefore tc is null-homotopic.

There results a map

m-,EP: A 8%+ (e

to the mapping-cone of t. It is clearly a homology-isomorphism in positive

dimensions. In Remark 3.5(c) we shall see that Pl is nontrivial on
2 .
HO(EPTl A 52) (where Pl = Sg if p = 2). According to Theorem 2.5, the

J-homomorphism j_: U~ S0 factors through t, so the element ©. of Hopf
T 1 P

invariant 1 is carried on C(t), and it follows that Pl is nontrivial on

HOCC(t)) as well. Therefore Ho(a) is also an igomorphism. The map o is
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thus a homotopy-equivalence, and the result follows. 0
REMARK 2.8. One may use ideas of Loffler and Smith [11] in place of the

work of Becker and Schultz to see that Pl detects t,

Section 3. TRANSFER, THOM CLASS, AND COACTION.

In this section we show how to extends Adams' treatment [2] of the complex
bordism of um to the case of EP: for n ¢ Z. We shall adopt the conven-
tion that the E-homology of X is XLE=m(X A E), the stable homotopy of
X A E. (The homology (and cohomolopgy) of a space is thus always reduced.) IE
E is a ring-spectrum (always associative and commutative) for which E.E is

flat over E, = n,E, then we have a right coaction map

P X,E > X E &E E.E.
%

This convention seems natural from several points of view; in particular, it
fits well with [13].
Recall that an orientation of a ring-spectrum E is an element
X = Xp € EZ(EPm) restricting to the canonical generator of EZ(SZ). If L is
o o © o
oriented by %, it follows that E*(EPO) =E*[{x]]; and if u: EPO A-EP0 -+ EPO
F(x® 1, 1 ® x) defines a formal group

MU(1) provides ,MU with a canonieal

is the multiplication map, then U x

1

F over E#%*, The homeomorphism Eﬁn

orientation xMU' and (MU, %) is universal in the obvious sense. By a

MU

*
famous result of Quillen, the natural map L -+ MU is an isomorphism; see [2].
(=]

Now consider EP: for n e Z. The diagonal (2.3) A: OP. + OB} A ce”
makes E*(EPn) into a module over E*(EPO), which is free on one generator
u by the Thom isomorphism theorem. If n = 0, we take u such that
chu = x" e EZ“(mP:), using the notation of (2.2), If n < 0, we take u
such that x "u = c*l ¢ EO(EP:). In either case it makes good sense for 1 > n
to write xi for xi"“u, and henceforth we do so.

Let B, = BE €M ([EPm A E) be dual to xi and write
i i 21i n ?

~

Bevy = 8,(m = ] a1
Then the module structure dualizes to give

(3.1) AB(T) = B(T) ® B(T)
where B(T) = éU(T)'

L=-]
Our approach to the coaction for EP differs from that of Adams. We may

write

PB(T) = J By @ £,(T)

i2n

for suitable
in view of tl
to ,B(T): a:

Together wit

Write

The unital p
We must

For a ring-s

p: T A E —+
for f: X~=°
LEMMA :

the evident

PROOF.

commutes, tl

X E -

But the bot
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2
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1e generator

1 that
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for suitable power series fj(T); these power series are independent of n,

in view of the maps i and e¢. Now the Cartan formula of [11, p.71, applied
to E(T), asserts that

L8 8 By ® £, (D) = 18, @ By ® £,(ME, (D).

Together with the obvious fact that fO(I) =1, this yields fj(T) = fl(T)j.
Write

£(T) = b(r) = | b1,
1 iz *

The unital property of 1 shows that b0 =1,
We must next recall some generalities concerning the Kronecker pairing.
For a ring-spectrum E and an E-module-spectrum T with structure-map

¢: FAE—+F, we have a pairing
<,> PR OXE~TF _:
q q-p

for f: X+ EDF, e: sT+xa E,

<fre>: 89§ x a g £ 5Pp A g @ 5PR.
LEMMA 3.2. 1In addition to these notatioms, let H: F, @E EE+FE be
*
the evident multiplichtion. Assume that E.E is flat over E,. Then

f.e = p<f,e>,

PROOF. Since

XAS fﬁl+ FaS

1an 1
XAE 1an =
fAll

B & Bt P

commutes, the top row of the following commutative diagram evaluates £,.

(Lan), (£AL),, 9y
X.E —+ (X A E),E ———— (F A E),E ———* F.E
k ul= ni ui=E
e £,61 0,81
X.E @E* EE——r F.E @E E,E —— T, @ E.E

#* *

But the bottom row is <f,->. ]




ST s 4

T S B s M T, S
e

SE T e R AR

.

444 HAYNES MILLER

Now b(T) is by definition <x,JB(T)>; so we have proved:

PROPOSITION 3.3. In T, (EP A M),

PE(T) = B(L ® b(T)).

with b(T) = xB(T). ]
REMARK 3.4. This line of argument may be used to determine the form of
the coaction in any space with polynomial integral cohomology. Consider HPm
for example. TFor the generator y € MUQHP; we may take the second Connor-
Floyd Chern class of the canonical bundle over HP thought of as a complex
2-plane bundle. Under the natural inclusion i: &P - um, this bundle

%
pulls back to L ®L , so, with [n] = [n]G as in [15],

iy = ef (Lo L) = ef, (ef, (L) = x[-11(x).

Let Yi be a dual to y*, and form a power series

YT = ] YiTZl-
130

Since i, 1s a coalgebra map, we find that
1,B(T) = y(c(T))

for some power series c(T). We compute:

c(T)

<y,1,B(T)> = <i’y,B(T)>

<x[-11(x),B(T)> = T[-1](T).
For the coaction, we compute:

WY (e(T)) = Wi, B(T) = £ YB(T)

= 1,801 @ b(M) = ¥(1 @ ¢ (b(T)))

where cL(T) = nL*c(T). This implicitly determines the coaction in HPm; cf.

[16].

REMARK 3.5. (a) Since we are using the right coaction, our elements
bi € BPZiBP are conjugaté to those of Adams [2 : I].

(b) Let GL = nL*G and GR = HR*G; then by [2 : I (11.4)] the power
series b(T) 1is an isomorphism of formal groups from GR to GL; that is,
(3.6) b(exp (T)) = exp; (T)

where again epr(T) = Ny expG(T), etc. Also p,.: MU MU + HR,MI carries

GL to Ga’

(3.7)

(¢) The
E,LE 1is flat

where  L(T) =
Now let

Since MU, i

induces a lor

In [9] it is
sequence, the
Let u:

a map- of  cof:

(3.8)

This yields .

of t,, in
sequence in

Accordi
Eg(so) ari
ﬂ*(EP_I

. S§ince

U*:



0
2 the form of
Consider @Pm
second Connor-
! as a complex

:his bundle

P [+2]
in MP ; cf.

elements

the power
iy that is,

I carries
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(3.7 : pb(T) = logG(T).

(c) The same results hold in any oriented ring-spectrum E such that

E.E is flat over E,. In particular we find in med p homology that

WB(T) = B(L & (D)),

i
where (1) = z ciTp with -Ea = in for p odd and ci = in for p = 2.
Now let t: EP; A Sl + 5 be the transfer map constructed in Section 2.
Since MU, is evenly graded, MU*(t) = 0; so the cofibration sequence
0L =  2¢c & 3

i
s+ EP_l A ST+ mPD A S

induces a long exact sequence in EZ(_)’ with boundary homomorphism

. S, @ 2 s+1,_0
t,: Ez(n‘.P0 A ST) + E, (sM).
In [9] it is shown that if x is a permanent cycle in the first spectral
sequence, then t,x represents tx in the second.
2 i
Let wu: EPTl A § + H) = S represent the Thom class xﬁé. We then have

a map- of cofibration sequences;:

0

5"~ OB, A s

. gp_ A g2

(3.8) = u u

sV + 8¢ + SQ/Z

This yields a factorization

s+1, .0

s 2 Ly
EZ(EPOAS)—'——rE (s7)

N

hzsg(scafzz )

of t,, in which 3 is the boundary - homomorphism induced by the bottom
sequence in (3.8).

According to the program of [13], it is via the map -B that elements in
E;(SO) are best described; so it is very natural to compute '

® 2
u,: w*(mP_l ASTAMD) +~¢ 8 MU, .

&
. 8ince u factors as

o 2 x—l p
EP_l A 587 ——— MU — Hf,
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the first step is to compute

) = pex L uBemy> by (3.2) That 1is,
= pex T B(1 @ b(m))> by (3.3)
-1 Therefore,
= U(l @ b(T) ) S and T
- b(T)hl. W}lson [15
Now using (3.7), we find: (4.3)
A T o .
THEOREM 3.9. wu,TR(T) = iEE;T?T R Mu_ [[TT. This line
REMARI
Since u*B_l =1, we have also: ' The: power
= g A :
COROLLARY 3.10. wu,TR(T) = Togo (D 1ed@/z @MU [[T]]. O q, € m, (H
Section 4. THE IMAGE OF THE PRIMITIVES.
We begin by recalling the primitive generators in (mP A MU). Write
exp(T) for expG(T) An analogue
PROPOSITION 4.1, (D. M. Segal [16]) If we define B, € Tr2n(u:P‘; AMU) © @ generator.
by means of the expansion We now
© p ’
Blexp(m) = | 417,
n=0 °

in terms of

[24]
then P, lies in WZH(EPO A MU) and generates the subgroup of primitives. Taswed wh

PROOF. We first check that P, is primitive, by means of the following THEORE
calculation (due in different guise to Segal).
UB(exp(T)) = B(1 @ b(exp, (1)) by (3.3)
= B(1 @ expL(T)) by (3.6) PROOT.

Blexp(T)) ® 1.

§ t 4 oo k|
Next, note that n! times the coefficient of T° 1in (exp(T)) is e BEEELE

shiln it S e

integral. Tt follows that P, is integral. On the other hand, the coeffi- This t
cient n!hn_ of Bl in P, generates a summand in MU_;

1 %> this follows from

the fact that its image in Z under the map classifying Gm is -1. There-

fore P, is a generator of ED,Zn

0 ,2n

other hand,

(EP ). But this group embeds into
(EP A S@) since EPO is torslun-free, and the latter group is just
(EP A S#) = @ since EPO A 38 is an MU-module—spectrum 0
REMARK 4.2. Since exp(xMU ) e MUQ (EP ) reduces tao XHQ € HQ (EP ) we
find that p, reduces to n’ﬁH €m, (TP A H) In the H-structure of EP

2n

H H.on 0
n!Bn = (Bl) ;3 and it follows that

Oi




by (3.2)
by (3.3)
a
; A MU). Write

wZH(mPO AMU) © ¢

3f primitives.

’f the following

by (3.3)

by (3.6)

(M) is

d, the coeffi-

1is follows from
is -1. There-

3 into

roup Is just

D
i & HQZ(EPd), we

ture of EP;,
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That is,
B(exp(T)) = e

Therefore, incidentally,
5 and T by log(s)
Wilson [15]:

and log(T),

(4.3) B(sIB(T) = B(G(s5,1)).

This line of argument may of course be reversed.

REMARK 4.4. Analogous primitive generators may be constructed for

The power series %—exp(T)exp(—T) is even, so we may define,
@
q, € van(lﬂ%) AMI) @@ by
1 1 _ n 2n
5T + 7 Y(exp(Texp(-t)) = ) Gyt T

nz0

An analogue of the above proof shows that 9,
generator.

We now evaluate
L ae myeg A sY) - Ersw/z)

in terms of the Bernoulli numbers introduced in Section 1. Since MU*

Lazard ring, the universal Bernoulli number Bn lies in MU2n ® a@.

'THEQREM 4.5.
5 ___BTH'].
#Pp ntl °
PROOF. Replacing T by exp(T) in Corollary 3.10,
G S S
u,B{exp(T)) = T ()

The result follows upon expanding both sides.

This together with Theorem 1.3 implies that G*pn has order dn'

other hand, recall from [13] that (if ]1 means divides exactly)

By (st/z) = Wz

0’2(p—l)u(SQIZ) e n+l

n
L = £ > >
; oy = Zfe if p [[u>0, p

1]
N
-
(%)

if 2 )Ju>0, p=

]
B
b Y
=
s
+Fh
=
T
™~
o
b ||
2

2

2

447

Bexp(8))B(exp(T)) = B(exp(S + T)), and, replacing

we obtain the formula of Ravenel and

HP .

following [16],

is integral and a primitive

is the

On the
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n+2

= Z (2 if Mawg as0, pei

Furthermore, 3: Eg(s@/zt) * Ei(SD) merely kills the §/Z . Comparing these
orders with the numbers df we Find

THEOREM 4.6. The image of t,: Eg’zufmpg A §oys E;’ZU(SO) is the sub-
group of index 2 except when u =1 or 2, when the map is surjective. ]

From [13] we then easily recover the theorem of Becker and Schultz:

THEOREM 4.7. [4] TFor k > 0, neither Mgy TOT the generator jBkul
of the image of the J-homomorphism in dimension 8k - 1 1lies in the image of

t: n*(mpg A sh +—w*(50). ‘ 0
REMARK 4.8. [4] Since zjﬂk-l is in the image of the usual complex

J-homomorphism, it does lie in Im(t) by the result (Theorem 2.5 above) of
Becker and Schultz.

January, 1980
Revised July, 1981

Added in proof: Many of these results occur explicitly in K, Knapp's Bonn

Habilitationsschrift, "Some applications of K-theory to framed bordism:

e-invariant and transfer," Bonner Mathematishe Schriften, Heft 118, 1979, For

instance, Lemma 2.7 occurs there as Theorenm 2.9, and Corellary 3.10 eccurs
there as (5,21).
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Comparing these

SO) is the sub-
s surjective. 0
nd Schultz:
generator jBk—l
in the image of
o

isual complex

2.5 above) of

{napp's Bonn
bordism:
118, 1979. For

3.10 occurs
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