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1. INTRODUCTION

Our purpose is to use the beautiful formulation of
the Adem relations by S.R.Bullett and I.G,Macdonald ([3]) to
establish some useful identities involving the canonical anti-
automorphism x of the mod.p Steenrod algebra, for all primes p.

The first result is

Thearem 1 The Bootstrap Functions-
QN,K,L) = ) (Kiﬂ) plyp¥-i

3
are zero when  (p-1)N > pL - o(L).

Fere PL means Sqi when p =2, and o(L) is the sum of the
dig:<s in the p-ary expression of |L|. The binomial coefficient
(T; 's the coefficient of %® in the formal power series for (l-l—x)T,
an:t "5 zero when S s negative. Thus Q(N,K,L) is zero when L
is ~-3ative, and also, by the nature of X, when L = 0 < N.

The result is best possible.



2.  PROOF OF THEOREM 1

Let P(t) denote the formal pdwef series
J;Pj:j so that | _
P(E).xP(t) = 1 = xP(t).P(t)
The #ullett-Macdonald expression of the Adem relations in [3] can
be written

(.10 xP(s(s-0)Phy p(e(s-t)P~Yy = P(tP) .xP(sP)

together with some ana]ogdus relations involving the Bochstein homo-
morgnism, which will not be used here. On putting s=1 and
t = 1/(1+x) , (2.1) becomes

(2.2)  xPGPTHAH) TP PP (14x) TP) = P((14x) TP .xP (1)

[f this is multiplied by . (l4ﬁ{p)K and expanded in formal power

series, equating the coefficients of various powers of x yields

Lemma (2.3) Let Q*(N,K,L) =.23(K£j> xPN'j.Pj . Then
3

Q(N,K,L) Q*(N, N+p(K-N), N+p(L-N) ) ,

and, when T E O mod. p,

o
i

QF(N, Mp(K-N), NT ).

For p = 2 these are equivalent to the Adem relations.

Corcllary (2.4) Q(N,K,L) = 0 when (p-1)N> pL or (p-1)N = pL > 0.

(Feo Q%(N,K,L), like Q(N,K,L), is zerowhen L < 0 or L = 0 < N.)
Thus Theorem 1 is true when o(L) < 2% - the proof will be

comzieted by induction on a (L), using the lemma



Lemma (2.5) (A‘fB) Q(N, K, A+B) - 2 Q(T,K,A) .Q(N-T,K-A-T,B) .

Assumiing the truth of this, and of the theorem for L = A and L = B,

shows that each term in the summation on the right will be zero if
(p-1IN = (p-1)T + (p-1)(N-T) > (pA - a(A)) + (pB - a(B)).

Wher (A) + a(B) = a(A+B) this is the desired inequality and the binomial

coefficient on the left is prime to p (see, for example, Lemma 1 of [2]).

Thus the theorem will be true for L = A + B , and so for all L.

It remains to prove {2.5), which follows readily from the identity

(F) (&) - (D)

and the trivial

Lemma (2.6) (K;j) pd = 30 qer,x,A).pi T
Lemna (4.6/ | = |

For the term on the left is repeated in Q(j,K,A) on the right, and

the remaining terms on the right group themselves into blocks
(K;i) Pi{ z;(PT"i.Pj'T} = 0 for i < j.
- _

This completes the proof of the theorem, which now makes (2.6) more
interesting, as the terms on the right with (p-1)T_.>  pA - X(A)

are coero, and can be omitted, whatever the size of j may be.

3. SOME APPLICATIONS OF THEOREM 1

The vanishing of Q(N,L,L) implies



Theorem (3.1) When (p-1)N > pL - x(L) ,

-xp" = (-1 25 (J'-I:l) Pl ypN-d
j>L

Here the binomial identity (Lij) =, (-1)1‘(j£1) has been used.

For a given N, L can certainly be [N - N/p] 5 Tlarger values of 1L
may te useful and available. For example, when P=2,Q(24,12,12)
has & terms while Q(24,13,13) is also zero and yields directly

24

- 14
x5q = e

10 16 8

xSq + 597 ".xSq

Other efficient choices of L come from the fact that when a(l) is
nearly maximal the binomial coefficients in (3.1) are most often trivial

mod. p. It is convenient to define

(3.2) ple} = @' - 1)/(p-1) = p®+ ... +p+ 1.

Theorem (3.3) IfL=p -12> A>20, and N> ple} -e -4,

e e
= PRl .= T PR piete

t>0

This follows from Q(N,L+A,L) = 0, and implies the misleadingly

e
succince +1 p

e e e
(3.4) -xPP - 55 ptP ypP (P-t)
t=1

Cornllary (3.5) Let N=pfle} -s. For 0 ¢ s <. e,

-

e e-1 s
—XPN = (DetspP pP . PP 'XPp{s—l}—s
and, for s = etl,
P = PP 'XPp{e-l}-e—l - Q
e e-1
where Q = Q(N,p®-1,p%-1) = P L pP -1  pp-1



The first part of (3.5) comes by induction on e from (3.3). Alternatively,
having proved the case s = 0 in this way, the others can be deduced by
usiniy L.Kristensen's Steenrod algebra derivation ¢ such that

«pl = Pi'l, KXPi = -xPi'l, “k(uv) = (ku)viukv |,
and the Adem relations PP*~1 p? = 0. - For the case s = etl the first
part of the statement expresses the definition of Q(N,pe—l,pe—l), and
the -econd part can be proved by induction on e and the application of «
to tre previous case s = e, or by using Q(N,pe-2,pe—2) = 0 in the
mannér described below. The cases when p = 2 were first proved by
D.M.0avis in Theorem 2 of [2].

It is worth remarking that, for a given N in Theorem (3.3),

e can always be chosen so that no more than p + 1 terms appear in

the summation. In some cases a greater economy can be acheived by

Theorem (3.6) let d<eand q < p-1 (or p-2 if d = 0}.

let L =7p% - qu -1, and N > pie} - q.p{d} - e.
Then

4 e d e d
B = (_quz(g:%_g) ptp°-Tp"  plN-tp%-rp
t>0 r=0V- ‘ _
This comes from Q(N,L,L) = O with a simplification of the binomial
coefficients using the well-known relation, proved by expanding
i i o,
(1+)"P C1 = p4xP )t

(o) -T(x).

1



4.  COMMUTATION RELATIONS

Putting s=1, t= -v in the Bullett-Macdonald
relation (2.1) yie]ds
(4.1) XP @+ P(-v (1) P = p(vP) xP(L)

also, putting s(s-tP' = -v and tG-t)P1=1 gives

(4.2 xP(=v).P(1) = P((1+)'P) yP(vP (1+v) 1Py .

Expansion yields certain commutation formulae which can be written

(4,5 (-DPPEgE s T3 0V PR T (Eélei),
msSpa =
. oN-B _B _ m __N-m .pm-].-B )

where the summation in (4.4) is for pm > B + N(p-1).

(4.1) yields other identities from the coefficients of v with T E 0 mod.p.
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