18.781 Problem Set 6: Due Wednesday, April 12, 1995.

1. The use of continued fractions to solve Pell's equation

$$
\begin{equation*}
x^{2}-m y^{2}= \pm 1 \tag{1}
\end{equation*}
$$

which Davenport describes in his book is different from the one described in lecture. Davenport starts with

$$
\sqrt{m}=\left\langle q_{0}, \overline{q_{1}, \ldots, q_{k-1}, 2 q_{0}}\right\rangle
$$

(with k minimal) with corresponding numerators and denominators a_{n}, b_{n}, and observes that for any $n>0$,

$$
a_{n k-1}^{2}-m b_{n k-1}^{2}=(-1)^{n k}
$$

Your problem is to prove the claim he makes but does not prove: that this process yields all solutions to (??) with $x, y>0$. The first step is show that any such $(x, y), x=a_{j}, y=b_{j}$ for some j. Use the approximation theorem we proved in class for this purpose: if α is any real irrational and c is any nonzero rational number such that

$$
|\alpha-c|<\frac{1 / 2}{(\operatorname{ht} c)^{2}}
$$

then c is one of the continued fraction convergents for α. Then show that j must be of the form $n k-1$.
2. (a) Find the continued fraction expansion for $\sqrt{55}$.
(b) Find two integral solutions to $x^{2}-55 y^{2}=1$. Does $x^{2}-55 y^{2}=-1$ have any integral solutions? Explain.
3. (a) Show that if $n \in \mathbb{N}$ is of the form $4^{m}(8 k+7)$ then it cannot be written as the sum of three squares.
(b) Give an example of two sums of three squares, m and n, whose product is not a sum of three squares. This shows that $x^{2}+y^{2}+z^{2}$ is not a norm in any reasonable sense, and it is this that makes the problem of representing a number as a sum of three squares much more difficult than the
two-squares theorem. Nevertheless, Gauss showed that any number not of the form described in (a) can be written as a sum of three squares.
4. (a) Show that any degenerate quadratic form is equivalent to the form $m x^{2}$, for a unique integer m. (Hint: First assume that the quadratic form $q(x, y)=a x^{2}+b x y+c y^{2}$ is primitive and that $a>0$. Show that in this case a and b are relatively prime squares. Use this to write q as the square of a linear form. Then pass on to the other cases.)
(b) Show that if the discriminant of the quadratic form q is the perfect square m^{2}, then q is equivalent to $x(n x+m y)$ for some integer n. Which of these are equivalent to one another?

There are right-angled triangles with rational sides and area equal to 157 . Among them, the one whose sides a, b, c (with $a^{2}+b^{2}=c^{2}$ and $a b / 2=157$) have smallest height has
$a=\frac{411340519227716149383203}{21666555693714761309610}, b=\frac{6803298487826435051217540}{411340519227716149383203}$.
-D. Zagier.

