SOME REMARKS ON THE KERVAIRE INVARIANT PROBLEM FROM THE HOMOTOPY POINT OF VIEW

M. E. MAHOWALD

The object of this note is to discuss some results which were obtained in an effort to settle the Kervaire invariant conjecture.

There is a secondary cohomology operation based on the Adem relation which expands Sq^2Sq^2. Call this $\varphi_{j,j}$ after Adams.

Conjecture A. There exists a two cell complex $S^a \cup e^{a+N+1} (N = 2^{j+1} - 2)$ with $\varphi_{j,j}$ nonzero. We call any such element θ_j. (Note that this defines only a coset.)

Browder has shown that this conjecture is equivalent to the existence of a framed manifold with nonzero Kervaire invariant.

There are many statements which imply the conjecture. Most are conjectured to be equivalent. Let us begin with the simplest.

Suppose $X = S^0 \cup_{e^2} e^2$, that is, the space in the stable category which represents $\Sigma^{-1}RP^2$.

Theorem 1. An element of Hopf invariant 1 in $\Pi_{j,j-1}(X)$ implies A in dim $2^{j+1} - 2$.

Proof. An element of Hopf invariant one implies a three cell complex so that $Sq^{2^{j+1}} \neq 0$. Adams has shown that $Sq^{2^{j+1}} = \sum a_{i,k,l} \varphi_{i,k}$. We apply this to the Spanier-Whitehead dual of the complex and conclude $\varphi_{j,j} \neq 0$ and $a_{j,j,1} = Sq^{1}$.

Corollary 2. If $[e_1, e_2] = 2\alpha$, $N = 2^{j+1} - 1$, then $\alpha = \theta_j$.

We can use Theorem 1 to try and construct the θ_j's inductively. Indeed,

1 These notes are based on the joint work of M. G. Barratt and M. E. Mahowald.

AMS 1970 subject classifications. Primary 57D15, 55E45; Secondary 55G20, 55E50.
suppose there is an element in dimension $2^j - 1$ of Hopf invariant 1. Let us call it $\{h_j\}$.

Proposition 3. \[2\{h_j\} = \eta \theta_{j-1} \]

This follows immediately from Theorem 1 and a standard relationship in the homotopy of X.

Thus $\{h_j\}$ admits an extension by 2 modulo η. This gives a map

\[\eta \]

This clearly defines a map

\[\eta \]

and a four cell space

\[\alpha \]

with attaching maps $\alpha = \theta_{j-1}^2$ and $\beta = \langle \theta_{j-1}, 2t, \theta_{j-1} \rangle$ such that $\varphi_{j,j}$ is nonzero from the bottom to the top cell. Summarizing, we have shown:

Theorem 4. There is a null-homotopy defined on S^{2^j} of

\[\eta \theta_{j-1}^2 + 2t\langle \theta_{j-1}, 2t, \theta_{j-1} \rangle \]

which carries a $\varphi_{j,j}$.

Corollary 5. If there is a non-$\varphi_{j,j}$ carrying null-homotopy of

\[\eta \theta_{j-1}^2 + 2t\langle \theta_{j-1}, 2t, \theta_{j-1} \rangle \]

then θ_j exists.

Relevant to this is the following canonical relation.

Proposition 6. If $\alpha \in \Pi_k$, $2\alpha = 0, k \equiv 2 \pmod{4}$, then $\langle \alpha, 2t, \alpha \rangle = 0$.
Thus Corollary 5 has a weaker version.

Corollary 5'. If there is a non-$\varphi_{j,j}$ carrying null-homotopy of $n\theta_{j-1}^2$, then θ_j exists.

Thus we have the first part of the following theorem.

Theorem 7. If θ_{j-1} exists, $2\theta_{j-1} = 0 = \theta_{j-1}^2$ then θ_j exists and $2\theta_j = 0$.

The second part follows by a similar analysis.

Another proof of Theorem 4 is based on the smash product. Let $S^{2j-1} \to X$ represent $\{h_j\}$. Then $S^{2j-1} \wedge S^{2j-1} \to X \wedge X$ represents $\{h_j^2\}$ and this gives a map

\[
S^{2j+1} - 1 \to \eta_{j} \to \eta
\]

as before. This proof is a version of the central idea of our approach. The philosophy is to use the existence of $\theta_{j,j}^*$ and apply a functorial construction which hopefully gives θ_j. The Γ construction discussed earlier by Barratt is an example. It contains the "quadratic" construction and higher symmetries. In particular, explicit construction of the 30-manifold using \mathcal{S}_4, the symmetric group on four letters, has been given.

Milgram, using \mathcal{S}_4 symmetries, has proved the following:

Theorem 8 [Milgram]. With the hypothesis of Theorem 7, θ_{j+1} exists.

Remark. It can be shown that $\theta_{j}^2 = 0$ and thus Milgram's theorem implies θ_j exists.

A more delicate argument about θ_{j-1} shows

Proposition 9. $\langle \theta_{j-1}, 2i, \theta_{j-1} \rangle_n = [\iota_n, \beta_{j-1}]$, where $n = 2^{j+1} - \varphi(j - 1) - 1$, β_{j-1} is the generator of the im f in stem $\varphi(j - 1) - 1$ and $\varphi(j - 1)$ is the Adams function.

Corollary 10. $\Sigma^{-2} \langle \theta_{j-1}, 2i, \theta_{j-1} \rangle_n = [\iota_{2j+1}^{-1} - \varphi(j - 1), \beta_j]$ where $\epsilon = \varphi(j) - \varphi(j - 1).

Thus

Theorem 11. If θ_{j-1} exists and has order 2 and θ_j exists, θ_j appears on the $2^{j+1} - \varphi(j)$ sphere with Hopf invariant β_j.

There is a slightly less direct approach. First observe that there is a map $\lambda: RP \to S^n$ in the stable category. λ on each cell is the Whitehead product. To be precise, there is a map $\Sigma^p S^{n-1} \to S^n$ and $S^{2n-1} \to \Sigma^p S^{n-1}$ where d_n is the natural map $S^{n-1} \to P^{n-1}$. The composite $\lambda_n \Sigma^p a_n = [\iota_n, \iota_n]$. Thus

Proposition 12. If $\Sigma^p a_n$ can be halved for $n = 2^{j+1} - 1$ then θ_j exists.
There is a similar statement for CP and QP.

Consider the situation with just a single suspension. We have the following fibration:

$$ P \ast P \to \Sigma RP \to K(Z_2, 2). $$

Proposition 13. If there is a map $f : S^{2j+1-1} \to P \ast P$ so that

$$ f^*(\sigma^{2j-1} \ast \sigma^{2j-1}) \neq 0 $$

then θ_j exists.

A weaker version is also true.

Proposition 13'. If there is a stable map $f : S^{2j-1-2} \to P \wedge P$ so that

$$ f^*(\sigma^{2j-1} \wedge \sigma^{2j-1}) \neq 0 $$

then θ_j exists.

Even weaker versions than this are possible.

Proposition 13''. Let v_j be a cohomology class in SO which transgresses to w_j. Then $v_j \otimes v_j$ being spherical in $SO \ast SO$ or in $S(SO \wedge SO)^*$ implies Conjecture A.

Another approach stems from the effort to construct large brackets.

Theorem 14 (Hoffman). If $\langle \sigma, 2\sigma, 2\sigma, \ldots, 2\sigma, \sigma \rangle$ can be defined then θ_j is in it.

This is verified for $j = 4$. There is a family of spaces X_k which are defined by identifying particular subspaces of $\Lambda^k(S^8 \cup e^{16})$. The cell structure looks like

$$ \begin{array}{cccccc}
\sigma & 2\sigma & 3\sigma & \ldots & k\sigma \\
8k & 2k & 3k & \ldots & k^2 \\
\end{array} $$

This shows $0 \in \langle \sigma, 2\sigma, \ldots, (k-1)\sigma, k\sigma \rangle$.

Theorem 15. If the bracket $\langle \sigma, 2\sigma, \ldots, (2^j-2)\sigma, 2^{j-3}\sigma \rangle$ can be formed then θ_j is in it.

This requires a mild interpretation because $16\sigma = 0$, but it is not hard to see what should be done.

A paraphrase of Theorem 15 is the question of whether the attaching map in the construction X_k can be halved.

Another amusing approach:

Theorem 16. If $2\theta_{j-1} = 0 = 2\theta_j$, and $\langle \theta_{j-1}, 2\sigma, \theta_j \rangle = 0$ then θ_{j+1} exists.
PROOF. Take

\[\begin{array}{c}
\begin{array}{c}
\circ \quad 2t \\
\downarrow \theta_j \\
\circ \\
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\circ \quad 4t \\
\downarrow \theta_{j-1} \\
\circ \\
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\circ \quad \eta_{j-1} \\
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\circ \quad <\theta_j, 2t, \theta_{j-1}> \\
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\circ \quad <\theta_j, 2t, \theta_j> \\
\end{array}
\end{array}
\end{array}
\]

This construction is \(\varphi_{i+1,j+1} \) carrying.

CONJECTURE. \(\langle \theta_j, 2t, \theta_{j-1} \rangle = [l, \beta_{j-1}] \) where \(n = 2^i + 2^{i-1} - \varphi(j - 1) \).
(Although \(\langle \theta_k, 2\sigma, \varphi \rangle = 0 \), it is not known whether \(\langle \theta_k, 2t, \sigma \sigma \rangle = 0 \).)

The strongest evidence for the existence of the \(\theta_j \)'s is

Theorem 17. There exists a sequence of integers \(n_i \) such that \(2^i - 2 < n_i \leq 2^{i+1} - 2 \) and elements \(\alpha_i \in \Pi^6_{n_i} \). If \(n_i = 2^{i+1} - 2 \) then the constructed elements are \(\theta_i \).

PROOF. Simply stated, the \(\alpha_i \) are the stable Hopf invariants of the \(\beta_i \) in stem \(2^{i+1} - \varphi(i) - 1 \). To be more precise consider the \(X_{2^i,e} \) constructing. The attaching map of the cell in dimension \(2^i + 2 \) can be halved at least through the \(2^{i+2} - 2 \)-skeleton. If it can be halved through the \(8 + 2^{i+1} \)-skeleton then we have \(\theta_i \), otherwise there is an obstruction. We call this obstruction \(\alpha_i \).

Another amusing result is the following.

Let \(Y \to S^0 \to K(\mathbb{Z}, 0) \) define \(Y \). The map \(\lambda : P \to S^0 \) lifts to \(Y \).

Remark. \(Y/P \) has cohomology which is free over \(Sq^1 \) and \(Sq^2 \). Thus as far as \(bo \) homology is concerned, \(P \) and \(Y \) are equally interesting.

Consider the spectrum \(\text{Im} J \) defined by the fibration

\[\text{Im} J \to BO[8k, \ldots] \to BO[8k + 4, \ldots]. \]

Theorem 18. \(\Pi_i (P \wedge \text{Im} J) = \)

\[
\begin{array}{cccccccc}
i = 0 & 1 & 2 & 3 & 4 & 5 & -2 & -1 & 0 & 1 & 2 & 4 & 5 \pmod{8} \\
\end{array}
\]

where \(\lambda_i \) is the 2-primary order of the image of the \(J \)-homomorphism. (That is, if \(i + 1 \equiv 2^\ell \pmod{2^{\ell+1}} \) then \(\lambda_i = 2^{\ell+1} \).) If \(\lambda : Y \to P \wedge \text{Im} J \), then \(\lambda_i \) are elements in \(\Pi_i Y \) given by the image of \(J \), the \(\mu \)'s of Barratt and Adams, the elements \(\eta_j \) and \(\theta_i \) generate the image of \(\lambda_i \).

NORTHEASTERN UNIVERSITY