Contents

Basic homotopy theory

4 Limit, colimits, and adjunctions .. 1
4 Cartesian closure and compactly generated spaces 5
41 Basepoints and the homotopy category 8
42 Fiber bundles .. 11
43 Fibrations, Fundamental groupoid 13
44 Cofibrations ... 17
45 Cofibration sequences and co-exactness 20

The homotopy theory of CW complexes

5 Weak equivalences and Whitehead’s Theorems 25
57 Homotopy long exact sequence and homotopy fibers 28
48 Serre fibrations and relative lifting 31
49 Connectivity and approximation 35
50 The Postnikov tower .. 38
51 Hurewicz, Moore, Eilenberg, Mac Lane, and Whitehead 41
52 Representability of cohomology 44
53 Obstruction theory ... 47

Vector bundles and principal bundles

6 Vector bundles ... 53
65 Principal bundles, associated bundles 56
66 I-invariance of Bun_G and G-CW-complexes 59
67 The classifying space of a group 62
68 Simplicial sets and classifying spaces 65
69 The Čech category and classifying maps 68

Spectral sequences

7 Why spectral sequences? ... 73
71 The spectral sequence of a filtered complex 76
72 Serre spectral sequence ... 80
73 Exact couples .. 83
74 Gysin sequence ... 86
75 Serre and Hurewicz .. 91
76 Double complexes and the Dress spectral sequence 95
77 Cohomological spectral sequences 99
CONTENTS

68 Serre classes ... 104
69 Mod C Hurewicz and Whitehead theorems 108
70 Freudenthal, James, and Bousfield 111

8 Characteristic classes ... 119
71 Chern Classes ... 119
72 $H^*(BU(n))$ and the splitting principle 124

Bibliography ... 129
Chapter 4

Basic homotopy theory

39 Limits, colimits, and adjunctions

Limits and colimits

I want to begin by developing a little more category theory. I still refer to the classic text *Categories for the Working Mathematician* by Saunders Mac Lane for this material.

Definition 39.1. Suppose \mathcal{I} is a small category (so that it has a set of objects), and let \mathcal{C} be another category. Let $X_\bullet : \mathcal{I} \to \mathcal{C}$ be a functor. A *cone under X* is a natural transformation e from X_\bullet to a constant functor; to be explicit, this means that for every object i of \mathcal{I} we have a map $e_i : X_i \to Y$, and these maps are compatible in the sense that for every $f : i \to j$ in \mathcal{I} the following diagram commutes:

$$
\begin{array}{ccc}
X_i & \xrightarrow{e_i} & Y \\
\downarrow{f} & & \downarrow{} \\
X_j & \xrightarrow{e_j} & Y
\end{array}
$$

A *colimit* of X_\bullet is an initial cone (L, t_i) under X; to be explicit, this means that for any cone (Y, e_i) under X_\bullet, there exists a unique map $h : L \to Y$ such that $h \circ t_i = e_i$ for all i.

Any two colimits are isomorphic by a unique isomorphism compatible with the structure maps; but existence is another matter. Also, as always for category theoretic concepts, some examples are in order.

Example 39.2. If \mathcal{I} is a discrete category (that is, the only maps are identity maps; \mathcal{I} is entirely determined by its set of objects), the colimit of a functor $\mathcal{I} \to \mathcal{C}$ is the coproduct in \mathcal{C} (if this coproduct exists!).

Example 39.3. In Lecture 23 we discussed directed posets and the direct limit of a directed system $X_\bullet : \mathcal{I} \to \mathcal{C}$. The colimit simply generalizes this to arbitrary indexing categories rather than restricting to directed partially ordered sets.

Example 39.4. Let G be a group; we can view this as a category with one object, where the morphisms are the elements of the group and composition is given by the group structure. If $\mathcal{C} = \text{Top}$ is the category of topological spaces, a functor $G \to \mathcal{C}$ is simply a group action on a topological space X. The colimit of this functor is the orbit space of the G-action on X (together with the projection map to the orbit space).
Similarly, a functor from G into vector spaces over a field k is a representation of G on a vector space. Question for you: What is the colimit in this case?

Example 39.5. Let \mathcal{I} be the category whose objects and non-identity morphisms are described by the following directed graph:

```
  a
 /\  /
 b / \ c.
```

The colimit of a diagram $\mathcal{I} \to \mathcal{C}$ is called a *pushout*. With $\mathcal{C} = \textbf{Top}$, again, a functor $\mathcal{I} \to \mathcal{C}$ is determined by a diagram of spaces:

```
  A
 /\  /
 f / \ g
 B C.
```

The colimit of such a functor is just the pushout $B \sqcup_A C := B \sqcup_C / \sim$, where $f(a) \sim g(a)$ for all $a \in A$. We have already seen this in action before: a special case of this construction appears in the process of attaching cells to build up a CW-complex.

If \mathcal{C} is the category of groups, instead, the colimit of such a functor is the free product quotiented out by a certain relation; this is called the *amalgamated free product*.

Example 39.6. Suppose \mathcal{I} is the category with two objects and two parallel morphisms:

```
  a  b
```

The colimit of a diagram $\mathcal{I} \to \mathcal{C}$ is called the *coequalizer* of the diagram. If $\mathcal{C} = \textbf{Top}$, the coequalizer of $f, g : A \to B$ is the quotient of B by the equivalence relation generated by $f(a) \sim g(a)$ for $a \in A$.

One can also consider cones over a diagram $X : \mathcal{I} \to \mathcal{C}$: this is simply a cone in the opposite category.

Definition 39.7. The *limit* of a diagram $X \circlearrowleft : \mathcal{I} \to \mathcal{C}$ is a terminal object in cones over X.

Exercise 39.8. Revisit the examples provided above: what is the limit of each diagram? For instance, a product is a limit over a discrete category, and the limit of a group action is just the fixed points. A diagram indexed by the category $b \to a \leftarrow c$ is a diagram

```
  B \xrightarrow{f} A \xleftarrow{g} C
```

and its limit is the “pullback,” denoted $B \times_A C$. In \textbf{Set}, or \textbf{Top},

$B \times_A C = \{(b, c) \in B \times C : f(b) = g(c) \in A\}$.

Definition 39.9. A category \mathcal{C} is *cocomplete* if all functors from small categories to \mathcal{C} have colimits. Similarly, \mathcal{C} is *complete* if all functors from small categories to \mathcal{C} have limits.

All the large categories we typically deal with are both cocomplete and complete; in particular both \textbf{Set} and \textbf{Top} are, as well as algebraic categories like \textbf{Gp} and $\textbf{R-Mod}$.
Adjoint functors

The notion of a colimit as a special case of the more general concept of an adjoint functor, as long as we are dealing with a cocomplete category.

Let’s write C^I for the category of functors from I to C, and natural transformations between them. There is a functor $c : C \to C^I$, given by sending any object to the constant functor taking on that value. The process of taking the colimit of a diagram supplies us with a functor $\text{colim}_I : C^I \to C$. (To be precise, we pick a specific colimit for each diagram, and then observe that a natural transformation of diagrams canonically defines a morphism between the corresponding colimits; and that these morphisms compose correctly.) We can characterize this functor via the formula

$$C(\text{colim}_{i \in I} X_i, Y) = C^I(X_\bullet, cY),$$

where X is any functor from I to C, Y is any object of C, and cY denotes the constant functor with value Y. This formula is reminiscent of the adjunction operator in linear algebra, and is in fact our first example of an adjunction.

Definition 39.10. Let C, D be categories, and suppose given functors $F : C \to D$ and $G : D \to C$. An adjunction between F and G is an isomorphism:

$$D(FX, Y) = C(X, GY),$$

that is natural in X and Y. In this situation, we say that F is a left adjoint of G and G is a right adjoint of F.

This notion was invented by the late MIT Professor Dan Kan.

We’ve already seen one example of adjoint functors. Here is another one.

Example 39.11 (Free groups). There is a forgetful functor $u : \text{Grp} \to \text{Set}$. Any set X gives rise to a group FX, the free group on X. It is determined by a universal property: For any group Γ, set maps $X \to u\Gamma$ are the same as group maps $FX \to \Gamma$. This is exactly saying that the free group functor the left adjoint to the forgetful functor u.

In general, “free objects” come from left adjoints of forgetful functors.

As a general notational practice, try to write the left adjoint as the top arrow:

$$F : C \iff D : G \quad \text{or} \quad G : D \iff C : F.$$

These examples suggest that if a functor F has a right adjoint then any two right adjoints are canonically isomorphic. This is true and easily checked. We’ll always speak of the right adjoint, or the left adjoint.

Lemma 39.12. Suppose that

$$C \xleftarrow{F} D \xrightarrow{G} E$$

is a composable pair of adjoint functors. Then $F'F, GG'$ form an adjoint pair.

Proof. Compute:

$$E(F'FX, Z) = D(FX, G'Y) = C(X, GG'Y).$$

Proposition 39.13. Let $F : C \to D$ be a functor. If F admits a right adjoint then it preserves colimits, in the sense that if $X_\bullet : I \to C$ is a diagram in C with colimit cone $X \to c_L$, then $F \circ X_\bullet \to F(c_L)$ is a colimit cone in D. Dually, if F admits a left adjoint then it preserves limits.
Proof. This follows from the lemma. The adjoint pair $F : C \dashv D : G$ induces an adjoint pair

$$F : C^I \dashv D^I : G$$

Clearly $c_{GY} = Gc_Y$; this is an equality of right adjoints, so the corresponding left adjoints must be equal:

$$
\begin{array}{ccc}
C^I & \overset{F}{\longrightarrow} & D^I \\
\downarrow{c} & & \downarrow{c} \\
C & \overset{G}{\longrightarrow} & D
\end{array}
$$

That is to say, $\text{colim} \ F X_\bullet = F \text{colim} X_\bullet$. \qed

For example, the free group on a disjoint union of sets is the free product of the two groups (which is the coproduct in the category of groups). The dual statement says, for example, that the product (in the category of groups) of groups is a group structure on the product of their underlying sets.

The Yoneda lemma

One of the important principles in category theory is that an object is determined by the collection of all maps out of it. The Yoneda lemma is a way of making this precise. Observe that for any $X \in C$ the association $Y \mapsto C(X,Y)$ gives us a functor $C \to \text{Set}$. This functor is said to be corepresentable by X. Suppose that $G : C \to \text{Set}$ is any functor. An element $x \in G(X)$ determines a natural transformation

$$\theta_x : C(X,-) \to G$$

in the following way. Let $Y \in C$ and $f : X \to Y$, and define

$$\theta_x(f) = f_*(x) \in D.$$

Lemma 39.14 (Yoneda lemma). The association $x \mapsto \theta_x$ provides a bijection

$$G(X) \not\cong \text{nt}(C(X,-),G).$$

Proof. The inverse is given as follows: Send a natural transformation $\theta : C(X,-) \to G$ to $\theta_X(1_X) \in G(X)$. \qed

In particular, if G is also corepresentable -- $G = C(Y,-)$, say -- then

$$\text{nt}(C(X,-),C(Y,-)) \cong C(Y,X).$$

That is, each natural transformations $C(X,-) \to C(Y,-)$ is induced by a unique map $Y \to X$. Consequently any natural isomorphism $C(X,-) \not\cong C(Y,-)$ is induced by a unique isomorphism $Y \not\cong X$.
40 Cartesian closure and compactly generated spaces

The category of topological spaces has a lot to recommend it, but it does not accommodate constructions from algebraic topology gracefully. For example, the product of two CW complexes may fail to have a CW structure. (This is a classic example due to Dowker, 1952, nicely explained in [8, Appendix]. The CW complexes involved are simply wedges of unit intervals!) This is closely related to the observation that if \(X \to Y \) is a quotient map, the induced map \(W \times X \to W \times Y \) may fail to be a quotient map.

It turns out that these problems can be avoided by working in a carefully designed subcategory of \(\textbf{Top} \), the category \(\text{kTop} \) of “compactly generated spaces.” The key idea is that the unwanted behavior of \(\textbf{Top} \) is related to the fact that there isn’t a well-behaved topology on the set of continuous maps between two spaces. The compact-open topology is available to us – and we’ll recall it later. But it suffers from some defects. To clarify how a mapping object should behave in an ideal world, I want to make another category-theoretical digression. Again, Mac Lane’s book is a good reference.

Cartesian closure

How should function objects behave? In the category \(\textbf{Set} \), for example, the set of maps from \(X \) to \(Y \) can be characterized by the natural equality

\[
\text{Set}(W \times X, Y) = \text{Set}(W, \text{Set}(X, Y))
\]

under which \(f : W \times X \to Y \) corresponds to \(w \mapsto (x \mapsto f(w, x)) \) and \(g : W \to \text{Set}(X, Y) \) corresponds to \((w, x) \mapsto g(w)(x) \). This suggests the following definition.

Definition 40.1. Let \(C \) be a category with finite products. It is **Cartesian closed** if for any object \(X \) in \(C \), the functor \(- \times X \) has a right adjoint.

If a functor has a right adjoint then that right adjoint is well-defined up to canonical natural isomorphism; so we will always speak of the right adjoint. We’ll write the right adjoint to \(- \times X \) using exponential notation,

\[
Y \mapsto Y^X,
\]

so that there is a bijection natural in the pair \((W, Y) \):

\[
C(W \times X, Y) = C(W, Y^X).
\]

In a Cartesian closed category, \(Y^X \) serves as a “mapping object” from \(X \) to \(Y \). Let me convince you that this is reasonable. Take \(Y = W \times X \): the identity map on \(W \times X \) then corresponds to a map

\[
\eta_W : W \to (W \times X)^X.
\]

Take \(W = Y^X \): the identity map \(Y^X \to Y^X \) corresponds to a map

\[
\epsilon_Y : Y^X \times X \to Y.
\]

In the example of \(\text{Set} \), the first is given by

\[
w \mapsto (x \mapsto (w, x)), \quad \text{inclusion of a slice},
\]

and the second is given by

\[
(f, x) \mapsto f(x), \quad \text{evaluation}.
\]
CHAPTER 4. BASIC HOMOTOPY THEORY

These maps are natural transformations.

Here are some direct consequences of Cartesian closure. Note: the assumption that finite products exist in \(C \) includes the case in which the indexing set is empty, in which case the universal property of the product characterizes the terminal object of \(C \), which thus exist in a Cartesian closed category. We’ll denote it by \(* \). You might call \(C(\ast, X) \) the “set of points” in \(X \).

Proposition 40.2. Let \(C \) be Cartesian closed.

1. \((X, Z) \mapsto Z^X \) extends canonically to a functor \(C^{op} \times C \to C \), and the bijection \(C(X \times Y, Z) = C(Y, Z^X) \) is natural in all three variables.
2. \(C(X, Z) = C(\ast, Z^X) \).
3. \(Y_\ast \mapsto X \times Y_\ast \) preserves colimits: the natural map \(\text{colim} (X \times Y_\ast) \to X \times \text{colim} Y_\ast \) is an isomorphism.
4. \(Z_\ast \mapsto Z^X_\ast \) preserves limits: the natural map \((\lim Z_\ast)^X \to \lim (Z^X_\ast) \) is an isomorphism.

Many otherwise well-behaved categories are not Cartesian-closed. A category is **pointed** if it has an initial object \(\emptyset \) and a final object \(\ast \), and the unique map \(\emptyset \to \ast \) is an isomorphism. There are many pointed categories! – abelian groups \(\text{Ab} \) and groups \(\text{Gp} \), for example. By (2), the only way a pointed category can be Cartesian closed is if there is exactly one map between any two objects.

k-spaces

A standard example from general topology shows that if \(X \to Y \) is a quotient map, the induced map \(W \times X \to W \times Y \) may fail to be a quotient map. We can characterize quotient maps in \(\text{Top} \) categorically using the following definition.

Definition 40.3. An effective epimorphism in a category \(C \) is a map \(X \to Y \) in \(C \) such that the pullback \(X \times_Y X \) exists and the map \(X \to Y \) is the coequalizer of the two projection maps \(X \times_Y X \to X \).

Lemma 40.4. A map in \(\text{Top} \) is a quotient map if and only if it is an effective epimorphism.

So Proposition 40.2 shows that, sadly, \(\text{Top} \) is not Cartesian closed.

On the other hand, Henry Whitehead showed that crossing with a locally compact Hausdorff space does preserve quotient maps. This will often suffice, but often not: for example CW complexes may fail to be locally compact. And the convenience of working in a Cartesian closed category is compelling.

Inspired by Whitehead’s theorem, we agree to accept only properties of a space that can be observed by mapping compact Hausdorff spaces into it.

Definition 40.5. Let \(X \) be a space. A subspace \(F \subseteq X \) is said to be **compactly closed**, or \(k \)-closed, if, for any map \(k : K \to X \) from a compact Hausdorff space \(K \), the preimage \(k^{-1}(F) \subseteq K \) is closed.

It is clear that any closed subset is compactly closed, but there might be compactly closed sets that are not closed in the topology on \(X \). This motivates the definition of a \(k \)-space:

Definition 40.6. A topological space \(X \) is **compactly generated** or is a \(k \)-space if every compactly closed set is closed.

The \(k \) comes from the German “kompakt,” though it might have referred to the general topologist John Kelley, who explored this condition.
A more categorical characterization of this property is: \(X \) is compactly generated if and only if a map \(X \to Y \) is continuous precisely when for every compact Hausdorff space \(K \) and map \(k : K \to X \) the composite \(K \to X \to Y \) is continuous. For instance, compact Hausdorff spaces are \(k \)-spaces. First countable spaces (so for example metric spaces) and CW-complexes are also \(k \)-spaces.

While not all topological spaces are \(k \)-spaces, any space can be “\(k \)-ified.” The procedure is simple: endow the underlying set of a space \(X \) with an new topology, one for which the closed sets are precisely the sets that are compactly closed with respect to the original topology. You should check that this is indeed a topology on \(X \). The resulting topological space is denoted \(kX \). This construction immediately implies that the identity \(kX \to X \) is continuous, and is the terminal map to \(X \) from a \(k \)-space.

Let \(k\text{Top} \) be the category of \(k \)-spaces, as a full subcategory of \(\text{Top} \). We will write \(j : k\text{Top} \hookrightarrow \text{Top} \) for the inclusion functor. The process of \(k \)-ification gives a functor \(k : \text{Top} \to k\text{Top} \) with the property that

\[
k\text{Top}(X, kY) = \text{Top}(jX, Y).
\]

This is another example of an adjunction! In this case the unit \(\eta : X \to jX \) is a homeomorphism.

We can conclude from this that limits in \(k\text{Top} \) may be computed by \(k \)-ifying limits in \(\text{Top} \): For any \(X_\bullet : I \to k\text{Top} \),

\[
\lim k\text{Top} X_\bullet \cong \lim k\text{Top} kjX_\bullet \cong k \lim \text{Top} jX_\bullet.
\]

The second map is an isomorphism because \(k \) is a right adjoint. In particular, the product in \(k\text{Top} \) is formed by \(k \)-ifying the product in \(\text{Top} \). Similarly, colimit (in \(k\text{Top} \)) of any diagram of \(k \)-spaces can be computed by \(k \)-ifying the colimit in \(\text{Top} \):

\[
\colim k\text{Top} X_\bullet \cong kj \colim \text{Top} X_\bullet \cong k \colim \text{Top} jX_\bullet.
\]

The second map is an isomorphism because \(j \) is a left adjoint.

The category \(k\text{Top} \) has good categorical properties inherited from \(\text{Top} \): it is a complete and cocomplete category. In fact it has even better categorical properties than \(\text{Top} \) does:

Proposition 40.7. The category \(k\text{Top} \) is Cartesian closed.

Proof. See [26, 6].

I owe you a description of the mapping object \(Y^X \). It consists of the set of continuous maps from \(X \) to \(Y \) endowed with a certain topology. For general topological spaces \(X \) and \(Y \), the set \(\text{Top}(X, Y) \) can be given the “compact-open topology”: a basis for open sets for the compact-open topology is given by

\[
V(F, U) = \{ f : X \to Y : f(F) \subseteq U \}
\]

where \(F \) runs over compact subsets of \(X \) and \(U \) runs over open subsets of \(Y \).

If \(X \) and \(Y \) are \(k \)-spaces, it’s natural to make a slight modification: To start with, replace the compact subsets \(F \) in this definition by “\(k \)-compact” subsets, that is, subsets that are compact from the perspective of compact Hausdorff spaces: A subset \(F \subseteq X \) is \(k \)-compact if there exists a compact Hausdorff space \(K \) and a map \(k : K \to X \) such that \(k(K) = F \). This is to overcome the sad fact that there are compact spaces that do not accept surjections from compact Hausdorff spaces.

The sets \(V(F, U) \) where \(F \) runs over \(k \)-compact subsets of \(X \) and \(U \) runs over open subsets of \(Y \) form the basis of a new topology on \(\text{Top}(X, Y) \). Even if we assume that \(X \) and \(Y \) are \(k \)-spaces, this new topology may not be compactly generated. But we know what to do: \(k \)-ify it. This defines a \(k \)-space \(Y^X \), and this turns out to witness the fact that \(k\text{Top} \) is Cartesian closed.
41 Basepoints and the homotopy category

More on k-spaces

The ancients (mainly Felix Hausdorff, in 1914) came up with a good definition of a topology – but k-spaces are better!

Most spaces encountered in real life are k-spaces already, and many operations in Top preserve the subcategory $k\text{Top}$.

Proposition 41.1 (see [26, 6]). (1) Any locally compact Hausdorff space is compactly generated. (2) Quotient spaces and closed subspaces of compactly generated spaces are compactly generated. (3) If X is a locally compact Hausdorff space and Y is compactly generated then $X \times Y$ is again compactly generated. (4) The colimit of any diagram of compactly generated spaces is compactly generated.

As a result of (4), in the homeomorphism

$$k \lim_{\text{colim}} \text{Top} jX \rightarrow \lim_{\text{colim}} k\text{Top} X,$$

that we considered in the last lecture, the space $\lim_{\text{colim}} \text{Top} jX$ is in fact already compactly generated; no k-ification is necessary – the colimit constructed in Top is the same as the colimit constructed in $k\text{Top}$.

When we say “space” in this course, we will always mean k-space, and the various constructions – products, mapping spaces, and so on – will take place in $k\text{Top}$.

I should add that there is a version of the Hausdorff condition that is well suited to the compactly generated setting. Check out the sources [26, 6] for this.

Here’s a simple example of how useful the formation of mapping spaces can be. We already know that a homotopy between maps $f, g : X \rightarrow Y$ is a map $h : I \times X \rightarrow Y$ such that the following diagram commutes.

\[
\begin{array}{ccc}
X & \rightarrow & Y \\
in_0 & \downarrow & \downarrow \\
I \times X & \rightarrow & Y \\
\downarrow h & & \downarrow \\
X & \leftarrow & Y \\
in_1 & \downarrow & \downarrow g \\
\end{array}
\]

We write $f \sim g$ to indicate that f and g are homotopic. This is an equivalence relation on the set $\text{Top}(X, Y)$, and we define

$$[X, Y] = \text{Top}(X, Y)/\sim.$$

The maps f and g are points in the space Y^X, and the homotopy h is the same thing as a path $\hat{h} : I \rightarrow Y^X$ from f to g. So

$$[X, Y] = \pi_0(Y^X).$$

Another important feature of k-spaces is this:

Theorem 41.2. Let X and Y be CW-complexes with skeleta $\text{Sk}_m X$ and $\text{Sk}_n Y$. Then the k-space product $X \times Y$ admits the structure of a CW complex in which

$$\text{Sk}_k(X \times Y) = \bigcup_{m+n=k} \text{Sk}_m X \times \text{Sk}_n Y.$$
Basepoints

To talk about the fundamental group and higher homotopy groups we have to get basepoints into the picture.

A pointed space is a space X together with a specified point in it, with default notation \ast. The point \ast is called the basepoint. This leads some people refer to “based spaces,” but to my ear this makes it sound as if we are doing chemistry, or worse, and I prefer “pointed.”

This gives a category $k\text{Top}_\ast$ where the morphisms respect the basepoints. This category is complete and cocomplete. For example $(X,\ast) \times (Y,\ast) = (X \times Y, (\ast,\ast))$

The coproduct is not the disjoint union; which basepoint would you pick? So you identify the two basepoints, to get the “wedge” $X \lor Y = \frac{X \sqcup Y}{\ast_X \sim \ast_Y}$.

The one-point space \ast is the terminal object in $k\text{Top}_\ast$, as in $k\text{Top}$, but it is also initial in $k\text{Top}_\ast$: there is exactly one map of pointed spaces from it to any (X,\ast); $k\text{Top}_\ast$ is a pointed category. As we saw, this precludes it from being Cartesian closed. But we still know what we would like to take as a “mapping object” in $k\text{Top}_\ast$: Define Y^X_\ast to be the k-ification of the subspace of Y^X consisting of the pointed maps. As a replacement for Cartesian closure, let’s ask: For fixed $X \in k\text{Top}_\ast$, does the functor $Y \mapsto Y^X_\ast$ have a left adjoint? This would be an analogue in Top_\ast of the functor $A \mapsto A \otimes -$ in Ab. Compute:

$$k\text{Top}(W,Y^X) = \{ f : W \times X \to Y \}$$
$$k\text{Top}(W,Y^X_\ast) = \{ f : f(w,\ast) = \ast \ \forall \ w \in W \}$$
$$k\text{Top}_\ast(W,Y^X_\ast) = \left\{ f : \begin{array}{l} f(w,\ast) = \ast \ \forall \ w \in W \vphantom{\frac{x}{y}} \\ f(\ast,x) = \ast \ \forall \ x \in X \end{array} \right\}$$

So the map $W \times X \to Y$ corresponding to $f : W \to Y^X_\ast$ sends the wedge $W \lor X \subseteq X \times W$ to the basepoint of Y, and hence factors (uniquely) through the smash product

$$W \land X = \frac{W \times X}{W \lor X}$$

obtained by pinching the “axes” in the product to a point. We have an adjoint pair

$$- \land X : k\text{Top}_\ast \rightleftarrows k\text{Top}_\ast : (-)^X_\ast.$$

A good way to produce a pointed space is to start with a pair (X,A) and collapse A to a point. Thus

$$k\text{Top}_\ast(X/A,Y) = \{ f : X \to Y : f(A) \subseteq \{\ast\} \}.$$

What if $A = \emptyset$? Then the condition is empty, so

$$k\text{Top}_\ast(X/\emptyset,Y) = \text{Top}(X,uY).$$
where \(uY \) is \(Y \) with the basepoint forgotten. The solution to this is \(X \) with a disjoint basepoint adjoined. Notation:

\[
X/\varnothing = X_+.
\]

We have another adjoint pair!

It’s often useful to know that if \(A \subseteq X \) and \(B \subseteq Y \) then

\[
(X/A) \wedge (Y/B) = \frac{X \times Y}{(A \times Y) \cup_{A \times B} (X \times B)}.
\]

For example, if we think of \(I^m/\partial I^m \) as our model of \(S^m \) as a pointed space, we find that

\[
S^m \wedge S^n = (I^m/\partial I^m) \wedge (I^n/\partial I^n) = \frac{I^{m+n}}{(\partial I^m \times I^n) \cup (I^m \times \partial I^n)} = I^{m+n}/\partial I^{m+n} = S^{m+n}.
\]

Smashing with \(S^1 \) is a critically important operation in homotopy theory, known as suspension (or “reduced suspension”),

\[
\Sigma X = S^1 \wedge X = \frac{I \times X}{(\partial I \times X) \cup (I \times *)}.
\]

That is, the suspension is obtained from the cylinder by collapsing the top and the bottom to a point, as well as the line segment along a basepoint.

You are invited to check the various properties enjoyed by the smash product, analogous to properties of the tensor product. So it’s functorial in both variables; the two-point pointed space serves as a unit; and it is associative and commutative. Associativity is a blessing bestowed by assuming compact generation; notice that in forming it we are mixing limits (the product) with colimits (the quotient by the axes), and indeed the smash product turns out not to be associative in the full category of spaces.

By induction, the \(n \)-fold suspension is thus

\[
\Sigma^n X = S^1 \wedge \Sigma^{n-1} X = (S^1 \wedge S^{n-1}) \wedge X = S^n \wedge X.
\]

We can also think about the loop space of a pointed space,

\[
\Omega X = X_*^{S^1},
\]

or the iterated loop space \(\Omega^n X \), which we claim equals \(X_*^{S^n} \): by induction,

\[
\Omega^n X = \Omega(\Omega^{n-1} X) = (X_*^{S^{n-1}})^{S^1} = X_*^{S^{n-1} \wedge S^1} = X_*^{S^n}.
\]

You may be alarmed at the prospect of trying to understand the algebraic topology of a function space like \(\Omega X \). Perhaps the following theorem of Milnor will be of some solace.

Theorem 41.3 (Milnor; see [3]). *If \(X \) is a pointed countable CW complex, then \(\Omega X \) has the homotopy type of a pointed countable CW complex.*

Based spaces and all spaces are related by yet another adjoint pair,

\[
(-)_+ : k\text{Top} \rightleftarrows k\text{Top}_* : u
\]

where \(u \) forgets the basepoint and \((-)_+ \) adjoins a disjoint base point. The two-point pointed space is then \(*_+ \), but everyone writes it as \(S^0 \). Explain why this is a reasonable symbol for this pointed space.
Homotopy category

From now on, Top will mean $k\text{Top}$.

Formation of sets of homotopy classes of maps leads to a new category, the homotopy category (of spaces) HoTop. The objects of HoTop are the same as those of Top, but the set of morphisms from X to Y is given by $[X, Y]$. You should check that composition in Top descends to composition in HoTop.

Be warned that the homotopy category has rather poor categorical properties. Products and coproducts in Top provide products and coproducts in HoTop, but most other types of limits and colimits do not exist in HoTop.

If we have basepoints around, we will naturally want our homotopies to respect them. A “pointed homotopy” between pointed maps is a function $h : I \times X \to Y$ such that $h(t, \ast)$ is pointed for all t. This means that it factors through the quotient of $I \times X$ obtained by pinching $I \times \ast$ to a point. This quotient space may be expressed in terms of the smash product:

$$\frac{I \times X}{I \times \ast} = I_+ \wedge X.$$

Pointed homotopy is again an equivalence relation, and we have the pointed homotopy category, or, more properly, the homotopy category of pointed spaces HoTop_\ast. We'll write $[X, Y]_\ast$ for the set of maps in this category.

Definition 41.4. Let (X, \ast) be a pointed space and n a positive integer. The nth homotopy group of X is

$$\pi_n(X) = [S^n, X]_\ast.$$

Note the long list of aliases for this set: for any k with $0 \leq k \leq n$,

$$\pi_n(X) = [S^n, X]_\ast = [S^0, \Omega^n X]_\ast = [S^k, \Omega^{n-k} X]_\ast = \pi_k(\Omega^{n-k} X).$$

Since π_1 group-valued, $\pi_n(X)$ is indeed a group. These groups look innocuous, but they turn out to hold the solutions to many important geometric problems, and are correspondingly difficult to compute. For example, if a simply connected finite complex is not contractible then infinitely many of its homotopy are nonzero, and only finitely many of them are known.

42 Fiber bundles

Much of this course will revolve around variations on the following concept.

Definition 42.1. A fiber bundle is a map $p : E \to B$, such that for every $b \in B$, there exists an open subset $U \subseteq B$ containing b and a map $p^{-1}(U) \to p^{-1}(b)$ such that $p^{-1}(U) \to U \times p^{-1}(b)$ is a homeomorphism.

When $p : E \to B$ is a fiber bundle, E is called the total space, B the base space, and p the projection. The point pre-image $p^{-1}(b) \subseteq B$ for $b \in B$ is the the fiber over b.

An isomorphism from $p : E \to B$ and $p' : E' \to B$ is a homeomorphism $f : E \to E'$ such that $p' \circ f = p$. The map $p : E \to B$ is a fiber bundle if it is “locally trivial,” i.e. locally isomorphic to a “trivial” bundle $p_{1} : U \times F \to U$.

Fiber bundles are naturally occurring objects. For instance, a covering space $E \to B$ is precisely a fiber bundle with discrete fibers.
Example 42.2 (The Hopf fibration). The “Hopf fibration” provides a beautiful example of a fiber bundle. Let $S^3 \subset \mathbb{C}^2$ be the unit 3-sphere. Write $p : S^3 \to \mathbb{CP}^1 \cong S^2$ for the map sending a vector v to the complex line through v and the origin. This is a fiber bundle whose fiber is S^1.

We said “the fiber” of p is S^1. It’s not hard to see that any two fibers of a fibration over a path connected base space are homeomorphic, so this language isn’t too bad. If we envision S^3 as the one-point compactification of \mathbb{R}^3, we can visualize how the various fibers relate to each other. The fiber through the point at infinity is a line in \mathbb{R}^3; imagine it as the z-axis. All the other fibers are circles. It’s a great exercise to envision how they fill up Euclidean space.

Example 42.3. The Stiefel manifold $V_k(\mathbb{R}^n)$ is the space of orthogonal “k-frames,” that is, ordered k-element orthonormal sets of vectors in \mathbb{R}^n. Equivalently, it is the space of linear isometric embeddings of \mathbb{R}^k into \mathbb{R}^n; or the set of $n \times k$ matrices A such that $AA^T = I_k$. It is a compact manifold.

We also have the Grassmannian $\text{Gr}_k(\mathbb{R}^n)$, the space of k-dimensional vector subspaces of \mathbb{R}^n. By forming the span, we get a map

$$V_k(\mathbb{R}^n) \to \text{Gr}_k(\mathbb{R}^n)$$

generalizing the double cover $S^{n-1} \to \mathbb{R}P^{n-1}$ (which is the case $k = 1$). There is of course a complex analogue,

$$V_k(\mathbb{C}^n) \to \text{Gr}_k(\mathbb{C}^n)$$

generalizing the Hopf bundle (which is the case $n = 2, k = 1$).

These maps are fiber bundles (with fiber over V given by the space of ordered orthonormal bases of V). We can regard fact this as a special case of the following general theorem about homogeneous spaces of compact Lie groups (such as $O(n)$, $U(n)$, or a finite group).

Proposition 42.4. Let G be a compact Lie group and let $G \supseteq H \supseteq K$ a sequence of closed subgroups (also then compact Lie groups in their own right). Then the projection map between homogeneous spaces $G/K \to G/H$ is a fiber bundle.

The orthogonal group $O(n)$ acts on the Stiefel manifold $V_k(\mathbb{R}^n)$ from the left, by postcomposition. This action is transitive, and the isotropy group of the basepoint is the subgroup $O(n-k) \times I_k \subseteq O(n)$. This means that

$$V_k(\mathbb{R}^n) = O(n)/O(n-k) \times I_k,$$

and we have a fibration $O(n) \to V_k(\mathbb{R}^n)$ with fiber $O(n-k)$. For example, $V_1(\mathbb{R}^n)$ is the unit sphere S^{n-1} in \mathbb{R}^n, so we have a fibration $O(n) \to S^{n-1}$ with fiber $O(n-1)$. This will be useful in our analysis of this topological group.

Another interesting map occurs if we forget all but the first vector in a k-frame. This gives us a map $V_k(\mathbb{R}^n) \to S^{n-1}$. This is the bundle of tangent $(k-1)$-frames on the $(n-1)$-sphere. A deep question asks for which n and k this bundle has a section.

The Grassmannian $\text{Gr}_k(\mathbb{R}^n)$ is obtained by dividing by the larger subgroup $O(n-k) \times O(k)$, and Proposition 42.4 implies that the map $V_k(\mathbb{R}^n) \to \text{Gr}_k(\mathbb{R}^n)$ is a fiber bundle.

Proposition 42.4 is a corollary of the following general criterion.

Theorem 42.5 (Ehresmann, 1951; see [1]). Suppose E and B are smooth manifolds, and let $p : E \to B$ be a smooth (i.e., C^∞) map. If p is a proper (preimages of compact sets are compact) submersion (that is, $dp : T_pE \to T_{p(e)}B$ is a surjection for all $e \in E$), then it is a fiber bundle.
Much of this course will consist of a study of fiber bundles such as these through various essentially algebraic lenses. To bring them into play, we will always demand a further condition of our bundles.

Definition 42.6. An open cover \mathcal{U} of a space X is *numerable* if there exists subordinate partition of unity; i.e., there is a family of functions $\varphi_U : X \to [0,1] = I$, indexed by the elements of \mathcal{U}, such that $\varphi_U^{-1}((0,1]) = U$ and any $x \in X$ belongs to only finitely many $U \in \mathcal{U}$. The space X is *paracompact* if any open cover admits a numerable refinement. A fiber bundle is *numerable* if it admits a numerable trivializing cover.

So any fiber bundle over a paracompact space is numerable. This isn’t too restrictive for us:

Proposition 42.7 (Miyazaki; see Theorem 1.3.5 in [5]). *CW-complexes are paracompact.*

43 Fibrations, Fundamental groupoid

Fibrations and path liftings

During the 1940s, much effort was devoted to extracting homotopy-theoretic features of fiber bundles. It came to be understood that the desired consequences relied entirely on a “homotopy lifting property.” One of the revolutions in topology around 1950 was the realization that it was advantageous to take that property as a *definition*. This extension of the notion of a fiber bundle included wonderful new examples, but still retained the homotopy theoretic consequences. Here is the definition.

Definition 43.1. A (Hurewicz) fibration is a map $p : E \to B$ that satisfies the *homotopy lifting property* (commonly abbreviated as HLP): Given any $f : W \to E$ and any homotopy $h : I \times W \to B$ with $h(0,w) = pf(w)$, there is a map \overline{h} that lifts h and extends f: that is, making the following diagram commute.

\[
\begin{array}{ccc}
W & \xrightarrow{f} & E \\
\downarrow & & \downarrow p \\
I \times W & \xrightarrow{h} & B
\end{array}
\]

(4.1)

For example, for any space X (even the empty space!) the unique map $X \to \ast$ is a fibration. (A lift is given by $\overline{h}(t,w) = f(w)$.) In general, though, this seems like an alarming definition, since the HLP has to be checked for *all* spaces W, *all* maps f, and *all* homotopies h!

On the other hand, an advantage of this type of definition, by means of a lifting condition, is that it enjoys various easily checked persistence properties.

- **Base change:** If $p : E \to B$ is a fibration and $X \to B$ is any map, then the induced map $E \times_B X \to X$ is again a fibration. In particular, any product projection is a fibration.
- **Products:** If $p_i : E_i \to B_i$ is a family of fibrations then the product map $\prod p_i$ is again a fibration.
- **Exponentiation:** If $p : E \to B$ is a fibration and A is any space, then $E^A \to B^A$ is again fibration.
- **Composition:** If $p : E \to B$ and $q : B \to X$ are both fibrations, then the composite $qp : E \to X$ is again a fibration.
Not all of these persistence properties are true for fiber bundles. Which ones fail?

A product projection is obtained from the map to a point by base-change, so any product projection is a fibration.

There is a nice geometric interpretation of what it means for a map to be a fibration, in terms of “path liftings”. We’ll use Cartesian closure! The adjoint of the solid arrow part of (4.1) is

\[
\begin{array}{c}
W \\ f
\end{array} \xrightarrow{\sim} \begin{array}{c} E \\ p \end{array} \xrightarrow{\sim} \begin{array}{c} B^I \\ ev_0 \end{array} \xrightarrow{\sim} B
\]

By the definition of the pullback, the data of this diagram is equivalent to a map \(W \to B^I \times_B E \). Explicitly,

\[B^I \times_B E = \{ (\omega, e) \in B^I \times E : \omega(0) = p(e) \}. \]

This space comes equipped with a map from \(E^I \), given by sending a path \(\omega : I \to E \) to

\[\tilde{p}(\omega) = (p\omega, \omega(0)) \in B^I \times_B E. \]

In these terms, giving a lift \(\tilde{h} \) in (4.1) is equivalent to giving a lift

\[
\begin{array}{c}
W \\
\tilde{h}
\end{array} \xrightarrow{\sim} \begin{array}{c} E^I \\ \tilde{p} \end{array} \xrightarrow{\sim} \begin{array}{c} B^I \times_B E \\
W \xrightarrow{\sim} B^I \times_B E
\end{array}
\]

This again needs to be checked for every \(W \) and every map to \(B^I \times_B E \). But at least there is now a universal case to consider: \(W = B^I \times_B E \) mapping by the identity map! So \(p \) is a fibration if and only if a lift \(\lambda \) exists in the following diagram; that is, a section of \(\tilde{p} \):

\[
\begin{array}{c}
E^I \\
\lambda
\end{array} \xrightarrow{\sim} \begin{array}{c} B^I \times_B E \\
d \xrightarrow{\sim} B^I \times_B E
\end{array}
\]

The section \(\lambda \) is called a path lifting function. To understand why, suppose \((\omega, e) \in B^I \times_B E \), so that \(\omega \) is a path in \(B \) with \(\omega(0) = p(e) \). Then \(\lambda(\omega, e) \) is then a path in \(E \) lying over \(\omega \) and starting at \(e \). The path lifting function provides a continuous lift of paths in \(B \). The existence (or not) of a section of \(\tilde{p} \) provides a single condition that needs to be checked if you want to see that \(p \) is a fibration.

There is no mention of local triviality in this definition. However:

Theorem 43.2 (Dold, 1963; see [27], Chapter 13). Let \(p : E \to B \) be a continuous map. Assume that there is a numerable cover of \(B \), say \(\mathcal{U} \), such that for every \(U \in \mathcal{U} \) the restriction \(p|_{p^{-1}(U)} : p^{-1}U \to U \) is a fibration. Then \(p \) itself is a fibration.

Corollary 43.3. Any numerable fiber bundle is a fibration.
Comparing fibers over different points

If \(p : E \to B \) is a covering space, then unique path lifting provides, for any path \(\omega \) from \(a \) to \(b \), a homeomorphism \(F_a \to F_b \) depending only on the path homotopy class of \(\omega \). Our next goal is to construct an analogous map for a general fibration.

Consider the solid arrow diagram:

\[
\begin{array}{ccc}
F_a & \xrightarrow{h} & E \\
\downarrow{\text{in}_a} & & \downarrow{p} \\
I \times F_a & \xrightarrow{\text{pr}_1} & I \xrightarrow{\omega} B.
\end{array}
\]

This commutes since \(\omega(0) = a \). By the homotopy lifting property, there is a dotted arrow that makes the entire diagram commute. If \(x \in F_a \), the image \(h(1, x) \) is in \(F_b \). This supplies us with a map \(f : F_a \to F_b \), given by \(f(x) = h(1, x) \).

Since we are not working with a covering space, there will in general be many lifts \(h \) and so many choices of \(f \). But we may at least hope that the homotopy class of \(f \) is determined by the path homotopy class of \(\omega \).

So suppose we have two paths \(\omega_0, \omega_1 \), with \(\omega_0(0) = \omega_1(0) = a \) and \(\omega_0(1) = \omega_1(1) = b \), and a homotopy \(g : I \times I \to B \) between them (so that \(g(0, t) = \omega_0(t) \), \(g(1, t) = \omega_1(t) \), \(g(s, 0) = a \), \(g(s, 1) = b \)).

Choose lifts \(h_0 \) and \(h_1 \) as above. These data are captured by a diagram of the form

\[
\begin{array}{ccc}
((\partial I \times I) \cup (I \times \{0\})) \times F_a & \xrightarrow{\text{in}_0} & E \\
\downarrow{\text{in}_0} & & \downarrow{p} \\
I \times I \times F_a & \xrightarrow{\text{pr}_1} & I \times I \xrightarrow{g} B
\end{array}
\]

The map along the top is given by \(h_0 \) and \(h_1 \) on \(\partial I \times I \times F_a \) and by \(\text{pr}_2 : I \times F_a \to F_a \) followed by the inclusion on the other summand.

If the dotted lift exists, it would restrict on \(I \times \{1\} \times F_a \) to a homotopy between \(f_0 \) and \(f_1 \). Well, the subspace \((\partial I \times I) \cup (I \times \{0\}) \) of \(I \times I \) wraps around three edges of the square. It’s easy enough to create a homeomorphism with the pair \((I \times I, \{0\} \times I) \), so the HLP (with \(W = I \times F_a \)) gives us the dotted lift.

So the map \(F_a \to F_b \) is well-defined up to homotopy by the path homotopy class of the path \(\omega \) from \(a \) to \(b \). Let’s denote it by \(f_\omega \).

Fundamental groupoid

We can set this up in categorical terms. The space \(B \) defines a category whose objects are the points of \(B \), and in which a morphism from \(a \) to \(b \) is a homotopy class of paths from \(a \) to \(b \). Composition is given by the juxtaposition rule

\[
(\sigma \cdot \omega)(t) = \begin{cases}
\omega(2t) & 0 \leq t \leq 1/2 \\
\sigma(2t - 1) & 1/2 \leq t \leq 1.
\end{cases}
\]

The constant path \(c_a \) serves as an identity at up to homotopy: here are pictures of the homotopy between \(c_b \cdot \omega \) and \(\omega \), and between \(\sigma \cdot c_a \) and \(\sigma \).
Similarly, \((\alpha \cdot \sigma) \cdot \omega \simeq \alpha \cdot (\sigma \cdot \omega)\) as the picture below shows.

Moreover, every morphism has an inverse, given by \(\overline{\omega}(t) = \omega(1 - t)\).

This gives us a groupoid – a small category in which every morphism is an isomorphism – called the fundamental groupoid of \(B\), and written with a capital \(\pi\): \(\Pi_1(X)\).

Our work can be succinctly summarized as follows.

Proposition 43.4. Formation of fibers of a fibration \(p : E \to B\) determines a functor \(\Pi_1(B) \to \text{HoTop}\).

Proof. We should check functoriality: if \(\omega : a \sim b\) and \(\sigma : b \sim c\), then hopefully the induced homotopy classes compose:

\[f_{\sigma \omega} = f_{\sigma} \circ f_{\omega}. \]

To see this, pick lifts \(h_\omega\) and \(h_\sigma\) in

\[
\begin{array}{ccc}
F_a & \to & E \\
\downarrow & & \downarrow \\
I \times F_a & \overset{\omega}{\to} & B
\end{array}
\quad \begin{array}{ccc}
F_b & \to & E \\
\downarrow & & \downarrow \\
I \times F_b & \overset{\sigma}{\to} & B
\end{array}
\]

so that \(f_\omega(e) = h_\omega(1, e)\) and \(f_\sigma(e) = h_\sigma(1, e)\). Then construct a lifting in

\[
\begin{array}{ccc}
F_a & \to & E \\
\downarrow & & \downarrow \\
I \times F_a & \overset{\sigma \omega}{\to} & B
\end{array}
\]

by using \(h_\omega\) in the left half of interval, and \(h_\sigma \circ f_\omega\) in the right half.

The resulting map \(F_a \to F_b\) is then precisely \(f_\sigma \circ f_\omega\). \(\square\)

Remark 43.5. Last semester we defined the product of loops as juxtaposition but in the reverse order. That convention would have produced a contravariant functor \(\Pi_1(X) \to \text{HoTop}\).

Remark 43.6. Since any functor carries isomorphisms to isomorphisms, Proposition 43.4 carries within it the statement that a path from \(a\) to \(b\) determines a homotopy class of homotopy equivalences from \(F_a\) to \(F_b\).

Fix a map \(p : E \to Y\). The pullback of \(E\) along a map \(f : X \to Y\) can vary wildly as \(f\) is deformed; it is far from being a homotopy invariant. Just think of the case \(X = *\), for example, when the pullback along \(f : * \to Y\) is the point preimage \(p^{-1}(f(*))\). One of the great features of fibrations is this:

Proposition 43.7. Let \(p : E \to Y\) be a fibration and \(f_0, f_1 : X \to Y\) two maps. Write \(E_0\) and \(E_1\) for pullbacks of \(E\) along \(f_0\) and \(f_1\). If \(f_0\) and \(f_1\) are homotopic then \(E_0\) and \(E_1\) are homotopy equivalent.
Proof. We construct a fibration over Y^X whose fiber over f is f^*E, the pullback of $E \to Y$ along f. It occurs as the middle vertical composite in the following diagram of pullbacks.

$$
\begin{array}{ccc}
f^*E & \longrightarrow & E \\
\downarrow & & \downarrow p \\
* \times X & \overset{\text{in}_f \times 1}{\longrightarrow} & Y^X \times X \\
\downarrow & & \downarrow \text{ev} \\
* & \overset{\text{in}_f}{\longrightarrow} & Y^X \\
\end{array}
$$

The middle horizontal composite is the map f, so the pullback is f^*E as shown. Now a homotopy between f_0 and f_1 is a path in Y^X from f_0 to f_1, and so by Lemma 43.4 the fibers over them are homotopy equivalent.

Remark 43.8. We could ask for more: We could ask that E_0 and E_1 are homotopy equivalent by maps and homotopies respecting the projections to X: that there is a fiber homotopy equivalence between them. This is in fact the case, as you will show for homework.

44 Cofibrations

Cofibrations

Let $i : A \to X$ be a map of spaces. If Y is another space, when is the induced map $Y^X \to Y^A$ a fibration? For example, if $a \in X$, does evaluation at a produce a fibration $Y^X \to Y$?

By the definition of a fibration, we want a lifting in the solid-arrow diagram

$$
\begin{array}{ccc}
W & \longrightarrow & Y^X \\
\downarrow \text{in}_0 & & \downarrow \\
I \times W & \longrightarrow & Y^A.
\end{array}
$$

Adjointing over, we get:

$$
\begin{array}{ccc}
A \times W & \longrightarrow & X \times W \\
\downarrow 1 \times \text{in}_0 & & \downarrow \\
A \times I \times W & \longrightarrow & X \times I \times W
\end{array}
$$

Adjointing over again, this diagram transforms to:

$$
\begin{array}{ccc}
A & \longrightarrow & X \\
\downarrow & & \downarrow \\
A \times I & \longrightarrow & X \times I
\end{array}
$$

This discussion motivates the following definition of a cofibration, “dual” to the notion of fibration.
Definition 44.1. A cofibration is a map $i : A \rightarrow X$ that satisfies homotopy extension property (sometimes abbreviated as “HEP”): for any solid-arrow commutative diagram as below, a dotted arrow exists making the whole diagram commutative.

$$
\begin{align*}
 A & \longrightarrow X \\
 \downarrow & \searrow \\
 A \times I & \longrightarrow X \times I \\
 \downarrow & \searrow \\
 Z.
\end{align*}
$$

The definition is set up to provide an answer to our question.

Lemma 44.2. If $A \rightarrow X$ is cofibration then $Y^X \rightarrow Y^A$ is a fibration.

A basepoint $* \in X$ is nondegenerate if $\{*\} \hookrightarrow X$ is a cofibration. Every point in a CW complex, for example, serves as a nondegenerate basepoint. If $*$ is a nondegenerate basepoint of A, the evaluation map $ev : X^A \rightarrow X$ is a fibration, The fiber of ev over the basepoint of X is exactly the space of pointed maps X_*^A.

How shall we check that a map is a cofibration? By the universal property of a pushout, $A \rightarrow X$ is a cofibration if and only if there is an extension in

$$
\begin{align*}
 X \cup_A (A \times I) & \longrightarrow X \times I \\
 \downarrow & \searrow \\
 Z
\end{align*}
$$

for every map f. Now there is a universal example, namely $Z = X \cup_A (A \times I)$, $f = id$. So a map i is a cofibration if and only if $X \cup_A (A \times I)$ is a retract of $X \times I$. The space involved is called the mapping cylinder, and written

$$
M(i) = X \cup_A (A \times I).
$$

Example 44.3. $S^{n-1} \hookrightarrow D^n$ is a cofibration: The map

$$
D^n \cup_{S^{n-1}} (S^{n-1} \times I) \hookrightarrow D^n \times I
$$

is the inclusion of the open tin can into the closed can full of soup –

[Diagram of mapping cylinder]
In particular, setting $n = 1$ in this example, $\{0,1\} \hookrightarrow I$ is a cofibration, so evaluation at the endpoints,

$$ev_{0,1} : Y^I \to Y \times Y,$$

is a fibration. In fact every point in I is nondegenerate, so $ev_a : Y^I \to Y$ is a fibration for any $a \in I$.

The class of cofibrations is closed under the following operations.

- Cobase change: if $A \to X$ is a cofibration and $A \to B$ is any map, the pushout $B \to X \cup_A B$ is again a cofibration.
- Coproducts: if $A_j \to X_j$ is a cofibration for every j, then the coproduct map $\coprod A_j \to \coprod X_j$ is again a cofibration.
- Product: If $A \to X$ is a cofibration and B is any space, then $A \times B \to X \times B$ is again a cofibration.
- Composition: If $A \to B$ and $B \to X$ are both cofibrations, then the composite $A \to X$ is again a cofibration.

It follows from these inheritance properties and the single example $S^{n-1} \hookrightarrow D^n$ that if X is a CW complex and A is a subcomplex then $A \to X$ is a cofibration.

Cofibrations are usually embeddings of closed subspaces. (This holds under a Hausdorffness condition, for example.) Cofibrancy provides a natural condition under which a contractible subspace can be collapsed with out damage.

Proposition 44.4. Let $A \to X$ be a cofibration, and write X/A for the pushout of $* \xleftarrow{\text{in}} A \to X$. If A is contractible then $X \to X/A$ is a homotopy equivalence.

Proof. Pick a contracting homotopy $h : A \times I \to A$, so that $h(a,0) = a$ and $h(a,1) = * \in A$ for all $a \in A$. By the cofibrancy there is an extension of $f \circ h$ to a homotopy $g : X \times I \to X$ such that $g(x,0) = x$. $g(-,1)$ then factors through the projection $p : X \to X/A$: there is a map $r : X/A \to X$ such that $r \circ p$ is homotopic the identity.

To construct a homotopy from $p \circ r$ to $1 : X/A \to X/A$, note that the homotopy g sends $A \times I$ into A, so its composite with $p : X \to X/A$ factors through a map $g : (X/A) \times I \to X/A$. At $t = 0$ this is the identity; at $t = 1$ it is just $p \circ r$.

Here’s a diagram that might help.

```
A \times 1 \cup * \times I \quad \xrightarrow{*} \quad \ast
\downarrow \quad \downarrow
A \times I \quad \xrightarrow{h} \quad A
\downarrow \quad \downarrow
X \times 0 \cup A \times I \quad \xrightarrow{f} \quad X
\downarrow \quad \downarrow
X \times I \quad \xrightarrow{g} \quad X/A
\quad \uparrow r \quad \uparrow
X \times 1 \quad \xrightarrow{in_1} \quad X \xrightarrow{p} X/A
\quad \uparrow
X \xrightarrow{in_0} X/A
```

□
Factorization

This theorem illustrates that it’s safer to divide out by a subspace if the inclusion map is a cofibration. Maybe we can replace any map by a cofibration.

Theorem 44.5. Any map \(f : X \to Y \) of spaces admits a factorization as

\[
\begin{array}{ccc}
X & \xrightarrow{i} & M(f) \\
\downarrow{f} & & \downarrow{M(f) \rightarrow Y} \\
Y & \xleftarrow{\sim} & M(f)
\end{array}
\]

where \(i : X \to M(f) \) is a cofibration and \(M(f) \to Y \) is a homotopy equivalence. This factorization is natural in the map \(f \).

Proof. There is no conflict of notation here: The space denoted \(M(f) \) is the very same mapping cylinder constructed earlier! The map \(X \to M(f) \) sends \(x \) to \((x, 1)\), along the top of the top hat. The projection map \(p : M(f) \to Y \) sends \(y \) to \(y \), and \((x, t)\) to \(f(x) \).

A homotopy inverse of \(p \) is provided by the map \(q \) sending \(y \) to \(y \). It’s clear that \(p \circ q = 1_Y \). A homotopy from the other composite to \(1_{M(f)} \) is given by \(h(s, (x, t)) = (x, st) \) and \(h(s, y) = y \).

To see that \(i \) is a cofibration, we will use the retraction condition. Think of \(M(f) \) as the back wall of \(M(f) \times I \). We adjoin \(X \times I \) as the top of the box. Now a retraction is given by sending \((y, t)\) to \(y \), and along the \(X \) portion preserve \(x \) but project from a point in front, back onto the roof and back wall.

45 Cofibration sequences and co-exactness

There is a pointed version of the cofibration condition: but you only ask to extend pointed homotopies; so the condition is weaker than the unpointed version. (It’s true that we seek an extension to a pointed homotopy, but since the basepoint is in the source space this is automatic.) A pointed homotopy can be thought of as a pointed map

\[
X \wedge I_+ = \frac{X \times I}{\sim \times I} \to Y
\]

This condition can again be expressed as requiring that the inclusion of the (now reduced) mapping cylinder

\[M(f) = X \wedge I_+ \cup_X Y \]

into \(Y \wedge I_+ \) admits a retraction. (Here \(X \to X \wedge I_+ \), along \(t = 0 \).) Today we’ll work entirely in the pointed context, and I’ll tend to omit the adjectives “reduced” and “pointed.” (Maybe I should have written \(M^u \) for the unpointed variant!)

Any map \(f : X \to Y \) admits a canonical factorization as a cofibration followed by a homotopy equivalence:

\[
\begin{array}{ccc}
X & \xrightarrow{f} & M(f) \\
\downarrow{\sim} & & \downarrow{\sim} \\
Y & \xleftarrow{i} & M(f)
\end{array}
\]
where \(i \) embeds \(X \) along \(t = 1 \). For example, the cone on a space \(X \) is a mapping cylinder:

\[
CX = M(X \to \ast).
\]

The map \(X \to \ast \) factors as the cofibration \(X \to CX \) followed by the homotopy equivalence \(CX \to \ast \).

Since \(i \) is a cofibration, we should feel entitled to collapse it to a point; that is, form the pushout

\[
\begin{array}{ccc}
X & \xrightarrow{f} & \ast \\
\downarrow{i} & & \downarrow{} \\
Y & \xleftarrow{\sim} & M(f) & \xrightarrow{} & C(f)
\end{array}
\]

\(C(f) \) is the mapping cone of \(f \). If the mapping cylinder is a top hat, the mapping cone is a witch’s hat. One example: the suspension functor is given by

\[
\Sigma X = C(X \to \ast).
\]

Since \(i \) is a cofibration, the pushout \(\ast \to C(f) \) is again a cofibration. (One says that a basepoint \(\ast \in Z \) is nondegenerate if the inclusion \(\{\ast\} \to X \) is a cofibration.)

This pushout can be expressed differently: Instead of replacing \(X \to Y \) with a cofibration, let’s replace \(X \to \ast \) with a cofibration, namely, the cone on \(X \):

\[
M(X \to \ast) = M \wedge I
\]

where \(0 \in I \) is taken as the basepoint and hence serves as the cone point. So we have a pushout diagram

\[
\begin{array}{ccc}
X & \xrightarrow{\text{in}_1} & \ast \\
\downarrow{f} & & \downarrow{} \\
Y & \xleftarrow{\sim} & M(f) & \xrightarrow{} & C(f)
\end{array}
\]

This pushout is homeomorphic to the earlier one; but notice that the homeomorphism uses the automorphism of the unit interval sending \(t \) to \(1 - t \).

If \(f \) is already a cofibration, the cobase change property implies that \(CX \to C(f) \) is again cofibration. \(CX \) is contractible, so by Proposition 44.4, collapsing it to a point is a homotopy equivalence. But collapsing \(CX \) in \(C(f) \) is the same as collapsing \(Y \) in \(X \):

Lemma 45.1. If \(f : X \to Y \) is a cofibration then the collapse map \(C(f) \to Y/X \) is a homotopy equivalence.

Co-exactness

The composite

\[
X \xrightarrow{f} Y \xrightarrow{i(f)} C(f)
\]

is null-homotopic; that is, it’s homotopic to the constant map (with value the basepoint). The homotopy is given by \(h : (x,t) \mapsto [x,t] \), so when \(t = 0 \) we can use \([x,0] \sim f(x) \) to see the composite, while when \(t = 1 \) we get the constant map.
The pair \((i(f), h)\) is \textit{universal} with this property: a map \(g : Y \to Z\) along with a null-homotopy of the composite \(g \circ f\) is the same thing as giving a map \(C(f) \to Z\) that extends \(g\).

An implication of this is the following:

\textbf{Lemma 45.2.} For any pointed map \(f : X \to Y\) and any pointed space \(Z\), the sequence of pointed sets

\[[X, Z] \to [Y, Z] \to [C(f), Z] \]

is exact, in the sense that

\[\text{im}(i(f)^*) = \{ g : Y \to Z : g \circ f \simeq \ast \}. \]

We say that the sequence \(X \to Y \to C(f)\) is \textit{co-exact}.

The map \(f : X \to Y\) functorially determines a map \(i(f) : Y \to C(f)\), and we may form \textit{its} mapping cone, and continue:

\[X \xrightarrow{f} Y \xrightarrow{i(f)} C(f) \xrightarrow{i^2(f)} C(i(f)) \xrightarrow{i^3(f)} C(i^2(f)) \xrightarrow{i^4(f)} \cdots . \]

This seems to lead off into the wilderness, but luckily there is a kind of periodicity at work. Here’s a picture of \(C(g)\):

\[\text{picture needed} \]

The map \(i(f)\) is the pushout of the cofibration \(X \to CX\) along \(X \to Y\), so it is a cofibration. Therefore, by Lemma \(45.1\) the collapse map \(C(i(f)) \to C(f)/Y\) is a homotopy equivalence. But

\[C(f)/Y = \Sigma X, \]

the (reduced) suspension of \(X\). So we have the commutative diagram

\[\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow{i(f)} & & \downarrow{i(f)} \\
C(f) & \xrightarrow{i^2(f)} & C(i(f)) \\
\downarrow{\pi(f)} & & \downarrow{\pi(f)} \\
\Sigma X & \xrightarrow{\pi(f)} & \Sigma Y
\end{array} \]

\(\simeq\)

Now we have two ways to continue! I combine them in the homotopy commutative diagram

\[\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow{i(f)} & & \downarrow{i(f)} \\
C(f) & \xrightarrow{i^2(f)} & C(i(f)) \\
\downarrow{\pi(f)} & & \downarrow{\pi(f)} \\
\Sigma X & \xrightarrow{\pi(f)} & \Sigma Y \\
\downarrow{\pi(f)} & & \downarrow{\pi(f)} \\
\Sigma X & \xrightarrow{\pi(f)} & \Sigma Y \\
\end{array} \]

Notice the minus sign! It means that instead of \([t, x] \mapsto [t, f(x)]\), we have to use \([t, x] \mapsto [1-t, f(x)]\). This is needed to make the triangle commute, even up to homotopy, as you can see by being careful with the parametrization of the cones.

\[\text{picture needed} \]

The resulting long sequence of maps

\[X \to Y \to C(f) \to \Sigma X \to \Sigma Y \to \Sigma C(f) \to \Sigma^2 X \to \cdots \]

is the \textit{Barratt-Puppe sequence} associated to the map \(f\). Each two-term subsequence is co-exact.

The Barratt-Puppe sequence is a “homotopical” version of the long exact homology sequence of a pair. Suppose that \(A\) is a subspace of \(X\). Then I claim that

\[\overline{H}_*(X \cup CA) \cong H_*(X, A) \]
If you combine that with the suspension isomorphism in reduced homology, the Barratt-Puppe sequence gives you the homology long exact sequence of the pair.

To see the equality, just use homotopy invariance and excision:

\[
\overline{H}_*(X \cup CA) = H_*(X \cup CA, *) = H_*(X \cup CA, CA)
\]

\[
= H_*(X \cup C_{\leq (1/2)}A, C_{\leq (1/2)}A) = H_*(X \cup A \times I, A \times I) = H_*(X, A).
\]

Since \(X \cup CA \simeq X/A\) if \(A \to X\) is a cofibration, this is a good condition to guarantee that

\[
H_*(X, A) = \overline{H}_*(X/A).
\]
Chapter 5

The homotopy theory of CW complexes

46 Weak equivalences and Whitehead’s Theorems

We now have defined the homotopy groups of a pointed space,
\[\pi_n(X) = [S^n, X]. \]

So \(\pi_0(X) \) is the pointed set of path components. For \(n > 0 \), \(\pi_n \) only sees the path component of the basepoint. It’s a group for \(n = 1 \), and hence, since \(\pi_n(X) = \pi_1(\Omega^{n-1}X) \), for \(n \geq 1 \).

Here’s another very useful way to represent an element of \(\pi_n(X, \ast) \). Recall our description of the \(n \)-sphere as a pointed space:
\[S^n = I^n/\partial I^n. \]

So an element of \(\pi_n(X, \ast) \) is a homotopy class of maps of pairs
\[(I^n, \partial I^n) \to (X, \ast). \]

Lemma 46.1. For \(n \geq 2 \), \(\pi_n(X) \) is abelian.

Proof. I’ll give you two proofs of this fact. Since \(\pi_n(X) = \pi_2(\Omega^{n-2}X) \), it suffices to consider \(n = 2 \).

First, geometric: Given \(f, g : I^2 \to X \), both sending \(\partial I \) to \(\ast \), we can form another one by putting the two side by side (and compressing the horizontal coordinate by a factor of 2 in each). This is the sum in \(\pi_n(X) \). This is homotopic to the map that does \(f \) and \(g \) in much smaller rectangles and fills in the rest of the square with maps to the basepoint. Now I’m free to move these two smaller rectangles around one another, exchanging positions. Then I can re-expand, to get the addition \(g + f \).

Now, algebraic: An \(H \)-space is a pointed space \(Y \) together with map \(\mu : Y \times Y \to Y \) such that

\[
\begin{array}{ccc}
Y & \xrightarrow{\mu} & Y \\
\downarrow{\text{in}_1} & & \downarrow{\text{in}_2} \\
Y \times Y & \xrightarrow{1} & Y \\
\end{array}
\]

commutes in \(\text{Ho}(\text{Top}_*) \). The relevant example here is \(Y = \Omega X \). Then \(\pi_1(Y, \ast) \) has extra structure: Since \(\pi_1(Y \times Y, \ast) = \pi_1(Y, \ast) \times \pi_1(Y, \ast) \) (as groups) we get a group \(G \) together with a group
homomorphism $\mu : G \times G \to G$ such that

$$
\begin{array}{c}
G \\
\downarrow \text{in}_1 \\
G \times G \\
\downarrow \mu \\
\downarrow \text{in}_2 \\
G
\end{array}
$$

commutes. That is to say, $\mu(a, 1) = a$, $\mu(1, d) = d$, and, since $(a, b) \cdot (c, d) = (ac, bd)$ in $G \times G$,

$$
\mu(ac, bd) = \mu(a, b) \cdot \mu(c, d).
$$

Take $b = 1 = c$: $\mu(a, d) = ad$: that is, the “multiplication” μ is none other than the group multiplication. Then take $a = 1 = d$: $\mu(c, b) = bc$: that is, the group structure is commutative.

We can trace what happens when we move the basepoint. Let $\omega : I \to X$ be a path from a to b. It induces a map

$$
\omega_# : \pi_n(X, a) \to \pi_n(X, b)
$$

in the following way. Given $f : I^n \to X$ representing $\alpha \in \pi_n(X, \ast)$, define a map

$$
I^n \times 0 \cup \partial I^n \times I \to X
$$

by

$$(v, t) \mapsto \begin{cases} f(v) & \text{for } t = 0 \\ \omega(t) & \text{for } v \in \partial I^n. \end{cases}$$

Pre-compose this map with the map from the back face $I^n \times 1$ given by projecting from the point $(b, 2)$, where b is the center of I^n. The result is a new map $I^n \to X$; it sends the middle part of the cube by f, and the peripheral part by ω.

It’s easy to check that this gives rise to a functor $\Pi_1(X) \to \textbf{Set}$, and hence to an action of $\pi_1(X)$ on $\pi_n(X)$. For $n = 1$, this is the conjugation action,

$$
\omega \cdot \alpha = \omega \alpha \omega^{-1}.
$$

For all $n \geq 1$ it is an action by group homomorphisms; for $n \geq 2$ $\pi_n(X, \ast)$ is a $\mathbb{Z}[\pi_1(X, \ast)]$-module.

Definition 46.2. A space is *simple* if this action is trivial for every choice of basepoint.

Example 46.3. If all path components are simply connected, the space is simple. A topological group is a simple space.

This action can be used to explain how homotopic maps act on homotopy groups.

Proposition 46.4. Let $h : f_0 \sim f_1$ be a (“free,” as opposed to pointed) homotopy of maps $X \to Y$. Let $\ast \in X$, and let $\omega : I \to X$ by $\omega(t) = h(\ast, t)$. Then

$$
\begin{array}{c}
\pi_n(Y, f_0(\ast)) \\
\downarrow f_{0\ast} \\
\pi_n(X, \ast) \\
\downarrow f_{1\ast} \\
\downarrow \omega_# \\
\pi_n(Y, f_1(\ast))
\end{array}
$$

commutes.
Proof. The homotopy h fills in the cube $I^n \times I$, and provides a pointed homotopy from $\omega \cdot f_0$ to f_1.

While it may be hard to compute homotopy groups, we can think about what sort of maps induce isomorphisms in them.

Definition 46.5. A map $f : X \to Y$ is a weak equivalence if it induces an isomorphism in π_0 and in π_n for every choice of basepoint in X.

Of course it suffices to pick one point in each path component.

Weak equivalences may not have any kind of map going in the opposite direction. The definition seems very base-point focused, but in fact it is not.

Proposition 46.6. Any homotopy equivalence is a weak equivalence.

Proof. Let $f : X \to Y$ be a homotopy equivalence with homotopy inverse $g : Y \to X$, and pick a homotopy $h : 1_X \sim gf$. Define $\omega : I \to X$ by $\omega(t) = h(\ast, t)$. Then by Proposition 46.4 we have a commutative diagram

$$
\begin{array}{ccc}
\pi_n(X, \ast) & \xrightarrow{f_*} & \pi_n(Y, f(\ast)) \\
\downarrow{\omega_*} & & \downarrow{g_*} \\
\pi_n(X; gf(\ast)) & & \\
\end{array}
$$

in which the diagonal is an isomorphism. Picking a homotopy $1 \sim fg$ gives the rest of the diagram

$$
\begin{array}{ccc}
\pi_n(X, \ast) & \xrightarrow{f_*} & \pi_n(Y, f(\ast)) \\
\cong \downarrow{g_*} & \cong & \downarrow{g_*} \\
\pi_n(X, gf(\ast)) & \xrightarrow{f_*} & \pi_n(Y, fgf(\ast)) \\
\end{array}
$$

It follows that g_* is an isomorphism, and therefore f_* is also.

Here are three fundamental theorems about weak equivalences, all due more or less to J.H.C. Whitehead.

Theorem 46.7. Any weak equivalence induces an isomorphism in singular homology.

Since $H_0(X)$ is the free abelian group generated by $\pi_0(X)$, this is obvious in dimension 0.

Theorem 46.8. If X and Y are simply connected spaces, then any map $f : X \to Y$ that induces an isomorphism in homology is a weak equivalence.

Theorem 46.9. Let X and Y be CW complexes. Any weak equivalence from X to Y is in fact a homotopy equivalence.

Theorem 46.8 clearly provides a powerful way to construct weak equivalences, and, when combined with Theorem 46.9, homotopy equivalences. We will prove a vast generalization of Theorem 46.8 later in the course.

Here is a useful strengthening of Theorem 46.9:

Theorem 46.10. A map $f : X \to Y$ is a weak equivalence if and only if $f \circ : [W, X] \to [W, Y]$ is bijective for all CW complexes W.
Proof of 46.10⇒46.9. We assume that
\[f \circ : [K, X] \to [K, Y] \]
is bijective for every CW complex \(K \). Taking \(K = Y \), we find that there is a map \(g : Y \to X \) such that \(f \circ g = 1_Y \). We claim that \(g \circ f = 1_X \) as well. To see this we take \(K = X \): so
\[f \circ : [X, X] \to [X, Y] \]
is a monomorphism. Under it \(1 \mapsto f \), but \(g \circ f \) does as well:
\[g \circ f \mapsto f \circ (g \circ f) = (f \circ g) \circ f = 1_Y \circ g = f. \]
So \(g \circ f = 1_X \).

Remark 46.11. There is a deep shift of focus involved here. In the beginning, homotopy theory dealt with what happens when you define an equivalence relation (“homotopy”) on maps. Focusing on weak equivalences is an entirely different perspective: we are picking out a collection of maps that will be regarded as “equivalences.” They are to become the isomorphism in the homotopy category. The fact that they satisfy 2-out-of-3 makes the collection of weak equivalences an appropriate choice.

This change in perspective may be attributed to Daniel Quillen, who, in *Homotopical Algebra*, set out an axiomization of homotopy theory using three classes of maps, which he termed “weak equivalences,” “cofibrations,” and “fibrations.” They are assumed to be related to each other through appropriate factorization and lifting properties. The resulting theory of “model categories” dominated the underlying framework of homotopy theory for thirty years, and is still a critically important tool.

47 Homotopy long exact sequence and homotopy fibers

Relative homotopy groups

We’ll continue to think of \(\pi_n(X, *) \) as a set of homotopy classes of maps of pairs:
\[\pi_n(X, *) = [(I^n, \partial I^n), (X, *)]. \]
As usual in algebraic topology, there is much to be gained from establishing a “relative” version. We will use the sequence of subspaces
\[I^n \supseteq \partial I^n \supseteq \partial I^{n-1} \times I \cup I^{n-1} \times 0 \]
in this definition. We will write \(J_n \) for the last subspace, so for example \(J_1 = \{0\} \subset I \).

Definition 47.1. Let \((X, A) \) be a pair of spaces (that is, \(X \) is a space and \(A \) is a subspace). For \(n \geq 1 \), define a pointed set
\[\pi_n(X, A, *) = [(I^n, \partial I^n, J_n), (X, A, *)]. \]

This definition is set up in such a way that
\[\pi_n(X, \{\}, *) = \pi_n(X, *) \]
so that the inclusion \(\{\ast\} \hookrightarrow A \) induces a map

\[
\pi_n(X, \ast) \to \pi_n(X, A, \ast).
\]

Also, restricting to the “back face” \(I^{n-1} \times 0 \) provides a map

\[
\partial : \pi_n(X, A, \ast) \to \pi_{n-1}(A, \ast)
\]

and the composite of these two is obviously “trivial,” meaning that its image is the basepoint \(\ast \in \pi_{n-1}(A, \ast) \). We get a sequence of pointed sets

\[
\vdots \to \pi_3(X, A, \ast) \xrightarrow{\partial} \pi_2(A, \ast) \to \pi_2(X, \ast) \to \pi_2(X, A, \ast) \to \pi_1(A, \ast) \to \pi_1(X, \ast) \to \pi_1(X, A, \ast) \to \pi_0(A, \ast) \to \pi_0(X, \ast) \to \pi_0(X, A, \ast)
\]

We claim that this is an exact sequence of pointed sets: the long exact homotopy sequence of a pair. For example, an element of \(\pi_1(X, A, \ast) \) is represented by a path starting at the basepoint and ending in \(A \). Its boundary is the component of that point in \(A \). Saying that the component of \(a \in A \) maps to the base point component of \(X \) is exactly saying that \([a] \in \pi_0(A)\) is in the image of \(\partial : \pi_1(X, A, \ast) \to \pi_0(A, \ast) \).

We will investigate structure of these relative homotopy groups, and explain why the sequence is exact, by developing an analogue of the Barratt-Puppe sequence that turned out to give rise to the homology long exact sequence of a pair.

Fiber sequences

In the pointed category, we should again redefine “fibration” slightly so that \(p : E \to B \) is a fibration if every pointed solid arrow diagram

\[
\begin{array}{ccc}
W & \longrightarrow & E \\
\downarrow \text{in} & & \downarrow p \\
I^+ \land W & \longrightarrow & B
\end{array}
\]

admits a lift. There are fewer diagrams, but more is demanded of the lift. Exactly the same proof we did before shows that if \(A \to B \) is a pointed cofibration then \(X^B \to X^A \) is a pointed fibration. For example we can take \((B, A, \ast) = (I, \partial I, 0)\) to see that the map from the path space

\[
P(X) = X^I = \{\omega : I \to X : \omega(0) = \ast\}
\]

to \(X \) by evaluation at 1 is a pointed fibration.

Here’s a lemma we should have pointed out long ago, phrased now in this pointed setting.
Lemma 47.2. Let $p : E \to B$ be a pointed fibration and suppose given $f : W \to E$ and $g : W \to B$ such that $pf \sim g$: so g is a lift of f up to homotopy. Then f is homotopic to a lift “on the nose,” that is, a function $\overline{f} : W \to E$ such that $p\overline{f} = g$.

Proof. We do the only thing we can do: use the homotopy $h : pf \sim g$ to build the solid arrow square

$$
\begin{array}{ccc}
W & \xrightarrow{f} & E \\
\downarrow & & \downarrow p \\
I_+ \wedge W & \xrightarrow{h} & B
\end{array}
$$

whose lift gives \overline{f} as $\overline{h}(1, -)$.

So if $g : W \to B$ is such that $pg \sim \ast$, then g is homotopic to a map that lands in the fiber $p^{-1}(\ast) = F$ of p over \ast. This shows that the sequence of pointed spaces

$$F \to E \to B$$

is “exact,” in the sense that for any pointed space W the sequence

$$[W, F]_* \to [W, E]_* \to [W, B]_*$$

is exact.

Not every map is a fibration, but every map factors as

$$
\begin{array}{ccc}
X & \xrightarrow{\sim} & T(f) \\
\downarrow f & & \downarrow p \\
& & Y
\end{array}
$$

where $X \to T(f)$ is a homotopy equivalence and p is a pointed fibration.

The fiber of p is the homotopy fiber of f, written $F(f)$:

$$F(f) = \{(x, \omega) \in X \times Y^I : \omega(1) = f(x)\}.$$

Here we take $0 \in I$ as the basepoint, so ω is a path in Y from \ast to $f(x)$.

As in our discussion of the Barratt-Puppe cofibration sequence, there is an equivalent way of constructing $F(f)$, by replacing $\ast \to Y$ with a fibration, namely the path space Y_*^I, and forming the pullback over X:

$$
\begin{array}{ccc}
F(f) & \to & P(Y) \\
\downarrow & & \downarrow \\
X & \to & Y
\end{array}
$$

Continuing with the analogy, the map $p(f) : F(f) \to X$ is a fibration, with fiber ΩX, and we have the Barratt-Puppe fibration sequence

$$Y \xleftarrow{I} X \xleftarrow{p} F(f) \xleftarrow{\Omega f} \Omega Y \xleftarrow{\Omega p} \Omega X \xleftarrow{\Omega \mu} \Omega F(f) \xleftarrow{\Omega \mu} \cdots$$

that is exact. It gives rise to the long exact homotopy sequence:
Lemma 47.3. Let \((X, A, *)\) be a pointed pair, and let \(F\) denote the homotopy fiber of the inclusion \(A \to X\). For each \(n \geq 1\) there is a natural isomorphism
\[
\pi_n(X, A) \cong \pi_{n-1}(F, *)
\]
such that
\[
\begin{array}{ccc}
\pi_n(X, *) & \to & \pi_n(X, A, *) \\
\cong & & \cong \\
\pi_{n-1}(\Omega X, *) & \to & \pi_{n-1}(F, *)
\end{array}
\]
\[
\begin{array}{ccc}
& & \delta \\
& & \\
& & p
\end{array}
\]
commutes.

Corollary 47.4. The sequence homotopy long exact sequence of a pair is in fact exact; for \(n \geq 2\) the set \(\pi_n(X, A, *)\) is a group, abelian for \(n \geq 3\); and all the maps between groups in the sequence are homomorphisms.

Furthermore the bottom sequence makes sense (and is exact) even if \(A \to X\) is not a subspace inclusion.

Proof of Lemma 47.3 To begin with, notice that \(\pi_1(X, A, *)\) is the set of path components of the space of maps
\[
(I, \partial I, J_1) \to (X, A, *).
\]
This is the space of paths in \(X\) from \(*\) to some element of \(a\): that is, it’s precisely \(F(A \to X)\).

In fact, for any \(n \geq 1\), the space of maps
\[
(I^n, \partial I^n, J_n) \to (X, A, *)
\]
is precisely \(\Omega^{n-1}F(A \to X)\). For example, when \(n = 2\), an element in the given space is given by a map \(I^2 \to X\) that is the basepoint along the bottom and takes values in \(A\) along the top – so a path in \(F(A \to X)\) – and also is the basepoint along the left and right edges – so it’s a loop in \(F(A \to X)\).

The diagram is easily seen to commute.

We saw that \(\pi_1(A, *)\) acts on \(\pi_n(A, *)\). The map \(\pi_n(A, *) \to \pi_n(X, *)\) is equivariant, if we let \(\pi_1(A, *)\) act on \(\pi_n(X, *)\) via the group homomorphism \(\pi_1(A, *) \to \pi_1(X, *)\). The group \(\pi_1(A, *)\) also acts on \(\pi_n(X, A, *)\), compatibly.

It’s clear from the picture that the maps in the homotopy long exact sequence are equivariant.

48 Serre fibrations and relative lifting

Relative CW complexes and relative homotopy lifting

We will do many proofs by induction over cells in a CW complex. We might as well base the induction arbitrarily. This suggests the following definition.
Definition 48.1. A relative CW-complex is a pair \((X, A)\) together with a filtration
\[A = X_{-1} \subseteq X_0 \subseteq X_1 \subseteq \cdots \subseteq X, \]
such that (1) for all \(n\) the space \(X_n\) sits in a pushout square:
\[
\begin{array}{ccc}
\coprod_{\alpha \in \Sigma_n} S^{n-1}_\alpha & \longrightarrow & \coprod_{\alpha \in \Sigma_n} D^n_\alpha \\
\downarrow & & \downarrow \\
X_{n-1} & \longrightarrow & X_n
\end{array}
\]
and (2) \(X = \lim_{\longrightarrow} X_n\) topologically.

The maps \(S^{n-1} \to X_{n-1}\) are “attaching maps” and the maps \(D^n \to X_n\) are “characteristic maps.”

If \(A = \emptyset\), this is just the definition of a CW-complex. Often \(X\) will be a CW-complex and \(A\) a subcomplex.

Our inductive strategy will involve constructing lifts inductively.

Definition 48.2. A map \(p : E \to B\) is said to satisfy the relative homotopy lifting property with respect to \(i : A \to X\) if every solid arrow diagram
\[
\begin{array}{ccc}
I \times A \cup 0 \times X & \longrightarrow & E \\
\downarrow & & \downarrow p \\
I \times X & \longrightarrow & B
\end{array}
\]
admits a “filler” as shown.

The absolute case is \(A = \emptyset\).

This is in turn a special case of the following very general language, due to Quillen.

Definition 48.3. Fix maps \(p : E \to B\) and \(j : V \to W\). The map \(p\) satisfies the right lifting property with respect to \(j\), and \(j\) satisfies the left lifting property with respect to \(p\), if every solid arrow diagram
\[
\begin{array}{ccc}
V & \longrightarrow & E \\
\downarrow j & & \downarrow p \\
W & \longrightarrow & B
\end{array}
\]
admits a filler as shown.

Serre fibrations

If we’re going to restrict our attention to CW complexes, we might as well weaken the lifting condition defining fibrations.

Definition 48.4. A map \(p : E \to B\) is a Serre fibration if it has the homotopy lifting property with respect to all CW complexes. That is, for every CW complex \(X\) and every solid arrow diagram
\[
\begin{array}{ccc}
X & \longrightarrow & E \\
\downarrow \text{in}_0 & & \downarrow p \\
I \times X & \longrightarrow & B
\end{array}
\]
there is a lift as indicated.
For contrast, what we called a fibration is also known as a Hurewicz fibration. (Witold Hurewicz was a faculty member at MIT from 1945 till his death in 1958 from a fall from the top of the Uxmal Pyramid in Mexico.)

Clearly things like the homotopy long exact sequence of a fibration extend to the context of Serre fibrations. So for example:

Lemma 48.5. Suppose that \(p : E \to B \) is both a Serre fibration and a weak equivalence. Then each fiber is weakly contractible; i.e. the map to \(* \) is a weak equivalence.

Proof. Since \(\pi_0(E) \to \pi_0(B) \) is bijective, we may assume that both \(E \) and \(B \) are path connected. The long exact homotopy sequence shows that \(\partial : \pi_1(B) \to \pi_0(F) \) is surjective with kernel given by the image of the surjection \(\pi_1(E) \to \pi_1(B) \): so \(\pi_0(F) = * \). Moving up the sequence then shows that all the higher homotopy groups of \(F \) are also trivial. \(\square \)

No new ideas are required to prove the following two facts.

Proposition 48.6. Let \(p : E \to B \). The following are equivalent.

1. \(p \) is a Serre fibration.
2. \(p \) has HLP with respect to \(D^n \) for all \(n \geq 0 \).
3. \(p \) has relative HLP with respect to \(S^{n-1} \hookrightarrow D^n \) for all \(n \geq 0 \).
4. \(p \) has relative HLP with respect to \(A \hookrightarrow X \) for all relative CW complexes \((X,A) \).

Proposition 48.7 (Relative straightening). Assume that \((X,A) \) is a relative CW complex and that \(p : E \to B \) is a Serre fibration, and that the diagram

\[
\begin{array}{ccc}
A & \longrightarrow & E \\
\downarrow \quad \quad j & & \downarrow p \\
X & \longrightarrow & B \\
\end{array}
\]

commutes. If \(g \) is homotopic to a map \(g' \) still making the diagram commute and for which there is a filler, then there is a filler for \(g \).

Proof of “Whitehead’s little theorem”

We are moving towards a proof of this theorem of J.H.C. Whitehead.

Theorem 48.8. Let \(f : X \to Y \) be a weak equivalence and \(W \) any CW complex. The induced map \([W,X] \to [W,Y]\) is bijective.

The key fact is this:

Proposition 48.9. Suppose that \(j : A \hookrightarrow X \) is a relative CW complex and \(p : E \to B \) is both a Serre fibration and a weak equivalence. Then a filler exists in any diagram

\[
\begin{array}{ccc}
A & \longrightarrow & E \\
\downarrow \quad \quad j & & \downarrow p \\
X & \longrightarrow & B \\
\end{array}
\]

That is, \(j \) satisfies the left lifting property with respect to “acyclic” Serre fibrations, and acyclic Serre fibrations satisfy the right lifting property with respect to relative CW complex inclusions.
Proof. The proof will of course go by induction. The inductive step is this: Assuming that $p : E \to B$ is a Serre fibration and a weak equivalence, any diagram

\[
\begin{array}{ccc}
S^{n-1} & \longrightarrow & E \\
\downarrow & & \downarrow p \\
D^n & \longrightarrow & B
\end{array}
\]

admits a filler.

First let’s think about the special case in which $B = \ast$. This is true because for any path connected space X the evident surjection

$$\pi_n(X, \ast) \to [S^n, X]$$

is none other than the orbit projection associated to the action of $\pi_1(X, \ast)$ on $\pi_n(X, \ast)$. This fact is why I wanted to focus on this otherwise rather obscure action. You’ll verify it for homework.

For the general case, we begin by using Lemma 48.7 replacing the map g by a homotopic map g' with properties that will let us construct a filler. To define g', let

$$\varphi : D^n \to D^n \text{ by } \varphi : v \mapsto \begin{cases} 0 & \text{ if } |v| \leq 1/2 \\ (2|v| - 1)v & \text{ if } |v| \geq 1/2 \end{cases}$$

This map is homotopic to the identity (by a piecewise linear homotopy that fixes S^{n-1}), so $g' = g \circ \varphi \simeq g$.

The virtue of g' is that we can treat the two parts of D^n separately. The annulus $\{v \in D^n : |v| \geq 1/2\}$ is homeomorphic to $I \times S^{n-1}$, so a lifting exists on it since p is a Serre fibration. On the other hand g' is constant on the inner disk $D^n_{1/2}$; with value $g(0)$. We just constructed a lift on $S^{n-1}_{1/2}$, but it actually lands in the fiber of p over $g(0)$. We can fill in that map with a map $D^n_{1/2} \to p^{-1}(g(0))$ since the fiber is weakly contractible.

Proof of Theorem 48.8. Begin by factoring $f : X \to Y$ as a homotopy equivalence followed by a fibration; so as a weak equivalence followed by a Serre fibration p. Weak equivalences satisfy “2 out of 3” (as you’ll check for homework), so p is again a weak equivalence. Thus we may assume that f is a Serre fibration (as well as being a weak equivalence).

To see that the map is onto, apply Proposition 48.9 to

\[
\begin{array}{ccc}
\varnothing & \longrightarrow & X \\
\downarrow & & \downarrow f \\
W & \longrightarrow & Y
\end{array}
\]

To see that the map is one-to-one, apply Proposition 48.9 to

\[
\begin{array}{ccc}
\partial I \times W & \longrightarrow & X \\
\downarrow & & \downarrow f \\
I \times W & \longrightarrow & Y
\end{array}
\]

This style of proof – using lifting conditions and factorizations – is very much in the spirit of Daniel Quillen’s formalization of homotopy theory in his development of “model categories.” (Quillen was also an MIT faculty member, from 1965 till 1988.)
49 Connectivity and approximation

The language of connectivity

An analysis of the proof of “Whitehead’s little theorem” shows that if the CW complex we are using as a source has dimension at most n, then we only needed to know that the map $X \to Y$ was an “n-equivalence” in the following sense.

Definition 49.1. Let n be a positive integer. A map $f : X \to Y$ is an n-equivalence provided that $f_* : \pi_0(X) \to \pi_0(Y)$ is an isomorphism, and for every choice of basepoint $a \in X$ the map $f_* : \pi_q(X,a) \to \pi_q(Y,f(a))$ is an isomorphism for $q < n$ and an epimorphism for $q = n$. It is a 0-equivalence if $f_* : \pi_0(X) \to \pi_0(Y)$ is an epimorphism.

So a map is a weak equivalence if it is an n-equivalence for all n.

We restate:

Theorem 49.2. Let n be a nonnegative integer and W a CW complex. If $f : X \to Y$ is an n-equivalence then the map $f_* : [W,X] \to [W,Y]$ is bijective if $\dim W < n$ and surjective if $\dim W = n$.

The odd edge condition in the definition of n-equivalence might be made more palatable by noticing that the long exact homotopy sequence shows that (for $n > 0$) f is an n-equivalence if and only if $\pi_0(X) \to \pi_0(Y)$ is bijective and for any $b \in Y$ the group $\pi_q(F(f,b))$ is trivial for $q < n$.

This suggests some further language.

Definition 49.3. Let n be a positive integer. A space X is n-connected if it is path connected and for any choice of basepoint $\pi_q(X,a)$ is trivial for all $q \leq n$. A space X is 0-connected if it is path connected.

So “1-connected” and “simply connected” are synonymous. The homotopy long exact sequence shows that for $n > 0$ a map $X \to Y$ is an n-equivalence if it is bijective on connected components and for every $b \in Y$ the homotopy fiber $F(f,b)$ is n-connected.

The language of connectivity extends to pairs:

Definition 49.4. Let n be a non-negative integer. A pair (X,A) is n-connected if $\pi_0(A) \to \pi_0(X)$ is surjective and for every basepoint $a \in A$ the set $\pi_q(X,A,a)$ is trivial for $q \leq n$.

That is, (X,A) is n-connected if the inclusion map $A \to X$ is an n-equivalence.

Skeletal approximation

Theorem 49.5 (The skeletal approximation theorem). Let (X,A) and (Y,B) be relative CW complexes. Any map $f : (X,A) \to (Y,B)$ is homotopic rel A to a skeletal map – a map sending X_n into Y_n for all n. Any homotopy between skeletal maps can be deformed rel A to one sending X_n into Y_{n+1} for all n.

I will not give a proof of this theorem. You have to inductively push maps off of cells, using smooth or simplicial approximation techniques. I am following Norman Steenrod in calling such a map “skeletal” rather than the more common “cellular,” since it is after all not required to send cells to cells.

Corollary 49.6. Any map $X \to Y$ of CW complexes is homotopic to a skeletal map, and any homotopy between skeletal maps can be deformed to one sending X_n to Y_{n+1}.
For example, the n-sphere $I^n/\partial I^n$ has a CW structure in which $\text{Sk}_{n-1} S^n = *$ and $\text{Sk}_n S^n = S^n$. The characteristic map is given by a choice of homeomorphism $D^n \to I^n$. So if $q < n$, then any map $S^q \to S^n$ factors through the basepoint up to homotopy. This shows that

$$\pi_q(S^n) = 0 \text{ for } q < n$$

– the n-sphere is $(n-1)$-connected. So also is any CW complex with one 0-cell and no other q-cells for $q < n$.

As a special case (one used in proving the theorem in fact):

Proposition 49.7. Let (X, A) be a relative CW complex in which all the cells of X are in dimension greater than n. Then (X, A) is n-connected.

For example (with $A = \emptyset$) $\pi_0(X_0) \to \pi_0(X)$ is surjective: every path component of X contains a vertex. And $\pi_1(X_1) \to \pi_1(X)$ is surjective: any path between vertices can be deformed onto the 1-skeleton. Moreover, any homotopy between paths in the 1-skeleton can be deformed to lie in the 2-skeleton; $\pi_1(X_2) \to \pi_1(X)$ is an isomorphism.

For $n > 0$, this is saying that for any choice of basepoint in X, $\pi_q(X, X_n)$ is trivial for $q \leq n$.

CW approximation

Any space is weakly equivalent to a CW complex. In fact:

Theorem 49.8. Any map $f : A \to Z$ admits a factorization as

$$A \xrightarrow{i} X \xrightarrow{j} Z$$

where i is a relative CW inclusion and j is a weak equivalence.

This is analogous to the factorization as a cofibration followed by a homotopy equivalence. This factorization is part of the “Quillen model structure” on spaces, while the earlier one is part of the “Strom model structure.” An important special case: $A = \emptyset$: so any space admits a weak equivalence from a CW complex.

Proof. Fix a space Y. To begin with, pick a point in each path component of Y not hit by a path component of A, adjoin to A a discrete set mapping to those points. This gives us a factorization $A \to X_0 \to Y$ in which X_0 is obtained from A by attaching 0-simplices and $X_0 \to Y$ is a 0-equivalence.

Next, for each pair of distinct components of A that map to the same component in Y pick points a, b in them and a path in Y from $f(a)$ to $f(b)$. These data determine a map to Y from the pushout

$$\coprod S^0 \to X_0 \xrightarrow{i} \coprod D^1 \to X'_1$$

that is bijective on π_0.

These constructions let us assume that both A and Y are path connected, and we do so henceforth.
We want to add 1-cells to A to obtain a space X, along with an extension of f to a 1-equivalence $X \to Y$. This just means a surjection in π_1. So pick a subset of $\pi_1(Y)$ that together with $\text{im}(\pi_1(A) \to \pi_1(Y))$ generate $\pi_1(Y)$, and pick a representative loop for each element of that set. This defines a map $X = A \lor \lor S^1 \to Y$ that is surjective on π_1.

Now suppose that $f : A \to Y$ is a 1-equivalence. We will adjoin 2-cells to A to produce a space X, together with an extension of f to a 2-equivalence.

As a convenience, we first factor f as $A \hookrightarrow A' \to Y$ in which the first map is a cofibration (and an inclusion) and the second is a homotopy equivalence. This lets us assume that A is in fact a subspace of Y.

We want to adjoin 2-cells to produce an extension of f to a 2-equivalence $X \to Y$. The group $\pi_2(Y, A)$ measures the failure of f itself to be a 2-equivalence. It is a group with an action of $\pi_1(A)$. Pick generators of it as such, and for each pick a representative map $(D^2, S^1, *) \to (Y, A, *)$.

Together they determine a map to Y from the pushout in

$$
\begin{array}{ccc}
\coprod S^1 & \rightarrow & A \\
\downarrow & & \downarrow \\
\coprod D^2 & \rightarrow & X
\end{array}
$$

We want to see that $\pi_1(X) \to \pi_1(Y)$ is an isomorphism and $\pi_2(X) \to \pi_2(Y)$ is an epimorphism. The factorization $A \to X \to Y$ determines a map of homotopy long exact sequences of groups:

$$
\begin{array}{cccccccc}
\pi_2(A) & \rightarrow & \pi_2(X) & \rightarrow & \pi_2(X, A) & \rightarrow & \pi_1(A) & \rightarrow & \pi_1(X) & \rightarrow & * \\
\downarrow & & = \\
\pi_2(A) & \rightarrow & \pi_2(Y) & \rightarrow & \pi_2(Y, A) & \rightarrow & \pi_1(A) & \rightarrow & \pi_1(Y) & \rightarrow & *
\end{array}
$$

By construction, the middle arrow is surjective. The usual diagram chases show that $\pi_1(X) \to \pi_1(Y)$ is an isomorphism and that $\pi_2(X) \to \pi_2(Y)$ is an epimorphism.

An identical argument continues the induction. We carried out this case because it’s slightly nonstandard, involving nonabelian groups.

At the end, we have to observe that the direct limit of a sequence of cell attachments enjoys the property that

$$
\lim \pi_q(X_n) \rightarrow \pi_q(\lim X_n)
$$

is an isomorphism.

Notice that if we only want to get to an n-equivalence, we need only add cells up to dimension n: Any space is n-equivalent to a CW complex of dimension at most n.

This construction is of course very ineffective: at each stage you have to compute some relative homotopy group! And since finite complexes have infinitely much homotopy, it seems that this process might go on for ever even for very simple spaces. The cellular chain complex of a CW complex suggests that one might be able to do better. In fact you can, as long as your space is simply connected.
Theorem 49.9 (C.T.C. Wall). Let Y be a simply connected space such that $H_n(Y)$ is finitely generated for all n. Let β_n be the nth Betti number (the rank of $H_n(Y)$) and let τ_n be the nth torsion number (the number of finite cyclic summands in $H_n(Y)$). Then there is a CW complex with $(\beta_n + \tau_{n-1})$ n-cells for each n that admits a weak equivalence to Y.

This is clearly optimal, since in order to produce a finite cyclic summand in the nth homology of a chain complex of finitely generated abelian groups you need generators in dimension n and $n + 1$.

50 The Postnikov tower

Postnikov sections

The cell attaching method used in the proof of CW approximation has other applications.

Theorem 50.1. For any space X and any nonnegative integer, there is a map $X \to X[n]$ with the following properties.

1. For every basepoint $* \in X$, $\pi_q(X,*) \to \pi_q(X[n],*)$ is an isomorphism for $q \leq n$.
2. For every basepoint $\in X[0,n]$, $\pi_q(X[n],*) = 0$ for $q > n$.
3. $(X[n],X)$ is a relative CW complex with cells of dimension at least $(n + 2)$.

When $n = 0$, the space $X[0]$ is “weakly discrete”; a CW approximation to it is given by a map $\pi_0(X) \to X[0]$.

When X is path connected and $n = 1$, this is asserting the existence of a path connected space $X[1]$ with $\pi_1(X[1]) = \pi_1(X)$ and no higher homotopy groups, and a map $X \to X[1]$ inducing an isomorphism on π_1. Assuming $X[1]$ is nice enough to have a universal cover, its universal cover will be weakly contractible. Such a space is said to be “aspherical.” Any group G occurs as $\pi_1(X)$ for a suitable 2-dimensional CW complex: Express G in terms of generators and relations; form a wedge of circles indexed by the generators, and map in a wedge of circles according to the relations. By the van Kampen theorem, the cofiber of this map will have the desired fundamental group.

Proof. Work one connected component at a time. We’ll progressively clean out the higher homotopy of the space X, constructing a sequence of spaces

$$X = X(n) \to X(n + 1) \to X(n + 2) \to \cdots$$

all sharing the same π_q for $q \leq n$ but with

$$\pi_q(X(t)) = 0 \quad \text{for } n < q \leq t.$$

We can take $X(n) = X$. Thereafter $X(t)$ will be built from $X(t - 1)$ by attaching $(t + 1)$-cells, so by Corollary 49.7 the pair $(X(t), X(t - 1))$ is t-connected: the inclusion induces isomorphisms in π_q for $q < t$ and $\pi_1(X(t), X(t - 1)) = 0$.

So we just want to be sure to kill $\pi_1(X(t - 1))$, while not introducing anything new in $\pi_t(X(t))$. Pick a set of generators for $\pi_t(X(t - 1))$, and pick representatives $S^t \to X(t - 1)$ for them. Attach $(t + 1)$-cells to $X(t - 1)$ using these maps as attaching maps, to form a space $X(t)$. Here’s a fragment of the homotopy long exact sequence.

$$\pi_{t+1}(X(t), X(t - 1)) \xrightarrow{\partial} \pi_t(X(t - 1)) \to \pi_t(X(t)) \to \pi_t(X(t), X(t - 1)) = 0.$$

By construction, the boundary map is surjective, so $\pi_t(X(t)) = 0$.

Now pass to the limit;

$$X[0,n] = \lim X(t).$$

50. THE POSTNIKOV TOWER

If X was a CW complex, we can use skeletal approximation to make all the attaching maps skeletal. They then join any cells of the same dimension in X, and the resulting space $X[n]$ admits the structure of a CW complex in which X is a subcomplex.

What's this about passing to the limit?

Lemma 50.2. Any compact subspace of a CW complex lies in a finite subcomplex.

Proof. The “interior” of D^n is $D^n \setminus S^{n-1}$ (so for example the interior of D^0 is D^0 itself). A CW complex X is, as a set, the disjoint union of the interiors of its cells. These subspaces are sometimes called “open cells,” but since they are rarely open in X I prefer “cell interiors.” Any set subset of X that meets each cell interior in a finite set is a discrete subspace of X. So any compact subset of X meets only finitely many cell interiors. In particular a CW complex is compact if and only if it is finite.

The boundary of an n-cell (i.e. the image of the corresponding attaching map) is a compact subspace of the $(n-1)$-skeleton. It meets only finitely many of the cell interiors in that $(n-1)$-dimensional CW complex. By induction on dimension, each of those cells lie in finite complexes, so the n-cell we began with lies in a finite subcomplex.

Now let K be a compact subspace of X. It lies in the union of the finite subcomplexes containing the finite number of cell interiors meeting K. This union is a finite subcomplex of X. □

If (X, A) is a relative CW complex, the quotient X/A is a CW complex, where we can apply this lemma.

Corollary 50.3. Let $X(0) \subseteq X(1) \subseteq \cdots$ be a sequence of relative CW inclusions. Then for each q

$$\lim_{n \to \infty} \pi_q(X(n)) \xrightarrow{\cong} \pi_q(\lim_{n \to \infty} X(n))$$

Proof. Both S^q and D^q are compact. □

Now we have really gotten into homotopy theory! The space $X[n]$ is called the nth Postnikov section of X. Most of the time they are infinite dimensional, and you usually can’t even compute their cohomology.

The Postnikov Tower

How unique is the map $X \to X[n]$? How natural is this construction? To answer these questions, observe:

Proposition 50.4. Let n be a nonnegative integer, and let Y be a space such that $\pi_q(Y, *) = 0$ for every choice of basepoint and all $q > n$. Let (X, A) be a relative CW complex. If all the cells in $X \setminus A$ are of dimension at least $n + 2$ then the map

$$[X, Y] \xrightarrow{\cong} [A, Y].$$

is bijective. If there are also $(n + 1)$-cells, the map is still injective.

Proof. This uses the fact that if $\pi_q(Y, *) = 0$ then any map $S^q \to Y$ landing in the path component containing $*$ extends to a map from D^{q+1}.

Surjectivity: We extend a map $A \to Y$ to a map from X. For each attaching map $g : S^{q-1} \to S_{q-1} X$ (where $q \geq n + 2$) the composite $f \circ g : S^{q-1} \to Y$ extends over the disk D^q since $q - 1 > n$.

Injectivity: Regard $(X \times I, X \times \partial I \cup A \times I)$ as a relative CW complex, in which the cells are of dimension one larger than those of X. □
Corollary 50.5. Let X be an n-connected CW complex and Y a space with homotopy concentrated in dimension at most n. Then every map from X to Y is homotopic to a constant map.

Proof. By CW approximation, we may assume that X has a 0-cell and no other cells of dimension less than $n+1$. The pair $(X, *)$ satisfies the requirement necessary to conclude that $[X, Y] \to [* , Y]$ is injective.

Now let $X \to Y$ be any map. Construct $X \to X[m]$ and $Y \to Y[n]$, so that $X[m]$ is attached using cells of dimension at least $m+2$ and $\pi_q(Y[n]) = 0$ for $q > n$. If $m \geq n$, then by Proposition 50.4 there is a unique homotopy class of maps $X[m] \to X[n]$ making

$$
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow & & \downarrow \\
X[m] & \xrightarrow{-} & Y[n]
\end{array}
$$

commute. For example we could take $X = Y$ and use the identity map: For $m \geq n$ there is a unique homotopy class $X[m] \to X[n]$ making

$$
\begin{array}{ccc}
& & X \\
& \xrightarrow{f} & \\
& \downarrow & \downarrow \\
X[m] & \xrightarrow{-} & X[n]
\end{array}
$$

commute. When $m = n$, this shows that the map $X \to X[m]$ is unique up to a unique weak equivalence. When $m = n+1$, it gives us a tower of spaces, the Postnikov tower:

$$
\begin{array}{ccc}
& & X \\
& \xrightarrow{f} & \\
& \downarrow & \downarrow \\
& \downarrow & \downarrow \\
& \downarrow & \downarrow \\
\vdots & \xrightarrow{-} & \vdots \\
\downarrow & \downarrow & \downarrow \\
X[1] & \xrightarrow{-} & X[0].
\end{array}
$$

As you go up in the tower you capture more and more of the homotopy groups of X. The Postnikov tower is functorial as a functor into the homotopy category. We have a lot of control over how each space $X[n]$ is constructed, but very little control over what the resulting space looks like – e.g. what its homology is in high dimensions. There is likely to be a lot, even if X is a finite complex.

In a weak sense this tower is Eckmann-Hilton dual to a skeleton filtration: instead of building up a space as a direct limit of a sequence of spaces approximating the homology dimension by dimension, we are building it as the inverse limit of a sequence approximating the homotopy dimension by dimension.

More generally, Proposition 50.4 shows that $X \to X[n]$ is the initial map (in HoTop) to a space with nontrivial homotopy only in dimension at most n.

Another common notation for $X[n]$ is $\tau_{\leq n}X$: the “truncation” of X at dimension n.

Hurewicz, Moore, Eilenberg, Mac Lane, and Whitehead

Hurewicz theorem

I have claimed that homotopy groups carry a lot of geometric information, but are correspondingly hard to compute. Homology groups are much easier; they are “local,” in the sense that you can compute the homology of pieces of a space and glue the results together using Meyer-Vietoris. A cell structure quickly determines the homology (as we’ll recall in the next lecture).

So it would be great if we had a way to compare homotopy and homology, maybe by means of a map

\[h: \pi_n(X) \to H_n(X). \]

First we have to fix an orientation for the sphere \(S^n = \mathbb{I}^n / \partial \mathbb{I}^n \) (for \(n > 0 \)). Do this by declaring the standard ordered basis to be positively ordered. This gives us a preferred generator \(\sigma_n \in H_n(S^n) \).

Now let \(\alpha \in \pi_n(X) \). This homotopy class of maps \(S^n \to X \) determines a map \(H_n(S^n) \to H_n(X) \). Define

\[h(\alpha) = \alpha_*(\sigma_n). \]

This is a well-defined map \(\pi_n(X) \to H_n(X) \).

Lemma 51.1. \(h \) is a homomorphism.

Proof. The product in \(\pi_n(X) \) is given by the composite

\[
\begin{array}{ccc}
S^n & \xrightarrow{\alpha \beta} & X \\
\downarrow{\delta} & & \downarrow{\nabla} \\
S^n \vee S^n & \xrightarrow{\alpha \vee \beta} & X \vee X
\end{array}
\]

where \(\delta \) pinches an equator and \(\nabla \) is the fold map. Apply \(\overline{\Pi}_n \) and trace where \(\sigma_n \) goes:

\[
\begin{array}{ccc}
\sigma_n & \xrightarrow{h(\alpha) + h(\beta)} & (h(\alpha), h(\beta)) \\
\downarrow & & \downarrow \\
(\sigma_n, \sigma_n) & & (h(\alpha), h(\beta)).
\end{array}
\]

When \(n = 1 \), the Hurewicz homomorphism factors through the abelianization of \(\pi_1(X) \).

Theorem 51.2 (Hurewicz). If \(X \) is path-connected, \(\pi_1(X)^{ab} \to H_1(X) \) is an isomorphism. If \(X \) is \((n-1) \)-connected for \(n > 1 \), \(\pi_n(X) \to H_n(X) \) is an isomorphism.

This can be proved by “elementary means,” but we’ll prove an improved form of this theorem later and I’d prefer to defer the proof.

This lowest dimension in which homotopy can occur is the “Hurewicz dimension.” If \(X \) is an \((n-1) \)-connected CW complex, it has a CW approximation that begins in dimension \(n \), so it is homotopy equivalent to a CW complex with bottom cells in dimension at least \(n \), and the reduced homology (being isomorphic to the cellular homology) vanishes below dimension \(n \).

In the simply connected case there is a converse.

Corollary 51.3. Let \(X \) be a simply connected space. If \(\overline{\Pi}_q(X) = 0 \) for \(q < n \) then \(X \) is \((n-1) \)-connected.
Proof. If \(n > 2 \), the Hurewicz theorem says that \(\pi_2(X) = H_2(X) = 0 \), so \(X \) is 2-connected. And so on.

Simple connectivity is required here. A good example is provided by the “Poincaré sphere.” Let \(I \) be the group of symmetries of the regular icosahedron. It is a subgroup of \(SO(3) \) of order 60. Its preimage \(\tilde{I} \) in the double cover \(S^3 \) of \(SO(3) \) is a perfect group (of order 120). The quotient space \(S^3/\tilde{I} \) thus has \(H_1 = 0 \), and so by Poincaré duality \(H_2 = 0 \) as well. The group acts by oriented diffeomorphisms, so the quotient is an oriented 3-manifold with the same homology as \(S^3 \). But its fundamental group is \(\tilde{I} \), so it is not even homotopy equivalent to \(S^3 \) ... and it’s certainly not 2-connected. You can’t decide whether or not you need \(1 \)– and \(2 \)– cells by looking at homology alone, in this non-simply connected example. In fact \(\tilde{I} \) can be presented with two generator and two relations, so \(S^3/\tilde{I} \) has a CW structure with two 1-cells and two 2-cells. The boundary map \(C_2 \to C_1 \) is an isomorphism.

Moore spaces

Proposition 51.4. Let \(\pi \) be an abelian group and \(n \) a positive integer. There is a CW complex \(M \) with cells in dimensions 0, \(n \), and \(n + 1 \), such that

\[
\overline{H}_q(M) = \begin{cases} \pi & \text{if } q = n \\ 0 & \text{otherwise} \end{cases}
\]

Proof. If \(\pi \) is a free abelian group, we can pick generators and take a corresponding wedge of \(n \)-spheres.

For a general abelian group \(\pi \), pick a resolution by free abelian groups,

\[
0 \leftarrow \pi \leftarrow F_0 \xleftarrow{d} F_1 \leftarrow 0.
\]

Pick generators for \(F_0 \) and \(F_1 \), say \(\{\alpha_i : i \in I\} \) and \(\{\beta_j : j \in J\} \). Build the corresponding wedges of \(n \)-spheres. If we can realize the map \(d \) as \(\overline{H}_n(f) \) for some map between those spheres, then we can take \(M \) to be the mapping cone.

A pointed map from a wedge is given by pointed maps from each factor. The map \(d \) is determined by

\[
d\beta_j = \sum_i a_{ji}\alpha_i
\]

for some set of integers \(\{a_{ji}\} \), finitely nonzero for fixed \(j \). For each \(i \) we have an inclusion

\[
in_i : S^n \to \bigvee_{i \in I} S^n
\]

determining an element \(in_i \in \pi_n(\bigvee_{i} S^n) \). The sum

\[
\sum_i a_{ji}in_i
\]

determines a map from \(S^n \) to \(\bigvee_j S^n \). Use this on the \(j \)th copy of \(\bigvee_j S^n \) to get a map

\[
\bigvee_i S^n \leftarrow \bigvee_j S^n
\]

that realizes \(d \). We can then build \(M \) as an \(n + 1 \)-dimensional CW complex by taking the mapping cone of this map. \(\square \)
For example the Moore space for \(\pi = \mathbb{Z}/2\mathbb{Z} \) and \(n = 1 \) is the familiar space \(RP^2 \), and when \(n > 1 \) we can use \(\Sigma^{n-1} RP^2 \).

By wedging together Moore spaces we can form a space with any prescribed sequence of homology groups.

If \(\pi \) is any group, we can do a similar construction: pick a set of generators for \(\pi \) and a set of relations; form a wedge of circles one for each generator, and map circles into that wedge one for each relation. The cofiber is a connected 2-dimensional CW complex with \(\pi_1 = \pi \).

Eilenberg Mac Lane spaces

Now let \(M \) be a Moore space for \(\pi, n \). Our construction of it began with \(n \)-cells, so by skeletal approximation it has no homotopy below dimension \(n \). (We don’t need to appeal to Corollary 51.3 for this.) It probably has lots above dimension \(n \), but we can kill all that by forming the Postnikov stage or truncation

\[
M[n] = \tau_{\leq n} M
\]

This is now a space with just one homotopy group, in dimension \(n \). The Hurewicz theorem tells us that this single homotopy group is canonically isomorphic to \(\pi \).

If \(n = 1 \) we can start with any group \(\pi \), abelian or not, form the 2-dimensional complex we just made with \(\pi_1 = \pi \), and form its Postnikov 1-section.

So we have now constructed a space with a single nonzero homotopy group, in dimension \(n \). This is an *Eilenberg Mac Lane space*, denoted

\[
K(\pi, n).
\]

You know some examples of Eilenberg Mac Lane spaces already.

- \(K(\mathbb{Z}, 1) = S^1 \), \(K(\mathbb{Z}^n, 1) = (S^1)^n \).
- Any closed surface other than \(S^2 \) and \(RP^2 \) has contractible universal cover and so is aspherical.

 There are many other examples of aspherical compact manifolds. But as soon as there is torsion in a group, the Eilenberg Mac Lane space is infinite dimensional.

- The space \(RP^n \) has \(S^n \) as universal cover, and as \(n \to \infty \) \(S^n \) looses all its homotopy groups. So

 \[
 K(\mathbb{Z}/2\mathbb{Z}, 1) = RP^\infty.
 \]

 Similarly,

 \[
 K(\mathbb{Z}, 2) = CP^\infty.
 \]

The Eilenberg Mac Lane space can be constructed functorially in \(\pi \). This is not the case with the Moore space construction. This is why I resisted incorporating the pair \((\pi, n) \) into a symbol for a Moore space.

The Whitehead tower

One further thing we can do at this point: Endow \(X \) with a basepoint \(* \). Form the homotopy fiber of the map \(X \to \tau_{\leq n} X \). By the homotopy long exact sequence, the map from the homotopy fiber will induce isomorphisms in \(\pi_q \) for \(q > n \), while the homotopy groups of the homotopy fiber will be trivial for \(q \leq n \): it is \(n \)-connected. Let’s write \(X[n + 1, \infty) \) or \(\tau_{> n} X \) for this space. For example,
\(\tau_{\geq 0} X \) is the basepoint component of \(X \) (assuming \(X \to \pi_0(X) \) is continuous). \(\tau_{\geq 2} X \) is the universal cover of \(X \) (assuming that \(X \) is path connected and is nice enough to admit a universal cover).

The example of covering spaces shows that \(\tau_{\geq n} X \to X \) is not unique in quite the same sense that \(X \to \pi_0(X) \) is; you need a basepoint condition. In the pointed homotopy category, \(\tau_{\geq n} X \to X \) is the terminal map from an \(n \)-connected space.

These spaces fit into a tower also, this time with \(X \) at the bottom:

\[
\begin{array}{ccc}
\tau_{\geq 2} X & \to & X \\
\downarrow & & \downarrow \\
\tau_{\geq 1} X & \to & X \\
\downarrow & & \downarrow \\
\tau_{\geq 0} X & \to & X
\end{array}
\]

This is the Whitehead tower. This is George Whitehead also was an MIT faculty member, 1949–1985. John Moore was a student of his, by the way, and I was a student of Moore’s.

52 Representability of cohomology

I want to think a little more about the significance of Eilenberg Mac Lane spaces. First, how unique are they?

Let \(\pi \) be an abelian group and \(n \) a positive integer. Pick a set of generators for \(\pi \), and a minimal set of relations between them, and use these to build a Moore space \(M \) with \(H_n(M) = \pi \):

\[
\bigvee_j S^n \to \bigvee_i S^n \to M.
\]

Our first model for \(K(\pi, n) \) is the Postnikov section \(\tau_{\leq n} M \).

Lemma 52.1. Let \(n \) be a positive integer and let \(Y \) be any pointed space such that \(\pi_q(Y, *) = 0 \) for \(q \neq n \), and write \(G \) for \(\pi_n(Y, *) \). Then

\[
\pi_n : [\tau_{\leq n} M, Y]_* \to \text{Hom}(\pi, G)
\]

is an isomorphism.

Proof. Since \(M \to \tau_{\leq n} M \) is universal among maps to spaces with homotopy concentrated in dimensions at most \(n \), it’s enough to show that

\[
\pi_n : [M, Y]_* \to \text{Hom}(\pi, G)
\]

is an isomorphism. Since the sequence defining \(M \) is co-exact, we have an exact sequence

\[
\bigvee_j S^n, Y]_* \leftarrow \bigvee_i S^n, Y]_* \leftarrow [M, Y]_* \leftarrow \bigvee_j S^{n+1}, Y]_*.
\]

Our assumptions on \(Y \) imply that this sequence reads

\[
\text{Hom}(F_1, G) \leftarrow \text{Hom}(F_0, G) \leftarrow [M, Y]_* \leftarrow 0.
\]

But a homomorphism \(F_0 \to G \) that restricts to zero on \(F_1 \) is exactly a homomorphism \(\pi \to G \). \(\square \)
We phrased this for π and G abelian, but if $n = 1$ the same proof works with both groups arbitrary.

In particular, we could take $G = \pi$, and discover that there is a unique homotopy class of maps $\tau_{\leq n} M \to Y$ inducing the identity in π_n. This map is a weak equivalence. So if Y is also a CW complex, the map is a homotopy equivalence.

We learn from this that any two CW complexes of type $K(\pi, n)$ are homotopy equivalent by homotopy equivalence inducing the identity on π_n, and that that homotopy equivalence is unique up to homotopy. This leads to:

Corollary 52.2. For any positive integer n there is a functor

$$\text{Ab} \to \text{Ho} (\text{CW}_*)$$

sending π to a space of type $K(\pi, n)$, unique up to isomorphism. When $n = 1$ this extends to a well defined functor

$$\text{Gp} \to \text{Ho} (\text{CW}_*) .$$

In fact it is possible to construct $K(\pi, n)$ as a functor from Ab to the category of topological abelian groups.

The case $n = 1$ is due to Heinz Hopf: There is, up to homotopy, a unique aspherical space with any prescribed fundamental group. The theory of covering spaces can be used in that case to check functoriality. This provides a collection of invariants of groups, $H_n(\pi, 1; G)$ and $H^n(\pi, 1; G)$. More generally, any π-module M determines a local coefficient system \tilde{M} over $K(\pi, 1)$, and one then has local homology and cohomology groups. It’s not hard to show these are the homology and cohomology of the group with these coefficients:

$$H_n(\pi, 1; \tilde{M}) = \text{Tor}^\pi_n (\mathbb{Z}, M), \quad H^n(\pi, 1; \tilde{M}) = \text{Ext}^n_{\mathbb{Z}[\pi]} (\mathbb{Z}, M).$$

Fundamental classes

Let n be a positive integer and Y an $(n - 1)$-connected space. Then $H_q(Y) = 0$ for $q < n$. Let π be an abelian group. The universal coefficient theorem asserts the existence of a short exact sequence

$$0 \to \text{Ext}^1 (H_{q-1}(Y), \pi) \to H^q(Y; \pi) \to \text{Hom}(H_q(Y), \pi) \to 0$$

for any q. This shows that $H^q(Y; \pi) = 0$ for $q < n$. When $q = n$, the Ext term vanishes so the second map is an isomorphism. If we take $\pi = \pi_n(Y)$, for example, the inverse of the Hurewicz isomorphism is an element in Hom, and so delivers to us a canonical class

$$\iota_n \in H^n(Y; \pi_n(Y)).$$

In particular, with $Y = K(\pi, n)$ we obtain a canonical class

$$\iota_n \in H^n(K(\pi, n); \pi)$$

called the *fundamental class*. Using it, we get a canonical natural transformation

$$[X, K(\pi, n)] \to H^n(X; \pi)$$

sending f to $f^*(\iota_n)$.

Theorem 52.3. If X is a CW complex, this map is an isomorphism.
That is: On CW complexes, cohomology is a representable functor, and the representing object
is the appropriate Eilenberg Mac Lane space.

Test cases: We decided that $K(\mathbb{Z}/2\mathbb{Z}, 1) = \mathbb{R}P^\infty$. So the claim is that $H^1(X; \mathbb{Z}/2\mathbb{Z}) = [X, \mathbb{R}P^\infty]$. We'll discuss this in more detail later, but $\mathbb{R}P^\infty$ carries the universal real line bundle, so the set of homotopy classes of maps into it (from a CW complex X) is in bijection with the set of isomorphism classes of real line bundles over X. As you may know, that set is indeed given by $H^1(X; \mathbb{Z}/2\mathbb{Z}) = \text{map}(\pi_1(X), \mathbb{Z}/2\mathbb{Z})$.

Similar story for $H^2(X; \mathbb{Z}) = [X, \mathbb{C}P^\infty]$.

One other case is of interest: $H^1(X, \mathbb{Z}) = [X, S^1]$.

Other cases are less geometric!

Proof of Theorem 52.3. We'll prove a pointed version of the statement:

$[X, K(\pi, n)]_* \xrightarrow{\sim} \mathbb{H}^n(X; \pi)$.

Fix π, and pick any sequence of Eilenberg Mac Lane CW complexes, $K(\pi, n)$, $n \geq 0$. Thus for example $K(\pi, 0)$ is a CW complex that is homotopy equivalent to the discrete group π: we can take it to be π as a discrete group if we want.

The space $\Omega K(\pi, n + 1)$ accepts a map from $K(\pi, n)$ that is an isomorphism on π_n; a CW replacement for $\Omega K(\pi, n + 1)$ thus serves as another model for $K(\pi, n)$. Thus $K(\pi, n)$ has the structure of an H-group. In fact one can use $\Omega^2 K(\pi, n + 2)$, by the same argument; so this H-group structure is abelian, and the functor $[-, K(\pi, n)]_*$ takes values in abelian groups.

The map $[X, K(\pi, n)]_* \to \mathbb{H}^n(X; \pi)$ is a homomorphism. To see this, use the pinch map $\Sigma X \to \Sigma X \lor \Sigma X$ to produce a homomorphism

$\mathbb{H}^{n+1}(\Sigma X; \pi) \times \mathbb{H}^{n+1}(\Sigma X; \pi) \to \mathbb{H}^{n+1}(\Sigma X \lor \Sigma X; \pi) \to \mathbb{H}^{n+1}(\Sigma X; \pi)$.

The argument proving that π_2 is abelian shows that this map coincides with the addition in the group $\mathbb{H}^{n+1}(\Sigma X; \pi) = \mathbb{H}^n(X; \pi)$.

The group structure in

$[X, K(\pi, n)]_* = [X, \Omega K(\pi, n + 1)]_* = [\Sigma X, K(\pi, n + 1)]_*$

has the same source; so the map is a homomorphism by naturality.

Now I will try to prove that the map is an isomorphism by induction on skelata.

When $X = X_0$, we can agree that

$\text{map}_*(X_0, \pi) = \mathbb{H}^0(X_0; \pi), \quad [X_0, K(\pi, n)]_* = 0 = \mathbb{H}^n(X_0; \pi)$, for $n > 0$.

In general we have a cofiber sequence $\bigvee S^{q-1} \to X_{q-1} \to X_q$. It is co-exact and hence induces an exact sequence in $[-, K(\pi, n)]_*$. It also induces an exact sequence in reduced cohomology, one that can be regarded as coming from the same geometric source. Since both S^{q-1} and X_{q-1} are of dimension less than q, the map is an isomorphism for them. So by the 5-lemma it’s an isomorphism on X_q.

There is still a limiting argument to worry about, if X is infinite dimensional. □

Remark 52.4. One can also prove directly that cohomology is a representable functor on CW complexes, and then define Eilenberg Mac Lane spaces as the representing objects. The relevant theorem is “Brown representability.” The fact that contravariant functors satisfying the kind of
“descent” embodied by the Meyer-Vietoris theorem are representable gives homotopy theory a special
caracter. Most of the time you can just work with spaces, which are much more concrete than
functors!

Remark 52.5. Note that the suspension isomorphism in cohomology is represented by the weak
equivalence

\[K(\pi, n) \to \Omega K(\pi, n + 1) \]

A family of pointed spaces \(\ldots, E_0, E_1, \ldots \) equipped with maps \(E_n \to \Omega E_{n+1} \) (or equivalently \(\Sigma E_n \to E_{n+1} \)) is a (topological) spectrum. It’s an \(\Omega \)-spectrum if the maps \(E_n \to \Omega E_{n+1} \) are all weak
equivalences. Much of what we just did above carries over to \(\Omega \)-spectra in general; the groups (and
they are abelian groups)

\[E^n(X) := [X, E_n], \]

form the groups in a (reduced generalized) cohomology theory. There are many examples. Any
generalized cohomology theory is representable on CW complexes by an \(\Omega \) spectrum.

Remark 52.6. One asset of representability is the "Yoneda lemma": Given a functor \(F : \mathcal{C} \to \text{Set} \)
and an object \(Y \) in \(\mathcal{C} \), we get inverse isomorphisms

\[\text{n.t.}(\mathcal{C}(\cdot, Y), F) \cong F(Y) \]
\[\theta \mapsto \theta_Y(1_Y) \]
\[(f \mapsto f^*(y)) \mapsto y \]

In particular

\[\text{n.t.}(\mathcal{C}(\cdot, Y), \mathcal{C}(\cdot, Z)) = \mathcal{C}(Y, Z). \]

So for example

\[\text{n.t.}(H^n(\cdot, A), H^n(\cdot, B)) = [K(A, m), K(B, n)] = H^n(K(A, m); B). \]

Understanding the natural transformations acting between different dimensions of \(H^*(-; \mathbb{F}_2) \), for
example, is addressing the optimal value category for mod 2 cohomology. It’s a graded \(\mathbb{F}_2 \) algebra,
yes, but much more as well. This is the story of Steenrod operations, and it’s addressed by computing
\(H^*(K(\mathbb{F}_2, n); \mathbb{F}_2) \).

53 Obstruction theory

Cellular homology

Let \((X, A)\) be a relative CW-complex with skelata

\[A = X_{-1} \subseteq X_0 \subseteq X_1 \subseteq \cdots \subseteq X. \]

The inclusion \(X_{n-1} \hookrightarrow X_n \) is a cofibration, so \(H_s(X_n, X_{n-1}) \cong \overline{H}_s(X_n/X_{n-1}) \). A choice of cell
structure establishes a homeomorphism

\[X_n/X_{n-1} = \bigvee_{i \in K_n} S^n_i, \]

where \(K_n \) is the set of \(n \)-cells, so

\[H_s(X_n, X_{n-1}) \cong \mathbb{Z}[K_n] \]
This group is the cellular chain group $C_n = C_n(X, A)$.

There is a boundary map $d : C_{n+1} \to C_n$, defined by

$$d : C_{n+1} = H_{n+1}(X_{n+1}, X_n) \xrightarrow{\partial} H_n(X_n) \to H_n(X_n, X_{n-1}) = C_n.$$

This gives us the cellular chain complex. In terms of the basis given by a choice of cell structure, the differential $d : C_{n+1} \to C_n$ is giving exactly the data of the relative attaching maps

$$S^n \xrightarrow{\alpha_i} X_n \to X_n / X_{n-1},$$

where α_i runs through the attaching maps of the $(n + 1)$-cells.

The cellular chain complex is determined by the skeleton filtration of X, and a theorem proved last term (at least when $A = \emptyset$) asserts that

$$H_n(X, A) \cong H_n(C_*(X, A)).$$

Of course, the same story runs for cohomology: one gets a chain complex which, in dimension n, is given by

$$C^n(X, A; \pi) = \text{Hom}(C_n(X, A), \pi) = \text{Map}(K_n, \pi),$$

where π is any abelian group, and

$$H^n(X, A; \pi) = H^n(C_*(X, A; \pi)).$$

Obstruction theory

We’ve seen that when the dimension of the CW complex X is less than the connectivity of the space Y, any map from X to Y is null-homotopic. What if there is some overlap? Here’s a more general type of question we can try to answer.

Question 53.1. Let $f : A \to Y$ be a map from a space A to Y. Suppose (X, A) is a relative CW-complex. When can we find an extension in the diagram below?

\[
\begin{array}{ccc}
A & \xrightarrow{f} & Y \\
\downarrow & & \downarrow \\
X & & \\
\end{array}
\]

We’ve seen that answering this kind of question can also lead to results about the uniqueness of an extension, by considering $A \times I \cup X \times \partial I \subseteq X \times I$.

Let’s try to make this extension by skeleton by skeleton, and find what obstructions occur. We can start easily enough! If Y is empty then A is too, and there’s an extension if and only if X is empty as well.

More realistically, as long as Y is nonempty we can certainly extend to X_0 by sending the new points anywhere you like in Y.

So make such a choice: $f_0 : X_0 \to Y$. Can we extend f_0 further over X_1? Well, we can extend if and only if whenever a and b are 0-cells in X_0 are in the same path component of X_1, their images under f_0 are in the same path component in Y. Note that we might do better at this stage if we went back and chose $f|_{X_0}$ better.
Let’s now assume we have constructed $f : X_n \to Y$, for $n \geq 1$, and hope to extend it over X_{n+1}. Pick attaching maps for the $(n+1)$-cells, so we have the diagram

$$
\begin{array}{c}
\coprod_{i \in K_{n+1}} S^n \xrightarrow{\alpha_i} X_n \xrightarrow{f} Y \\
\coprod_{i \in K_{n+1}} D^n \xrightarrow{} X_{n+1}
\end{array}
$$

The desired extension exists if the composite $S^n \xrightarrow{\alpha_i} X_n \to Y$ is nullhomotopic for each $i \in K_{n+1}$.

Now is the moment to assume that Y is path connected and simple, so that $[S^n, Y] = \pi_n(Y, \ast)$ canonically for any choice of basepoint. We will therefore omit basepoints from the notation.

Proposition 53.2. θ_f is a cocycle in $C^{n+1}(X, A; \pi_n(Y))$.

Proof. θ_f gives a map $H_{n+1}(X_{n+1}, X_n) \to \pi_n(Y)$. We would like to show that the composite

$$
H_{n+2}(X_{n+2}, X_{n+1}) \xrightarrow{\partial} H_{n+1}(X_{n+1}) \to H_{n+1}(X_{n+1}, X_n) \xrightarrow{\theta_f} \pi_n(Y)
$$

is trivial.

We’ll see this by relating the homotopy long exact sequence to the homology long exact sequence. A relative homotopy class is represented by a map

$$(I^q, \partial I^q, J_q) \to (X, A, \ast).$$

Our choice of orientation for $I^q/\partial I^q$ specifies a generator for $H_q(I^q, \partial I^q)$. Evaluation of H_n then determines a map

$$h : \pi_q(X, A, \ast) \to H_q(X, A),$$

the relative Hurewicz homomorphism. It is again a homomorphism, extending the definition of the absolute Hurewicz homomorphism, and gives us a map of long exact sequences.

The characteristic maps in the cell structure for X give us elements of $\pi_{n+1}(X_{n+1}, X_n)$ that map to the generators of $H_{n+1}(X_{n+1}, X_n)$.

These observations lead to part of the commutative diagram below.

$$
\begin{array}{c}
\pi_{n+2}(X_{n+2}, X_n) \xrightarrow{\partial} H_{n+2}(X_{n+2}, X_{n+1}) \\
\pi_{n+1}(X_{n+1}) \xrightarrow{\partial} H_{n+1}(X_{n+1}) \xrightarrow{d} H_{n+1}(X_{n+1}, X_n) \\
\pi_n(X_n) \xrightarrow{\partial} H_{n+1}(X_{n+1}, X_n) \xrightarrow{\theta_f} \pi_n(Y)
\end{array}
$$

The bottom square commutes by definition of θ_f. Tracing around the left side goes through two successive maps in the homotopy long exact sequence, and so sends these elements to zero. \square
This cochain θ_f is the “obstruction cocycle” associated to $f : X_n \to Y$. It obstructs the extension of f over the $(n+1)$-skeleton. This theorem gives a way of extending a map $A \to Y$ skeleton by skeleton all the way to a map $X \to Y$.

But it could happen that the extension you made to X_n doesn’t admit a further extension to X_{n+1}, while some other extension to X_n would. In order to maintain some control, let’s fix the extension to X_{n-1}, but allow the extension to X_n to vary.

Theorem 53.3. Let (X, A) be a relative CW-complex and Y a path-connected simple space, and let $n \geq 1$. Let $f : X_n \to Y$ be a map from the n-skeleton of X, and let $\theta_f \in C^{n+1}(X, A; \pi_n(Y))$ be the associated obstruction cocycle. Then $f|_{X_{n-1}}$ extends to X_{n+1} if and only if $[\theta_f] \in H^{n+1}(X, A; \pi_n(Y))$ is zero.

Proof. The proof begins with the construction a “difference cochain” δ associated to maps $f', f'' : X_n \to Y$ together with a homotopy from $f'|_{X_{n-1}}$ to $f''|_{X_{n-1}}$ rel A. It will not be a cocycle. Instead, it will provide a homology between the obstruction cocycles associated to f' and f''.

We’ll lighten notation by dropping indication of the subspace A. Fix a cell structure on X. This is about homotopies, so let’s begin by giving $X \times I$ the CW structure in which

$$(X \times I)_n = X_n \times \partial I \cup X_{n-1} \times I.$$

Each n-cell e in X produces in $X \times I$ an $(n+1)$-cell $e \times I$ and two n-cells $e \times 0$ and $e \times 1$. Thus there is a map

$$- \times I : C_n(X) \to C_{n+1}(X \times I),$$

given by linearly extending the assignment on cells. This is not a chain map; rather

$$d(e \times I) = (de) \times I + (-1)^n(e \times 1 - e \times 0)$$
(by choice of orientation of the unit interval).

This construction defines a map

$$C^{n+1}(X; \pi_n(Y)) \to C^n(X; \pi_n(Y))$$

by sending a cochain c to $e \mapsto c(e \times I)$.

Define a map $g : (X \times I)_n \to Y$ as follows. Send $X_n \times 0$ by f_0, $X_n \times 1$ by f_1, and $X_{n-1} \times I$ by a homotopy between the restrictions of f_0 and f_1 to X_{n-1}. We then have the obstruction cocycle $\theta_g \in C^{n+1}(X; \pi_n(Y))$ associated to the map g.

Our difference cochain $\delta \in C^n(X ; \pi_n(Y))$ is defined by

$$\delta(e) = \theta_g(e \times I).$$

For any n-cell e in X, calculate as follows, using the definition of the differential in the cellular cochain complex:

$$0 = (d\theta_g)(e \times I) = \theta_g(d(e \times I)) = \theta_g((de) \times I) \pm (\theta_g(e \times 0) - \theta_g(e \times 1)).$$

The three terms can be re-expressed as follows.

$$\theta_g((de) \times I) = \delta(de) = (d\delta)(e),$$

$$\theta_g(e \times 0) = \theta_{f'}(e), \quad \theta_g(e \times 1) = \theta_{f''}(e).$$
This verifies that
\[d\delta = \pm (\theta_{f'} - \theta_{f''}). \]

So for a map \(f : X_n \to Y \), the cohomology class of the obstruction cocycle \(\theta_f \) depends only on \(f|_{X_{n-1}} \). In particular if \(f|_{X_{n-1}} \) does extend to a map from \(X_{n+1} \), then this cohomology class vanishes.

For the converse, we observe that for any \(f' : X_n \to Y \) and \(\delta \in C^n(X; \pi_n(Y)) \) there exists an extension \(f'' \) of \(f'|_{X_{n-1}} \) such that \(\delta \) is precisely the difference cochain associated to the pair \((f', f'')\) and the constant homotopy between their restrictions to \(X_{n-1} \). We leave this to you; it uses the homotopy extension property.

We can now argue as follows. Suppose that \([\theta_{f'}] = 0 \in H^{n+1}(X; \pi_n(Y))\). Pick a null-homology \(\delta \) of \(\theta_{f'} \), and pick \(f'' \) in such a way that \(\delta \) is the difference cocycle between \(f' \) and \(f'' \). Then (adjusting the sign if necessary)
\[\theta_{f''} = \theta_{f'} - d\delta = 0, \]
so \(f'' \) extends to \(X_{n+1} \).

The easiest way to check that an obstruction class vanishes is to know that it lies in a zero group.

Corollary 53.4. Let \(Y \) be a path connected simple space and \((X, A)\) a relative CW complex. If \(H^{n+1}(X, A; \pi_n(Y)) = 0 \) for all \(n \geq 1 \) then any map \(A \to Y \) extends to a map \(X \to Y \). If moreover \(H^n(X, A; \pi_n(Y)) = 0 \) for all \(n \geq 1 \) then such an extension is unique up to homotopy rel \(A \).

Proof. The second assertion follows from the isomorphism
\[H^{n+1}(X \times I, A \times I \cup X \times \partial I; \pi) = H^n(X, A; \pi). \]

This raises important questions. The reduced cohomology of a space may well be trivial with coefficients in a finite \(p \)-group, for a fixed prime \(p \), for example. Are there homological conditions on \(Y \) guaranteeing that each homotopy group is a finite \(p \)-group? The power to prove results of that sort is part of the revolution in homotopy theory engineered by Jean-Pierre Serre, developments we will get to later in this course.
Chapter 6

Vector bundles and principal bundles

54 Vector bundles

Each point in a smooth manifold M has a “tangent space.” This is a real vector space, whose elements are equivalence classes of smooth paths $\sigma : \mathbb{R} \to M$ such that $\sigma(0) = x$. The equivalence relation retains only the velocity vector at $t = 0$. These vector spaces “vary smoothly” over the manifold. The notion of a vector bundle is a topological extrapolation of this idea.

Let B be a topological space. To begin with, let’s define the “category of spaces over B,” \textbf{Top}/B. An object is just a map $E \to B$. To emphasize that this is single object, and that it is an object “over B,” we may display the arrow vertically: $E \downarrow B$. A morphism from $p' : E' \downarrow B$ to $p : E \downarrow B$ is a map $E' \to E$ making

$$
\begin{array}{c}
E' \\
p' \downarrow
\end{array}
\begin{array}{c}
\downarrow \\
p
\end{array}
\begin{array}{c}
E \\
B
\end{array}
$$

commute.

This category has products, given by the fiber product over B:

$$E' \times_B E = \{(e', e) : p'e' = pe\} \subseteq E' \times E.$$

Using it we can define an “abelian group over B”: an object $E \downarrow B$ together with a “zero section” $0 : B \to E$ (that is, a map from the terminal object of \textbf{Top}/B) and an “addition” $E \times_B E \to E$ (of spaces over B) satisfying the usual properties.

As an example, any topological abelian group A determines an abelian group over B, namely $\text{pr}_1 : B \times A \downarrow B$ with its evident structure maps. If A is a ring, then $\text{pr}_1 : B \times A \downarrow B$ is a “ring over B.” For example, we have the “reals over B,” and hence can define a “vector space over $B.” Each fiber has the structure of a vector space, and this structure varies continuously as you move around in the base.

Vector spaces over B form a category in which the morphisms are maps covering the identity map of B that are linear on each fiber.

Example 54.1. Let $p : S \downarrow \mathbb{R}$ have $p^{-1}(0) = \mathbb{R}$ and $p^{-1}(s) = 0$ for $s \neq 0$. With the evident structure maps, this is a perfectly good (“skyscraper”) vector space over \mathbb{R}. This example is peculiar, however; it is not locally constant. Our definition of vector bundles will exclude it and similar oddities. Sheaf theory is the proper home for examples like this.

53
But this example occurs naturally even if you restrict to trivial bundles and maps between them. The trivial bundle \(\text{pr}_1 : \mathbb{R} \times \mathbb{R} \downarrow \mathbb{R} \) has as an endomorphism the map

\[
(s, t) \mapsto (s, st).
\]

This map is an isomorphism on almost all fibers, but is zero over \(s = 0 \). So if you want to form a kernel or the cokernel, you will get the skyscraper vector space over \(\mathbb{R} \). The image will be a vector space over \(X \) with a complementary peculiarity.

Definition 54.2. A vector bundle over \(B \) is a vector space \(E \) over \(B \) that is locally trivial — that is, every point \(b \in B \) has a neighborhood over which \(E \) is isomorphic to a trivial bundle — and whose fiber vector spaces are all of finite dimension.

Remark 54.3. As in our definition of fiber bundles, we will always assume that a vector bundle admits a numerable trivializing cover. On the other hand, there is nothing to stop us from replacing \(\mathbb{R} \) with \(\mathbb{C} \) or even with the quaternions \(\mathbb{H} \), and talking about complex or quaternionic vector bundles.

If \(p : E \downarrow B \) is a vector bundle, then \(E \) is called the total space, \(p \) is called the projection map, and \(B \) is called the base space. There are various notations in use for vector bundles, and we will switch among them. So we will use a Greek letter like \(\xi \) or \(\zeta \) to denote the entire structure, and may write \(E(\xi) \), \(B(\xi) \) for the total space and base space, and \(\xi_b \) for the fiber of \(\xi \) over \(b \in B \).

If all the fibers are of dimension \(n \), we have an \(n \)-dimensional vector bundle or an “\(n \)-plane bundle.”

Example 54.4. The “trivial” \(n \)-dimensional vector bundle over \(B \) is the projection \(\text{pr}_1 : B \times \mathbb{R}^n \downarrow B \). We may write \(n\epsilon \) for it.

Example 54.5. At the other extreme, Grassmannians support highly nontrivial vector bundles. We can form Grassmannians over any one of the three (skew)fields \(\mathbb{R}, \mathbb{C}, \mathbb{H} \). Write \(K \) for one of them, and consider the (left) \(K \)-vector space \(K^n \). The Grassmannian (or Grassmann manifold) \(\text{Gr}_k(K^n) \) is the space of \(k \)-dimensional \(K \)-subspaces of \(K^n \). As we saw last term, this is a topologized as a quotient space of a Stiefel variety \(V_k(K^n) \) of \(k \)-frames in \(K^n \). To each point in \(\text{Gr}_k(K^n) \) is associated a \(k \)-dimensional subspace of \(K^n \). This provides us with a \(k \)-dimensional \(K \)-vector bundle \(\xi_{n,k} \) over \(\text{Gr}_k(K^n) \), with total space

\[
E(\xi_{n,k}) = \{ (V, x) \in \text{Gr}_k(K^n) \times K^n : x \in V \}\n\]

This is the canonical or tautological vector bundle over \(\text{Gr}_k(K^n) \). It occurs as a subbundle of \(n\epsilon \).

Exercise 54.6. Prove that \(\xi_{n,k} \), as defined above, is locally trivial, so is a vector bundle over \(\text{Gr}_k(K^n) \).

For instance, when \(k = 1 \), we have \(\text{Gr}_1(\mathbb{R}^n) = \mathbb{RP}^{n-1} \). The tautological bundle \(\xi_{n,1} \) is 1-dimensional; it is a line bundle, the canonical line bundle over \(\mathbb{RP}^{n-1} \). We may write \(\lambda \) for this line bundle.

Example 54.7. Let \(M \) be a smooth manifold. Define \(\tau_M \) to be the tangent bundle \(TM \downarrow M \) over \(M \). For example, if \(M = S^{n-1} \), then

\[
TS^{n-1} = \{ (x, v) \in S^{n-1} \times \mathbb{R}^n : v \cdot x = 0 \}.
\]
Constructions with vector bundles

Just about anything that can be done for vector spaces can also be done for vector bundles:

1. The pullback of a vector bundle is again a vector bundle: If \(p : E \rightarrow B \) is a vector bundle then the map \(p' \) in the pullback diagram below is also a vector bundle.

\[
\begin{array}{ccc}
E' & \xrightarrow{f} & E \\
\downarrow{p'} & & \downarrow{p} \\
B' & \xrightarrow{f} & B
\end{array}
\]

The pulled back bundle may be denoted \(f^*\xi \).

There’s a convenient way characterize a pullback: the top map \(f \) in the pullback diagram has two key properties: It covers \(f \), and it is a linear isomorphism on fibers. These conditions suffice to present \(p' \) as the pullback of \(p \) along \(f \).

2. If \(p : E \rightarrow B \) and \(p' : E' \rightarrow B' \), then the product map \(p \times p' : E \times E' \rightarrow B \times B' \) is a vector bundle whose fiber over \((x, y)\) is the vector space \(p^{-1}(x) \times p'^{-1}(y) \).

3. If \(B = B' \), we can form the pullback:

\[
\begin{array}{ccc}
E \oplus E' & \rightarrow & E \times E' \\
\downarrow & & \downarrow \\
B & \rightarrow & B \times B
\end{array}
\]

The bundle \(\xi \oplus \xi' : E \oplus E' \rightarrow B \) is called the Whitney sum. For instance,

\[
n \epsilon = \epsilon \oplus \cdots \oplus \epsilon.
\]

4. If \(\xi : E \rightarrow B \) and \(\xi' : E' \rightarrow B \) are two vector bundles over \(B \), we can form another vector bundle \(\xi \otimes \xi' \) over \(B \) by taking the fiberwise tensor product. Likewise, taking the fiberwise Hom produces a vector bundle \(\text{Hom}(\xi, \xi') \) over \(B \).

Example 54.8. Recall from Example 54.5 the tautological bundle \(\lambda \) over \(\mathbb{R}P^{n-1} \). The tangent bundle \(\tau_{\mathbb{R}P^{n-1}} \) also lives over \(\mathbb{R}P^{n-1} \). It is natural to wonder what is the relationship between these two bundles. We claim that

\[
\tau_{\mathbb{R}P^{n-1}} = \text{Hom}(\lambda, \lambda^\perp)
\]

where \(\lambda^\perp \) denotes the fiberwise orthogonal complement of \(\lambda \) in \(n \epsilon \). To see this, make use of the double cover \(S^{n-1} \rightarrow \mathbb{R}P^{n-1} \). The projection map is smooth, and covered by a fiberwise isomorphism of tangent bundles. The fibers \(T_xS^{n-1} \) and \(T_{-x}S^{n-1} \) are both identified with the orthogonal complement of \(\mathbb{R}x \) in \(\mathbb{R}^n \), and the differential of the antipodal map sends \(v \) to \(-v\). So the tangent vector to \(\pm x \in \mathbb{R}P^{n-1} \) represented by \((x, v)\) is the same as the tangent vector represented by \((-x, -v)\). This tangent vector determines a homomorphism \(\lambda_x \rightarrow \lambda_x^\perp \) sending \(tx \) to \(tv \).

Exercise 54.9. Prove that

\[
\tau_{\text{Gr}_k(\mathbb{R}^n)} = \text{Hom}(\xi_{n,k}, \xi_{n,k}^\perp).
\]
Metrics and splitting exact sequences

A map of vector bundles, $\xi \to \eta$, over a fixed base can be identified with a section of $\text{Hom}(\xi, \eta)$. We have seen that the kernel and cokernel of a homomorphism will be vector bundles only if the rank is locally constant.

In particular, we can form kernels of surjections and cokernels of injections; and consider short exact sequences of vector bundles. It is a characteristic of topology, as opposed to analytic or algebraic geometry, that short exact sequences of vector bundles always split. To see this we use a "metric."

Definition 54.10. A metric on a vector bundle is a continuous choice of inner products on the fibers.

Lemma 54.11. Any (numerable) vector bundle ξ admits a metric.

Proof. This will use the fact that if g, g' are both inner products on a vector space then $tg + (1 - t)g'$ (for t between 0 and 1) is another. So the space of metrics on a vector bundle $E \downarrow B$ forms a convex subset of the vector space of continuous functions $E \times_B E \to \mathbb{R}$.

Pick a trivializing open cover U for ξ, and for each $U \in \mathcal{U}$ an isomorphism $\xi|_U \cong U \times V_U$. Pick an inner product g_U on each of the vector spaces V_U. Pick a partition of unity subordinate to \mathcal{U}; that is, functions $\phi_U : U \to [0, 1]$ such that the preimage of $(0, 1]$ is U and

$$\sum_{x \in U} \phi_U(x) = 1.$$

Now the sum

$$g = \sum_U \phi_U g_U$$

is a metric on ξ.

Corollary 54.12. Any exact sequence $0 \to \xi' \to \xi \to \xi'' \to 0$ of vector bundles (over the same base) splits.

Proof. Pick a metric for ξ. Using it, form the orthogonal complement ξ'^\perp. The composite

$$\xi'^\perp \hookrightarrow \xi \to \xi''$$

is an isomorphism. This provides a splitting of the surjection $\xi \to \xi''$ and hence of the short exact sequence.

55 Principal bundles, associated bundles

I-invariance

We will denote by $\text{Vect}(B)$ the set of isomorphism classes of vector bundles over B, and $\text{Vect}_n(B)$ the set of n-plane bundles.

Exercise 55.1. Justify the use of the word "set"!
Vector bundles pull back, and isomorphic vector bundles pull back to isomorphic vector bundles. This establishes Vect as a contravariant functor on Top:

\[\text{Vect} : \text{Top}^{\text{op}} \to \text{Set}. \]

How computable is this functor? As a first step in answering this, we note that it satisfies the following characteristic property of bundle theories.

Theorem 55.2. The functor Vect is \(I \)-invariant (where \(I \) denotes the unit interval): that is, the projection \(pr : X \times I \to X \) induces an isomorphism \(\text{Vect}(X) \to \text{Vect}(X \times I) \).

We will prove this in the next lecture. The map \(pr : X \times I \to X \) is a split surjection, so \(pr^* : \text{Vect}(X) \to \text{Vect}(X \times I) \) is a split injection. Surjectivity is harder.

An important corollary of this result is:

Corollary 55.3. Vect is a homotopy functor.

Proof. Let \(\xi : E \downarrow B \) be a vector bundle and suppose \(H : B' \times I \to B \) a homotopy between two maps \(f_0 \) and \(f_1 \). We are claiming that \(f_0^* \xi \cong f_1^* \xi \). This is far from obvious!

In the diagram

\[
\begin{array}{ccc}
B' & \xrightarrow{f_0} & B \\
\downarrow{\text{in}_0} & & \downarrow{\text{in}_1} \\
B' \times I & \xleftarrow{\text{pr}} & B \\
\uparrow{h} & & \uparrow{f_1} \\
B' & \xrightarrow{f_1} & B
\end{array}
\]

the map \(\text{pr} \) induces a surjection in Vect by Theorem 55.2. It follows that \(\text{in}_0^* = \text{in}_1^* \), so \(f_0^* = \text{in}_0^* \circ h^* = \text{in}_1^* \circ h^* = f_1^* \).

Principal bundles

Definition 55.4. Let \(G \) be a topological group. A principal \(G \)-bundle is a right action of \(G \) on a space \(P \) such that:

1. \(G \) acts freely.
2. The orbit projection \(P \to P/G \) is a fiber bundle.

There’s a famous video of J.-P. Serre talking about writing mathematics. In it he says you have to know the difference between “principle” and “principal”. He contemplated “bundles of principles” – varying over a moduli space of individuals, perhaps.

We will only care about Lie groups, among which are discrete groups.

Principal bundles are not unfamiliar objects, as the next example shows.

Example 55.5. Suppose \(G \) is discrete. Then the fibers of the orbit projection \(P \to P/G \) are all discrete. Therefore, the condition that \(P \to P/G \) is a fiber bundle is simply that it’s a covering projection. Such an action is sometimes said to be “properly discontinuous.”

As a special case, let \(X \) be a space with universal cover \(\tilde{X} \downarrow X \) (so \(X \) is path connected and semi-locally simply connected). Then \(\pi_1(X) \) acts freely on \(\tilde{X} \), and \(p : \tilde{X} \downarrow X \) is the orbit projection; we have a principal \(\pi_1(X) \)-bundle. Explicit examples include the principal \(C_2 \)-bundles \(S^{n-1} \downarrow \text{RP}^{n-1} \).
We can use the universal cover to classify covering spaces of X. Remember how this goes: The fundamental group at \ast acts on the fiber over \ast of any covering projection to produce a left $\pi_1(X)$-set. A functor in the other direction is given as follows. Let F be any set with left $\pi_1(X)$-action, and form the “balanced product”

$$ \tilde{X} \times_{\pi_1(X)} F = \tilde{X} \times F / \sim $$

where $(y, gz) \sim (yg, z)$, for elements $y \in \tilde{X}$, $z \in F$, and $g \in \pi_1(X)$. The composite $p \circ \text{pr}_1 : \tilde{X} \times F \to X$ factors to give a map

$$ \tilde{X} \times_{\pi_1(X)} F \to X $$

that is a covering projection.

Theorem 55.6 (Covering space theory). Suppose that X is path-connected and semi-locally simply connected. Then these constructions provide an equivalence of categories

$$ \left\{ \begin{array}{l}
\text{Left } \pi_1(X)\text{-sets} \\
\text{equivariant bijections}
\end{array} \right\} \simeq \left\{ \begin{array}{l}
\text{Covering spaces of } X \\
\text{isomorphisms}
\end{array} \right\}. $$

This story motivates constructions in the more general setting of principal G-bundles.

Construction 55.7. Let $P \downarrow B$ be a principal G-bundle. If F is a left G-space, we can define a new fiber bundle, “associated” to $P \downarrow B$, exactly as above:

$$ \begin{array}{ccc}
P \times_G F & \xrightarrow{q} & B \\
\downarrow & & \\
B
\end{array} $$

Let’s check that the fibers are homeomorphic to F. Let $x \in B$, and pick $y \in P$ over x. Map $F \to q^{-1}(*)$ by $z \mapsto [y, z]$. We claim that this is a homeomorphism. The inverse $q^{-1}(*) \to F$ is given by

$$ [y', z'] = [y, gz'] \mapsto gz', $$

where $y' = yg$ for some g (which is necessarily unique since the G action is simply transitive on fibers of P). These two maps are inverse homeomorphisms.

If F is a finite dimensional vector space on which G acts linearly, then we get a vector bundle from this construction.

Let $\xi : E \downarrow B$ be an n-plane bundle. Construct a principal $GL_n(\mathbb{R})$-bundle $P(\xi)$ by defining

$$ P(\xi)_b = \{ \text{ordered bases for } E(\xi)_b = \text{Iso}(\mathbb{R}^n, E(\xi)_b) \}. $$

To define the topology, think of $P(\xi)$ as a quotient of the disjoint union of trivial bundles over the open sets in a trivializing cover for ξ; while for trivial bundles

$$ P(B \times \mathbb{R}^n) = B \times \text{Iso}(\mathbb{R}^n, \mathbb{R}^n) $$

where $\text{Iso}(\mathbb{R}^n, \mathbb{R}^n) = GL_n(\mathbb{R})$ is given the usual topology as a subspace of \mathbb{R}^{n^2}.

There is a right action of $GL_n(\mathbb{R})$ on $P(\xi)$, given by precomposition. It is easy to see that this action is free and simply transitive on fibers. One therefore has a principal action of $GL_n(\mathbb{R})$ on $P(\xi)$. The bundle $P(\xi)$ is called the principalization of ξ.
Given the principalization $P(\xi)$, we can recover the total space $E(\xi)$, using the defining linear action of $GL_n(\mathbb{R})$ on \mathbb{R}^n:

$$E(\xi) \cong P(\xi) \times_{GL_n(\mathbb{R})} \mathbb{R}^n.$$

These two constructions are inverses: the theories of n-plane bundles and of principal $GL_n(\mathbb{R})$-bundles are equivalent.

Remark 55.8. Suppose that we have a metric on ξ. Instead of looking at all ordered bases, we can use instead all ordered orthonormal bases in each fiber. This gives the frame bundle

$$\text{Fr}(\xi)_b = \{\text{ordered orthonormal bases of } E(\xi)_b\} = \{\text{isometric isomorphisms } \mathbb{R}^n \to E(\xi)_b\}.$$

The orthogonal group $O(n)$ acts freely and fiberwise transitively on this space, endowing $\text{Fr}(\xi)$ with the structure of a principal $O(n)$-bundle.

Providing a vector bundle with a metric, when viewed in terms of the associated principal bundles, is an example of “reduction of the structure group.” We are giving a principal $O(n)$ bundle P together with an isomorphism of principal $GL_n(\mathbb{R})$ bundles from $P \times_{O(n)} GL_n(\mathbb{R})$ to the principalization of ξ. Many other geometric structures can be described in this way. An orientation of ξ, for example, consists of a principal $SL_n(\mathbb{R})$ bundle Q together with an isomorphism from $Q \times_{SL_n(\mathbb{R})} GL_n(\mathbb{R})$ to the principalization of ξ.

Fix a topological group G. Define $\text{Bun}_G(B)$ as the set of isomorphism classes of G-bundles over B. An isomorphism is a G-equivariant homeomorphism over the base. Again, arguing as above, this leads to a contravariant functor $\text{Bun}_G : \text{Top} \to \text{Set}$. The above discussion gives a natural isomorphism of functors:

$$\text{Bun}_{GL_n(\mathbb{R})}(B) \cong \text{Vect}(B).$$

The I-invariance of Vect is therefore a special case of:

Theorem 55.9. Bun_G is I-invariant, and hence is a homotopy functor.

One case is easy to prove: If X is contractible, then any principal G-bundle $P \downarrow X$ is trivial. It’s enough to construct a section. Since the identity map on X is homotopic to a constant map (with value $\ast \in X$, say), the constant map $c_p : X \to Q$ for any $p \in P$ over $\ast \in X$ makes

$$\begin{align*}
\xymatrix{ & P \ar[d] & \\
X \ar[r] & X
}
\end{align*}$$

commute up to homotopy. But since $P \downarrow X$ is a fibration, this implies that there is then an actual section. And a section of a principal bundle determines a trivialization of it.

We have considered only isomorphisms of principal bundles. But any continuous equivariant map of principal bundles over the same base that covers the identity endomorphism of the base is in fact an isomorphism.

56 I-invariance of Bun_G, and G-CW-complexes

Let G be a topological group. We want to show that the functor $\text{Bun}_G : \text{Top}^{op} \to \text{Set}$ is I-invariant, i.e., the projection $\text{pr} : X \times I \downarrow X$ induces an isomorphism $\text{Bun}_G(X) \cong \text{Bun}_G(X \times I)$.
Injectivity is easy: the composite \(X \xrightarrow{\text{in}_X} X \times I \xrightarrow{\text{pr}} X \) is the identity and gives you a splitting \(\text{Bun}_G(X) \xrightarrow{\text{pr}^*} \text{Bun}_G(X \times I) \xrightarrow{\text{in}_X^*} \text{Bun}_G(X) \).

The rest of this lecture is devoted to proving surjectivity. There are various ways to do this. Husemoller does the general case; see [9, §4.9]. Steve Mitchell has a nice treatment in [19]. We will prove this when \(X \) is a CW-complex, by adapting CW methods to the equivariant situation.

To see the point of this approach, notice that the word “free” is used somewhat differently in the context of group actions than elsewhere. The left adjoint of the forgetful functor from \(G \)-spaces to \(\text{spaces} \) sends a space \(X \) to the \(G \)-space \(X \times G \) in which \(G \) acts, from the right, by \((x,g)h = (x,gh)\). If \(G \) and \(X \) are discrete, any free action of \(G \) on \(X \) has this form. But this is not true topologically: just think of the antipodal action of \(C_2 \) on the circle, for instance.

The condition that an action is principal is one way to demand that an action should be “locally” free in the stronger sense. \(G \)-CW complexes afford a different way: An equivariant CW structure constructs a \(G \)-space out of spaces that have the form \(D^n \times (H \setminus G) \), so in the free case these “cells” are free in the stronger sense.

G-CW-complexes

We would like to set up a theory of CW-complexes with an action of the group \(G \). The relevant question is, “What is a \(G \)-cell?” There is a choice here. For us, and for the standard definition of a \(G \)-CW-complex, the right thing to say is that it is a \(G \)-space of the form

\[
D^n \times H \setminus G.
\]

Here \(H \) is a closed subgroup of \(G \), and \(H \setminus G \) is the orbit space of the action of \(H \) on \(G \) by left translation, viewed as a right \(G \)-space. The “boundary” of the \(G \)-cell \(D^n \times H \setminus G \) is just \(\partial D^n \times H \setminus G \) (with the usual convention that \(\partial D^0 = \emptyset \)).

Definition 56.1. A *relative \(G \)-CW-complex* is a (right) \(G \)-space \(X \) with a filtration

\[
A = X_{-1} \subseteq X_0 \subseteq X_1 \subseteq \cdots \subseteq X
\]

such that for all \(n \geq 0 \) there exists a pushout square of \(G \)-spaces

\[
\begin{array}{ccc}
\coprod \partial D_i^n \times H_i \setminus G & \xrightarrow{\coprod} & \prod D_i^n \times H_i \setminus G \\
\downarrow & & \downarrow \\
X_{n-1} & \xrightarrow{\partial} & X_n,
\end{array}
\]

and \(X \) has the direct limit topology.

Remarks 56.2. A CW-complex is just a \(G \)-CW-complex for the trivial group \(G \). If \(G \) is discrete, the skeleton filtration provides \(X \) with the structure of a CW-complex by neglect of the \(G \)-action. The subspace \(X_n \) is called the \(n \)-skeleton of \(X \), even though if \(G \) is itself of positive dimension \(X_n \) may well have dimension larger than \(n \).

If \(X \) is a \(G \)-CW-complex, then \(X/G \) inherits a CW-structure whose \(n \)-skeleton is given by \((X/G)_n = X_n/G\).

If \(P \xrightarrow{\pi} X \) is a principal \(G \)-bundle, a CW-structure on \(X \) lifts to a \(G \)-CW-structure on \(P \).

The action of \(G \) on a \(G \)-CW complex is principal if and only if all the isotropy groups are trivial.

A good source for much of this is [13]; see for example Remark 2.8 there.
Theorem 56.3 (Illman [10], Verona). If G is a compact Lie group and M a smooth manifold on which G acts by diffeomorphisms, then M admits a G-CW structure.

A G-CW structure on a space X determines a CW structure on the orbit space X/G; each cell $D^n \times H\setminus G$ produces a cell D^n in X/G. Conversely, given a right action of G on X, a CW structure on X/G lifts to a G-CW structure on X.

It’s quite challenging in general to write down a G-CW structure even in simple cases, such as when the manifold is the unit sphere in an orthogonal representation of G. But sometimes it’s easy. For example, the standard CW structure on $\mathbb{R}P^n - 1$, with one k-cell for each k with $0 \leq k \leq n - 1$, lifts to a C_2-CW structure on S^{n-1}. In it, the $(k-1)$-skeleton is S^{k-1}, for each $k \leq n$, and there are two k-cells, given by the upper and lower hemisphere of S^k.

For another example, regard S^1 as the complex numbers of magnitude 1, equipped with a C_2 action by complex conjugation. This has a C_2-CW structure with 0-skeleton given by $\{\pm 1\}$ a single free 1-cell.

Proof of I-invariance

Recall that our goal is to prove that every principal G-bundle $p : P \downarrow X \times I$ is pulled back from some principal G-bundle over X. Actually there’s no choice here; since $pr_1 \circ in_0 = 1$, P must be pulled back from $in^*_0 P$, that is, from the restriction of P to $X \times 0$.

For notational convenience, let us write $Y = X \times I$. Remember that we are assuming that X is a CW-complex. We will filter Y by subcomplexes, as follows. Let $Y_0 = X \times 0$; in general, we define

$$Y_n = X \times 0 \cup X_{n-1} \times I.$$

We may construct Y_n from Y_{n-1} via a pushout:

$$
\begin{array}{ccc}
\coprod(\partial D^{n-1} \times I \cup D^{n-1} \times 0) & \longrightarrow & \coprod(D^{n-1} \times I) \\
Y_{n-1} & \longrightarrow & Y_n,
\end{array}
$$

The restriction of P to Y_n is a principal bundle with total space

$$P_n = p^{-1}(Y_n).$$

So $P_0 \downarrow Y_0$ is just $in^*_0 P \downarrow X$.

We will show that P and $pr^* in^*_0 P$ are isomorphic over Y. For this it will be enough to construct an equivariant map $P \rightarrow in^*_0 P$ covering the projection map $pr : Y \rightarrow X$. We’ll do this by inductively constructing compatible equivariant maps $P_n \rightarrow P_0$ covering the composites $Y_n \hookrightarrow Y \rightarrow X$, starting with the identity map $P_0 \rightarrow in^*_0 P$ covering the isomorphism $Y_0 \rightarrow X$.

We can build P_n from P_{n-1} by lifting the pushout construction of Y_n from Y_{n-1}:

$$
\begin{array}{ccc}
\coprod(\partial D^{n-1} \times I \cup D^{n-1} \times 0) \times G & \longrightarrow & \coprod(D^{n-1} \times I) \times G \\
\downarrow & & \downarrow \\
P_{n-1} & \longrightarrow & P_n
\end{array}
$$
So to extend $P_{n-1} \to P_0$ to $P_n \to P_0$, we must construct an equivariant map f in

\[
\begin{array}{cccc}
\coprod (\partial D^{n-1} \times I \cup D^{n-1} \times 0) & \to & \coprod (D^{n-1} \times I) \\
\downarrow & & \downarrow \\
\coprod \big(\partial D^{n-1} \times I \cup D^{n-1} \times 0 \big) \times G & \to & \coprod (D^{n-1} \times I) \times G \\
\downarrow & & \downarrow \\
P_{n-1} & \xrightarrow{f} & P_n \\
\end{array}
\]

covering the map $Y_n \to Y_0$. Since the action is free, it’s enough to define f on $D^{n-1} \times I$ for each cell, in such a way that the diagram

\[
\begin{array}{cccc}
\partial D^{n-1} \times I \cup D^{n-1} \times 0 & \to & D^{n-1} \times I \\
\downarrow & & \downarrow \\
P_{n-1} & \to & P_0 \\
\end{array}
\]

commutes, and then extend by equivariance. Since

\[
(D^{n-1} \times I, \partial D^{n-1} \times I \cup D^{n-1} \times 0) \cong (D^{n-1} \times I, D^{n-1} \times 0),
\]

what we have is:

\[
\begin{array}{cccc}
D^{n-1} \times 0 & \to & P_0 \\
\downarrow & & \downarrow \\
D^{n-1} \times I & \to & Y_0 \\
\end{array}
\]

So the dotted map exists, since $P_0 \to Y_0$ is a fibration! \qed

57 The classifying space of a group

Representability

Theorem 57.1. Let G be a topological group and $\xi : E \downarrow B$ a principal G-bundle such that E is weakly contractible (just as a space, forgetting the G-action). For any complex X, the map

\[
[X, B] \to \text{Bun}_G(X)
\]

sending a map $f : X \to B$ to the isomorphism class of $f^* \xi$ is bijective.

This theorem as two parts: surjectivity and injectivity. Both are proved using the following proposition.
Proposition 57.2. Let E be a G-space that is weakly contractible as a space. Let (P, A) be a free relative G-CW complex. Then any equivariant map $f : A \to E$ extends to an equivariant map $P \to E$, and this extension is unique up to an equivariant homotopy rel A.

Proof. Just do what comes naturally, after the experience of the proof of I-invariance!

Proof of Theorem 57.1. Surjectivity is immediate; take $A = \emptyset$.

To prove injectivity, let $f_0, f_1 : P \to E$ be two equivariant maps. We wish to show that they are homotopic by an equivariant homotopy, which thus descends to a homotopy between the induced maps on orbit spaces. Our data give an equivariant map $A = P \times \partial I \to E$, which we extend to an equivariant map from $P \times I$ again using Proposition 57.2.

As usual, the representing object is unique up to isomorphism (in the homotopy category). Any choice of contractible free G-CW complex will be written EG, and its orbit space BG. $EG \downarrow BG$ is the universal principal G-space, and BG classifies principal G-bundles.

What remains is to construct a G-CW complex that is both free and contractible. There are many ways to do this. One can use Brown Representability, for example.

When the group is discrete, say π, this amounts to finding a $K(\pi, 1)$: the action of π on the universal cover is “properly discontinuous,” which is to say principal. So we have a bunch of examples! For instance, let $\pi = \pi_1(\Sigma)$ where Σ is any closed connected surface other than S^2 and $\mathbb{R}P^2$. Then any principal π-bundle over any CW-complex B is pulled back from the universal cover of Σ under a unique homotopy class of maps $B \to \Sigma$.

If G is a compact Lie group – for example a finite group – there is a very geometric way to go about this, based on the following result.

Theorem 57.3 (Peter-Weyl, [12, Corollary IV.4.22]). Any compact Lie group admits a finite-dimensional faithful unitary representation.

Clearly, if P is free as a G-space then it is also free as an H-space for any subgroup H of G. It’s also the case that a if P is a principal G-space then it is also a principal H space, provided that H is a closed subgroup of G.

Combining these facts, we see that in order to construct a universal principal G action, for any compact Lie group G, it suffices to construct such a thing for the particular Lie groups $U(n)$.

Gauss maps

Before we look for highly connected spaces on which $U(n)$ acts, let’s look at the case in which the base space is a compact Hausdorff space (for example a finite complex). In this case we can be more geometrically explicit about the classifying map.

Lemma 57.4. Over a compact Hausdorff space, any vector bundle embeds in a trivial bundle.

Proof. Let U be a trivializing open cover of the base B; since B is compact, we may assume that U is finite, with, say, k elements U_1, \ldots, U_k. We agreed that our vector bundles would always be numerable, but we don’t even have to mention this here since compact Hausdorff spaces are paracompact. So we can choose a partition of unity $\{\phi_i\}$ subordinate to U. By treating path components separately if need be, we may assume that our vector bundle $\xi : E \downarrow B$ is an n-plane bundle, with projection p. The trivializations are fiberwise isomorphisms $g_i : p^{-1}(U_i) \to \mathbb{R}^n$. We can assemble these maps using the partition of unity, and define $g : E \to (\mathbb{R}^n)^k$ as the unique map such that

$$\text{pr}_i g(e) \phi_i(p(e)) g_i(e).$$
This is a fiberwise linear embedding. The map \(e \mapsto (p(e), g(e)) \) is an embedding into the trivial bundle \(B \times \mathbb{R}^{nk} \).

We can now use the standard inner product on \(\mathbb{R}^{nk} \) (or any other metric on \(B \times \mathbb{R}^{nk} \)) to form the complement of \(E \):

Corollary 57.5. Over a compact Hausdorff space, any vector bundle has a complement (i.e. a vector bundle \(\xi \perp \) such that \(\xi \oplus \xi \perp \) is trivial).

Suppose our vector bundle has fiber dimension \(n \). The image of \(g(E_x) \) is an \(n \)-plane in \(\mathbb{R}^{nk} \); that is, an element \(f(x) \in \text{Gr}_n(\mathbb{R}^{nk}) \). We have produced a diagram

\[
\begin{array}{ccc}
E & \xrightarrow{g} & E(\xi_{nk,n}) \\
\downarrow{\xi} & & \downarrow{} \\
B & \xrightarrow{f} & \text{Gr}_n(\mathbb{R}^{nk})
\end{array}
\]

that expresses \(\xi \) as the pullback of the tautologous bundle \(\xi_{nk,n} \) under a map \(f : B \to \text{Gr}_n(\mathbb{R}^{nk}) \). This map \(f \), covered by a bundle map, is a Gauss map for \(\xi \).

The Grassmannian model

The principalization of the tautologous vector bundle over the Grassmannian \(\text{Gr}_n(\mathbb{C}^{n+k}) \) is the complex Stiefel manifold

\[V_n(\mathbb{C}^{n+k}) = \{ \text{isometric embeddings } \mathbb{C}^n \hookrightarrow \mathbb{C}^{n+k} \} . \]

Ehresmann’s theorem (for example) tells us that the projection map

\[V_n(\mathbb{C}^{n+k}) \downarrow \text{Gr}_n(\mathbb{C}^{n+k}) \]

sending an embedding to its image is a fiber bundle, so we have a principal \(U(n) \)-bundle.

How connected is this complex Stiefel variety? \(U(q) \) acts transitively on the unit sphere in \(\mathbb{C}^q \) and the isotropy group of the basis vector \(e_q \) is \(U(q-1) \) embedded in \(U(q) \) in the upper left corner. So we get a tower of fiber bundles with the indicated fibers:

\[
\begin{align*}
S^{2k+1} & \longrightarrow U(n+k)/U(k) = V_n(\mathbb{C}^{n+k}) \\
S^{2k+3} & \longrightarrow U(n+k)/U(1+k) \\
& \vdots \\
S^{2(n+k)−1} & \longrightarrow U(n+k)/U((n−1)+k) .
\end{align*}
\]

The long exact homotopy sequence shows that \(V_n(\mathbb{C}^{n+k}) \) is \((2k)\)-connected. It’s a “twisted product” of the the spheres \(S^{2k+1}, S^{2k+3}, S^{2(n+k)−1} \).
So forming the direct limit
\[V_n(C^n) = \lim_{k \to \infty} V_n(C^{n+k}) \]
gives us a contractible CW complex with a principal action of \(U(n) \). The quotient map
\[V_n(C^n) \downarrow V_n(C^n)/U(n) = \text{Gr}_k(C^n) \]
provides us with a universal principal \(U(n) \) bundle, and hence also a universal \(n \)-plane bundle \(\xi_n \). An element of \(E(\xi_n) \) is an \(n \)-dimensional subspace of the countably infinite dimensional vector space \(C^\infty \). This is the “infinite Grassmannian,” and it deserves the symbol \(BU(n) \).

Dividing by a closed subgroup \(G \subseteq U(n) \) provides us with a model for \(BG \). Of course sometimes we have more direct constructions; for example the same observations show that \(BO(n) \) is the space of \(n \)-planes in \(\mathbb{R}^\infty \).

58 Simplicial sets and classifying spaces

We encountered simplicial sets at the very beginning of 18.905, as a step on the way to constructing singular homology. We will take this story up again here, briefly, because simplicial methods provide a way to organize the combinatorial data needed for the construction of classifying spaces and maps. It turns out that simplicial sets actually afford a completely combinatorial model for homotopy theory, though that is a story for another time.

Simplex category and nerve

The \textit{simplex category} \(\Delta \) has as objects the finite totally ordered sets \([n] = \{0, 1, \ldots, n\}, n \geq 0\), and as morphisms the order preserving maps. In particular the “coface” map \(d^i : [n] \to [n+1] \) is injection omitting \(i \) and the “codegeneracy” map \(s^i : [n] \to [n-1] \) is the surjection repeating \(i \). Any order-preserving map can be written as the composite of these maps, and there are famous relations that they satisfy. They generate the category \(\Delta \).

The \textit{standard (topological) simplex} is the functor \(\Delta : \Delta \to \text{Top} \) defined by sending \([n] \to \text{Top} \) \(\Delta(n) \), the convex hull of the standard basis vectors \(e_0, e_1, \ldots, e_n \) in \(\mathbb{R}^{n+1} \). Order-preserving maps get sent to the affine extension of the map on basis vectors. So \(d^i \) includes the \(i \)th codimension 1 face, and \(s^i \) collapses onto a codimension 1 face.

\textbf{Definition 58.1.} Let \(C \) be a category. Denote by \(sC \) the category of \textit{simplicial objects} in \(C \), i.e., the category \(\text{Fun}(\Delta^{op}, C) \). We write \(X_n = X([n]) \) for the “object of \(n \)-simplices.”

A simplicial object can be defined by giving an object \(X_n \in C \) for every \(n \geq 0 \) along with maps \(d_i : X_{n+1} \to X_n \) and \(s_i : X_{n-1} \to X_n \) satisfying certain quadratic identities.

Our first example of a simplicial object is the \textit{singular simplicial set} \(\text{Sin}(X) \) of a space \(X \):
\[\text{Sin}(X)_n = \text{Sin}_n(X) = \text{Top}(\Delta^n, X) \, . \]

There is a categorical analogue of \(\Delta : \Delta \to \text{Top} \). After all, the ordered set \([n] \) is a particularly simple small category: \(\Delta \) is a full subcategory of the category of small categories. So a small category \(C \) determines a simplicial set \(NC \), the \textit{nerve} of \(C \), with
\[(NC)_n = N_nC = \text{Fun}([n], C) \, . \]
Thus N_0C is the set of objects of C; N_1C is the set of morphisms; $d_0 : N_1C \to N_0C$ sends a morphism to its target, and $d_1 : N_1C \to N_0C$ sends a morphism to its source; $s_0 : N_0C \to N_1C$ sends an object to its identity morphism. In general N_nC is the set of n-chains in C: composable sequences of n morphisms. For $0 < i < n$, the face map $d_i : N_nC \to N_{n-1}C$ forms the composite of two adjacent morphisms, while d_0 omits the initial morphism and d_n omits the terminal morphism. Degeneracies interpose identity maps.

For example, a group G can be regarded as a small category, one with just one object. We denote it again by G. Then $N_nG = G^n$, and for $0 < i < n$

$$d_i(g_1, \ldots, g_n) = (g_1, \ldots, g_{i-1}, g_ig_{i+1}, g_{i+2}, \ldots, g_n).$$

while

$$d_0(g_1, \ldots, g_n) = (g_2, \ldots, g_n), \quad d_n(g_1, \ldots, g_n) = (g_1, \ldots, g_{n-1}).$$

In general, the nerve construction allows us to regard small categories as a special class of simplicial sets. This attitude is the starting point for the theory of “quasi-categories” or “∞-categories,” which constitute a somewhat more general class of simplicial sets.

Realization

The functor S^\bullet transported us from spaces to simplicial sets. Milnor described how to go the other way.

Let K be a simplicial set. The geometric realization $|K|$ of K is

$$|K| = (\coprod_{n \geq 0} \Delta^n \times K_n)/\sim$$

where \sim is the equivalence relation defined by:

$$\Delta^m \times K_m \ni (v, \phi^* x) \sim (\phi_x v, x) \in \Delta^n \times K_n$$

for all maps $\phi : [m] \to [n]$.

Example 58.2. The equivalence relation is telling us to glue together simplices as dictated by the simplicial structure on K. To see this in action, let us look at $\phi^* = d_i : K_{n+1} \to K_n$ and $\phi_x = d^i : \Delta^n \to \Delta^{n+1}$. In this case, the equivalence relation then says that $(v, d_ix) \in \Delta^n \times K_n$ is equivalent to $(d^iv, x) \in \Delta^{n+1} \times K_{n+1}$. In other words: the ith face of the $n + 1$ simplex labeled by x is identified with the n-simplex labeled by d_ix.

There’s a similar picture for the degeneracies s^i, where the equivalence relation dictates that every element of the form (v, s_ix) is already represented by a simplex of lower dimension. A simplex in a simplicial set is “nondegenerate” if it is not in the image of a degeneracy map. Neglecting the topology, $|X|$ is the disjoint union of “open” topological simplices labeled by the nondegenerate simplices of K.

Example 58.3. Let $n \geq 0$, and consider the simplicial set $\Delta(-, [n])$. This is called the “simplicial n-simplex”, for good reason: Its geometric realization is canonically homeomorphic to the geometric n-simplex Δ^n.

The realization $|K|$ of a simplicial set has a naturally defined CW structure with

$$sk_n|K| = (\coprod_{k \leq n} \Delta^k \times K_k)/\sim.$$
The face maps give the attaching maps; for more details, see [7, Proposition I.2.3]. This is a very combinatorial way to produce CW-complexes.

The geometric realization functor and the singular simplicial set functor form one of the most important and characteristic examples of an adjoint pair:

\[|-| : s\text{Set} \rightleftarrows \text{Top} : \text{Sin} \]

The adjunction morphisms are easy to describe. For \(K \in s\text{Set} \), the unit for the adjunction \(K \to \text{Sin}(|K|) \) sends \(x \in K_n \) to the map \(\Delta^n \to |K| \) defined by \(v \mapsto [(v, x)] \)

To describe the counit, let \(X \) be a space. There is a continuous map \(\Delta^n \times \text{Sin}_n(X) \to X \) given by \((v, \sigma) \mapsto \sigma(v) \). The equivalence relation defining \(|\text{Sin}(X)| \) says precisely that the map factors through the dotted map in the following diagram:

\[
|\text{Sin}(X)| \xrightarrow{\sim} X \quad \xrightarrow{\sim} \quad \coprod \Delta^n \times \text{Sin}_n(X)
\]

A theorem of Milnor asserts that this map is a weak equivalence. This provides a functorial (and therefore spectacularly inefficient) CW approximation for any space.

This adjoint pair enjoys properties permitting the wholesale comparison of the homotopy theory of spaces with a combinatorially defined homotopy theory of simplicial sets. For more details, see for example [7].

Classifying spaces

Combining the two constructions we have just discussed, we can assign to any small category \(C \) a space

\[BC = |NC|, \]

known as its **classifying space**. For example, \(B[n] = \Delta^n \).

When \(C \) is a group, \(G \), this space does in fact support a principal \(G \)-bundle. Before we explain that, let’s look at the example of the group \(C_2 \) of order 2. Write \(t \) for the non-identity element of \(C_2 \). There is just one non-degenerate \(n \) simplex in \(NC_2 \) for any \(n \geq 0 \), namely \((t, t, \cdots, t)\). So the realization \(BC_2 \) has a single \(n \)-cell for every \(n \). Not bad, since it’s supposed to be a CW structure on \(\mathbb{R}P^n \)!

Think about what the low skelata are. There’s just one object, so \((BC_2)_0 = * \). There is just one nondegenerate 1-simplex, \((t) \in C_2^1\), \((BC_2)_1\) is a circle. There’s just one nondegenerate 2-simplex, \((t, t) \in C_2^2\). Its faces are

\[d_0(t, t) = t, \quad d_1(t, t) = t^2 = 1, \quad d_2(t, t) = t. \]

The middle face has been identified with * since it is degenerate, and we see a standard representation of \(\mathbb{R}P^2 \) as a “lune” with its two edges identified. A similar analysis shows that \((BC_2)_n = \mathbb{R}P^n \) for any \(n \).

The projection maps \(C \times D \to C \) and \(C \times D \to D \) together induce a natural map

\[B(C \times D) \to BC \times BD. \]
Using this, we can see that the classifying space construction sends natural transformations to homotopies. A natural transformation of functors \(C \to D \) is the same thing as a functor \(C \times [1] \to D \). Since \(B[1] = \Delta^1 \), we can form the homotopy

\[
BC \times \Delta^1 = BC \times B[1] \to B(C \times [1]) \to BD
\]

Consequently:

Lemma 58.4. An adjoint pair induces a homotopy equivalence on classifying spaces.

Corollary 58.5. If \(C \) contains an initial object or a terminal object then \(BC \) is contractible.

Proof. Saying that \(o \in C \) is initial is saying that the inclusion \(o : [0] \to C \) is a left adjoint.

The following is a nice surprise, and requires the use of the compactly generated topology on the product.

Theorem 58.6. The natural map \(B(C \times D) \to BC \times BD \) is a homeomorphism.

Sketch of proof. This is nontrivial – not “categorical” – because it asserts that certain limits commute with certain colimits. The underlying fact is the Eilenberg-Zilber theorem, which gives a simplicial decomposition of \(\Delta^m \times \Delta^n \) and verifies the result when \(C = [m] \) and \(D = [n] \). The general result follows since every simplicial set is a colimit of its “diagram of simplices,” and \(B \) respects colimits.

The translation groupoid

An action of \(G \) on a set \(X \) determines a category, a groupoid in fact, the “translation groupoid,” which I will denote by \(GX \). Its object set is \(X \), and

\[
GX(x, y) = \{ g \in G : gx = y \}
\]

Composition comes from the group multiplication.

When \(X = * \) we recover the category \(G \). Another case of interest is when \(X = G \) with \(G \) acting from the left by translation. The category \(GG \) is “unicursal”: there is exactly one morphism between any two objects; every object is both initial and terminal. This implies that \(B(GG) \) is contractible.

The association

\[
X \mapsto GX \mapsto N(GX) \mapsto |N(GX)| = B(GX)
\]

is functorial. In particular, right multiplication by \(g \in G \) on the set \(G \) is equivariant with respect to the left action of \(G \) on it. Therefore \(G \) acts from the right on \(GG \) and hence on \(B(GG) \). This is a “free” action: no \(g \in G \) except the identity element fixes any simplex. This implies that \(B(GG) \) admits the structure of a free \(G \)-CW complex. It’s not hard to verify that \(B(GG) / G = BG \), so we have succeeded in constructing a functorial classifying space for any discrete group.

59 The Čech category and classifying maps

In this lecture I’ll sketch a program due to Graeme Segal \[22\] for classifying principal \(G \)-bundles using the simplicial description of the classifying space proposed in the last lecture. The machinery admits an extension to general topological groups.
Top-enrichment

The Grassmannian model provides a classifying space for any compact Lie group. This includes finite discrete groups, which will be covered by the construction we just did. But we’d like to provide a construction to cover arbitrary discrete groups. This process in fact works for arbitrary topological groups as well.

Definition 59.1. A category *enriched in* Top *is a category* \mathcal{C} *together with topologies on all the morphism sets, with the property that the composition maps are continuous.*

The fact that Top is Cartesian closed provides us with an enrichment in Top of the category Top itself. A simpler (and smaller) example is given by any topological group (or monoid), regarded as a category with one object. Then a continuous action of G on a space X is just a functor $G \to \text{Top}$ that is continuous on hom spaces: a “topological functor.”

The “nerve” construction now produces a simplicial space, $NG \in s\text{Top}$ associated to any topological group G. The formula for geometric realization still makes perfectly good sense for a simplicial space (though it won’t generally be a CW complex anymore). Combining the two constructions, we may form the “classifying space” $BG = |NG|$.

Internal categories

To justify this language, we should produce a principal G-bundle over this space with contractible total space. This construction requires one further invasion of topology into category theory, namely, an “internal category” in Top.

Definition 59.2. Top-category is a pair of spaces C_0 and C_1 (to be thought of as the space of objects and the space of morphisms), together with continuous structure maps

$$\text{source, target} : C_1 \rightrightarrows C_0, \quad \text{identity} : C_0 \to C_1$$

$$\text{composition} : C_1 \times_{C_0} C_1 \to C_1$$

satisfying the axioms of a category.

If the object space is discrete, this is just an enrichment in Top. But there are other important examples. The simplest one is entirely determined by a space X: write cX for it. Just take it $(cX)_0 = (cX)_1 = X$ with the “identity” map $(cX)_0 \to (cX)_1$ given by the identity map.

The nerve and classifying space constructions carry over without change to this new setting. $(NC)_0$ will no longer be discrete. The classifying space of cX is just X, for example. The observation that an adjoint pair yields a homotopy equivalence still holds.

Now suppose that G acts on a space X. The construction of GX carried out in the previous lecture provides us with a Top-category. Its classifying space maps to that of G, since X maps to a point.

Proposition 59.3. If G is a Lie group (and much more generally as well) the map $B(GG) \to BG$ is a principal G-bundle, and $B(GG)$ is contractible.
So this gives the classifying space of G, functorially in G. It’s not hard to see that in fact
\[B(GX) = B(GG) \times_G X. \]

This degree of generality provides an inductive way to construct Eilenberg Mac Lane spaces explicitly. Begin with any discrete abelian group π. Apply the classifying space construction we’ve just described, to obtain a $K(\pi, 1)$. Now being abelian is equivalent to the multiplication map $\pi \times \pi \to \pi$ being a homomorphism. So we may leverage the functoriality of B, and the fact that it commutes with products, and form
\[B\pi \times B\pi \cong B(\pi \times \pi) \to B\pi. \]

This provides on $B\pi$ the structure of a topological abelian group. So we can apply B again: $BB\pi = K(\pi, 2)$. And so on:
\[B^n\pi = K(\pi, n) \]

Descent

Let $\pi : Y \to X$ be a map of spaces. We can use it to define a Top-category, the “descent category” or “Čech category” $\check{\mathcal{C}}(\pi)$ as follows. The space of objects is X, and the space of morphisms is $Y \times_X Y$. The structure maps are given by
\[\text{id} = \Delta : Y \to Y \times_X Y \quad y \mapsto (y, y) \]
\[\text{source} = \text{pr}_1 : Y \times_X Y \to Y \quad (y_1, y_2) \mapsto y_1 \]
\[\text{target} = \text{pr}_2 : Y \times_X Y \to Y \quad (y_1, y_2) \mapsto y_2 \]
\[\text{composition} : (Y \times_X Y) \times_Y (Y \times_X Y) \to Y \times_X Y \quad ((y_1, y_2), (y_2, y_3)) \mapsto (y_1, y_3). \]

There is a continuous functor
\[\check{\pi} : \check{\mathcal{C}}(\pi) \to cX \]
determined by mapping the object space by the identity.

This construction is best understood from its motivating case. Suppose that \mathcal{U} is a cover of X and let
\[Y = \coprod_{U \in \mathcal{U}} U, \]
mapping to X by sending $x \in U$ to x. Then
\[Y \times_X Y = \coprod_{(U, V) \in \mathcal{U} \times \mathcal{U}} U \cap V, \]
the disjoint union of intersections of ordered pairs of elements of \mathcal{U}. Source and target just embed $U \cap V$ into U and V.

In this case let’s write $\check{\mathcal{C}}(\mathcal{U})$ for the Čech category. In good cases we can recover X from $\check{\mathcal{C}}(\mathcal{U})$:

Proposition 59.4. If the open cover \mathcal{U} of X admits a subordinate partition of unity, then $B\check{\pi} : B\check{\mathcal{C}}(\mathcal{U}) \to X$ is a homotopy equivalence.

Proof. A sequence $U_0, U_1, \ldots U_n$ of elements of \mathcal{U} together with a point x in their intersection determines a chain $(x \in U_0) \to (x \in U_1) \to \cdots \to (x \in U_n)$ in the category $\check{\mathcal{C}}(\mathcal{U})$. The counit of the realization-singular adjunction then gives a map
\[\epsilon : \Delta^n \times (U_0 \cap U_1 \cap \cdots \cap U_n) \to B\check{\mathcal{C}}(\mathcal{U}). \]
Now let \(\{ \phi_U : U \in \mathcal{U} \} \) be a partition of unity subordinate to \(\mathcal{U} \), so that, for every \(x \in X \), \(\phi_U(x) = 0 \) for all but finitely many \(U \in \mathcal{U} \), and \(\sum_U \phi_U = 1 \). Pick a partial order on the elements of \(\mathcal{U} \) that is total on any subset with nonempty intersection. For any \(x \) let \(U_0(x), \ldots, U_n(x) \) be the ordered sequence of elements of \(\mathcal{U} \) that contain \(x \). Then define

\[
X \to B\check{\mathcal{C}}(\mathcal{U})
\]

by sending

\[
x \mapsto \epsilon((\phi_{U_0(x)}(x), \ldots, \phi_{U_n(x)}(x)), x).
\]

It’s not hard to check that this gives a well-defined map that is homotopy inverse to \(B\check{\pi} \).

\[\square\]

Remark 59.5. A final comment: In [22] Segal explains how to use these methods to construct a spectral sequence from this approach, one that includes the Serre spectral sequence and more generally the topological version of the Leray spectral sequence. We won’t pursue that avenue in these lectures, though, but instead will describe two other approaches.

Transition functions, cocycles, and classifying maps

Now suppose that \(p : P \downarrow B \) is a principal \(G \)-bundle. Pick a trivializing open cover \(\mathcal{U} \), along with trivializations \(\varphi_U : p^{-1}U \to U \times G \) for \(U \in \mathcal{U} \). These data determine a continuous functor

\[
\check{\mathcal{C}}(\mathcal{U}) \to G
\]

as follows. There’s no choice about behavior on objects. On morphisms, we use the “transition functions” associated with the given trivializations. So for \(U, V \in \mathcal{U} \), the intersection \(U \cap V \) is a subspace of the space of morphisms in \(\check{\mathcal{C}}(\mathcal{U}) \). We map it to \(G \) by

\[
x \mapsto \varphi_V(x) \varphi_U(x)^{-1} \in G.
\]

The “cocycle condition” on these transition functions is the statement that together these maps constitute a functor.

Therefore we get a diagram

\[
\begin{array}{ccc}
B\check{\mathcal{C}}(\mathcal{U}) & \longrightarrow & BG \\
\uparrow \cong & & \downarrow \\
X & \longrightarrow & \check{\mathcal{C}}(\mathcal{U})
\end{array}
\]

and one can check that the bundle \(EG \downarrow BG \) pulls back to \(P \downarrow X \) under the composite \(X \to BG \).
Chapter 7

Spectral sequences

60 Why spectral sequences?

When we’re solving a complicated problem, it is smart to break the problem into smaller pieces, solve them, and then put the pieces back together. Spectral sequences provide a powerful and flexible tool for bridging the “local to global” divide. They contain a lot of information, and can be queried in a variety of ways, so we will spend quite a bit of time getting to know them.

Homology is relatively computable precisely because you can break a space into smaller parts and then use Mayer-Vietoris to put the pieces back together. The long exact homology sequence (along with excision) is doing the same thing. We have seen how useful this is a good way to compute the homology of a space is to specify a CW structure. This puts a filtration on a space X, the skeleton filtration, and then makes use of the long exact sequences of the various pairs (X_n, X_{n-1}). Things are particularly simple here, since $H_q(X_n, X_{n-1})$ is nonzero for only one value of q.

There are interesting filtrations that do not have that property. For example, suppose that $p : E \to B$ is a fibration. A CW structure on B determines a filtration of E in which

$$F_s E = p^{-1}(\text{Sk}_s B).$$

Now the situation is more complicated: For each s we get a long exact sequence involving $H_*(F_{s-1} E)$, $H_*(F_s E)$, and $H_*(F_s E, F_{s-1} E)$. The relevant structure of this tangle of long exact sequences is a “spectral sequence.” It will describe the exact relationship between the homologies of the fiber, the base, and the total space.

We can get a somewhat better idea of how this might look by thinking of the case of a product projection. Then the Künneth theorem is available. Let’s assume that we are in the lucky situation in which there is a Künneth isomorphism, and that the base is path-connected. Then the fiber is well-defined up to homotopy type; let’s write F for it, so that

$$H_*(B) \otimes H_*(F) \cong H_*(E).$$

You should visualize this tensor product of graded modules by putting the the component $H_s(B) \otimes H_t(F)$ in degree $n = s + t$ of the graded tensor product in position (s, t) in the first quadrant of the plane. Then the graded tensor product in degree n sums along each “total degree” $n = s + t$. Along the x-axis we see $H_*(B) \otimes H_0(F)$; if F is path connected this is just the homology of the base space. Along the y-axis we see $H_0(B) \otimes H_t(F) = H_t(F)$. Cross-products of classes of these two types fill out the first quadrant.

The Künneth theorem can’t generalize directly to nontrivial fibrations, though, because of examples like the Hopf fibration $S^3 \to S^2$ with fiber S^1. The tensor product picture looks like this
and definitely gives the wrong answer!

What’s going on here? We can represent a generating cycle for $H_2(S^2)$ using a relative homeomorphism $\sigma : (\Delta^2, \partial \Delta^2) \to (S^2, o)$. If c_o represents the constant 2-simplex at the basepoint $o \in S^2$, $\sigma - c_o$ is a cycle representing a generator of $H_2(S^2)$. We can lift each of these simplices to simplicies in S^3. But a lift of σ sends $\partial \Delta^2$ to one of the fiber circles, and the lift of $\sigma - c_o$ is no longer a cycle. Rather, its boundary is a cycle in the fiber over o, and it represents a generator for $H_1(S^1)$.

This can be represented by adding an arrow to our picture.

It reflects several facts: $H_1(S^1)$ maps to zero in $H_1(S^3)$ (because the representing cycle of a generator becomes a boundary!); the image of $H_2(S^3) \to H_2(S^2)$ is trivial (because no nonzero multiple of a generator of $H_2(S^2)$ lifts to a cycle in S^3); and the homology of S^3 is left with just two generators, in dimensions 0 and 3.

In terms of the filtration on the total space S^3, the lifted chain lay in filtration 2 (saying nothing, since $F_2S^3 = S^3$) but not in filtration 1. Its boundary lies two filtration degrees lower, in filtration 0. That is reflected in the differential moving two columns to the left.

The Hopf fibration $S^7 \to S^4$ (which you will study in homework) shows a similar effect. The boundary of the 4-dimensional chain lifting a generating cycle lies again in filtration 0, i.e. on the fiber. This represents a drop of filtration by 4, and is represented by a differential of bidegree $(-4, 3)$.

In every case, the total degree of the differential is of course -1.

The Künneth theorem provides a “first approximation” to the homology of the total space. It’s generally too big, but never too small. Cancellation can occur: lifted cycles can have nontrivial boundaries, and cycles that were not boundaries in the fiber can become boundaries in the total space. More complicated cancellation can occur as well, involving the product classes.

Some history

Now I’ve told you almost the whole story of the Serre spectral sequence. A structure equivalent to a spectral sequence was devised by Jean Leray while he was in a prisoner of war camp during World War II. He discovered an elaborate structure determined in cohomology by a map of spaces. This was much more that just the functorial effect of the map. He was worked in cohomology, and in fact invented a new cohomology theory for the purpose. He restricted himself to locally compact spaces, but on the other hand he allowed any continuous map – no restriction to fibrations. This is the “Leray spectral sequence.” It’s typically developed today in the context of sheaf theory – another local-to-global tool invented by Leray at about the same time.

Leray called his structure an “anneau spectral”; he was specifically interested in its multiplicative structure, and he saw an analogy between his analysis of the cohomology of the source of his map and the spectral decomposition of an operator. Before the war he had worked in analysis, especially the Navier-Stokes equation, and said that he found in algebraic topology a study that the Nazis would not be able to use in their war effort, in contrast to his expertise as a “mechanic.”

It’s fair to say that nobody other than Leray understood spectral sequences till well after the war was over. Henri Cartan was a leading figure in post-war mathematical reconstruction. He befriended Leray and helped him explain himself better. He set his students to thinking about Leray’s ideas. One was named Jean-Louis Koszul, and it was Koszul who formulated the algebraic object we now call a spectral sequence. Another was Jean-Pierre Serre. Serre wanted to use this method to compute things in homotopy theory proper – homotopy groups, and the cohomology of Eilenberg Mac Lane spaces. He had to recast the theory to work with singular cohomology, on much more general spaces, but in return he considered only what we now call Serre fibrations. This restriction allowed a homotopy-invariant description of the spectral sequence. Leray had used “anneau spectral”; Cartan used “suite de Leray-Koszul”; and now Serre, in his thesis, brought the two parties together and coined the term “suite spectral”. For more history see [17].

La science ne s’apprend pas: elle se comprend. Elle n’est pas lettre morte et les livres n’assurent pas sa pérennité: elle est une pensée vivante. Pour s’intéresser à elle, puis la
We are trying to find ways to use a filtration of a space to compute the homology of that space. A simple example is given by the skeleton filtration of a CW complex. Let’s recall how that goes. The singular chain complex receives a filtration by sub chain complexes by setting
\[F_s S^* (X) = S^* (\text{Sk}_s X) . \]
We then pass to the quotient chain complexes
\[S_*(\text{Sk}_s X, \text{Sk}_{s-1} X) = F_s S^* (X) / F_{s-1} S^* (X) . \]
The homology of the \(s \)th chain complex in this list vanishes except in dimension \(s \), and the group of cellular \(s \)-chains is defined by
\[C_s (X) = H_*(\text{Sk}_s X, \text{Sk}_{s-1} X) . \]
In turn, these groups together form a chain complex with differential
\[d : C_s (X) = H_*(\text{Sk}_s X, \text{Sk}_{s-1} X) \to H_{s-1} (\text{Sk}_{s-1} X) \to H_{s-1} (\text{Sk}_{s-1} X, \text{Sk}_{s-2} X) = C_{s-1} (X) . \]
Then \(d^2 = 0 \) since it factors through two consecutive maps in the long exact sequence of the pair \((\text{Sk}_{s-1} X, \text{Sk}_{s-2} X) \).

We want to think about filtrations of a space \(X \) that don’t behave so simply. But the starting point is the same: filter the singular complex accordingly:
\[F_s S^* (X) = S^* (F_s X) \subseteq S^* (X) \]
This is a filtered (chain) complex.

To abstract a bit, suppose we are given a chain complex \(C_* \), whose homology we wish to compute by means of a filtration
\[\cdots \subseteq F_{-1} C_* \subseteq F_0 C_* \subseteq F_1 C_* \subseteq \cdots \]
by sub chain complexes. Note that at this point we are allowing the filtration to extend in both directions. And do we need to suppose that the intersection is zero, nor that the union is all of \(C_* \). (And \(C_* \) might be nonzero in negative degrees, as well.)

The first step is to form the quotient chain complexes,
\[\text{gr}_s C_* = F_s C_* / F_{s-1} C_* . \]
This is a sequence of chain complexes, a graded object in the category of chain complexes, and is termed the “associated graded” complex.

What is the relationship between the homologies of these quotient chain complexes and the homology of \(C_* \) itself?
We’ll set up grading conventions following the example of the filtration by preimages of a skeleton filtration under a fibration, as described in the previous lecture: name the coordinates in the plane \((s, t)\), with the \(s\)-axis horizontal and the \(t\)-axis vertical. So \(s\) will be the filtration degree, and \(s + t\) will be the total topological dimension. \(t\) is the “complementary degree.” This suggests that we should put \(\text{gr}_s C_{s+t}\) in bidegree \((s, t)\). Here then is a standard notation:

\[E^0_{s,t} = \text{gr}_s C_{s+t} = F_s C_{s+t}/F_{s-1}C_{s+t} \]

The differential then has bidegree \((0, -1)\). In parallel with the superscript in “\(E^0\),” this differential is written \(d^0\).

Next we pass to homology. Let’s use the notation \(E^1_{s,t} = H_{s,t}(E^0_*, *, d^0)\) for the homology of \(E^0\). This in turn supports a differential. In the case of the skeleton filtration, this is the differential in the cellular chain complex. The definition in general is identical:

\[d^1 : E^1_{s,t} = H_{s+t}(F_s/F_{s-1}) \overset{\partial}{\to} H_{s+t-1}(F_{s-1}) \to H_{s+t-1}(F_{s-1}/F_{s-2}) = E^1_{s-1,t}. \]

Thus \(d^1\) has bidegree \((-1, 0)\). Of course we will write

\[E^2_{s,t} = H_{s,t}(E^1_*, *, d^1). \]

In the case of the skeleton filtration, \(E^1_{s,t} = 0\) unless \(t = 0\), and the fact that cellular homology equals singular homology is the assertion that

\[E^2_{s,0} = H_s(X). \]

In general the situation is more complicated because \(E^1\) may be nonzero off the \(s\)-axis. So now the magic begins. The claim is that the bigraded group \(E^2_{s,s}\) in turn supports a natural differential, written, of course, \(d^2\); this time of bidegree \((-2, 1)\); that this pattern continues \(ad infinitum\); and that in the end you get (essentially) \(H_*(C_*)\). In fact the proof we gave last term that cellular homology agrees with singular homology is no more than a degenerate case of this fact.

Here’s the general picture.

Theorem 61.1. A filtered complex \(F_s C_*\) determines a natural spectral sequence, consisting of

- bigraded abelian groups \(E^r_{s,t}\) for \(r \geq 0\),
- differentials \(d^r : E^r_{s,t} \to E^r_{s-r, t+r-1}\) for \(r \geq 0\), and
- isomorphisms \(E^{r+1}_{s,t} \simeq H_{s,t}(E^r_*, *, d^r)\) for \(r \geq 0\),

such that for \(r = 0, 1, 2\), \((E^r_*, *, d^r)\) is as described above, that under further hypotheses “converges” to \(H_*(C_*)\).

Here are further conditions that will suffice to guarantee that the spectral sequence is actually computing \(H_*(C_*)\).

Definition 61.2. The filtered complex \(F_s C_*\) is first quadrant if

- \(F_{-1}C_* = 0\),
• $H_n(\text{gr}_s C_*) = 0$ for $n < s$, and
• $C_* = \bigcup F_s C_*$.

Under these conditions, E^1 is zero outside of the first quadrant, and so all the higher “pages” E^r have the same property. It’s called a “first quadrant spectral sequence.”

The differentials all have total degree -1, but their slopes vary. The longest possibly nonzero differential emanating from (s, t) is

$$d^s : E^s_{s, t} \to E^s_{0, t+s-1},$$

and the longest differential attacking (s, t) is

$$d^{t+1} : E^{t+1}_{s+t+1,0} \to E^{t+1}_{s, t}.$$

What this says is that for any value of (s, t), the groups $E^r_{s, t}$ stabilize for large r. That stable value is written $E^\infty_{s, t}$.

Here’s the rest of Theorem 61.1. It uses the natural filtration on $H_*(C_*)$ given by

$$F_s H_n(C_*) = \text{im}(H_n(F_s C_*) \to H_n(C_*)).$$

Theorem 61.3. The spectral sequence of a first quadrant filtered complex converges to $H_*(C_*)$, in the sense that

$$F_{-1} H_*(C_*) = 0, \quad \bigcup F_s H_*(C_*) = H_*(C_*),$$

and for each s, t there is a natural isomorphism

$$E^\infty_{s, t} \cong \text{gr}_s H_{s+t}(C_*).$$

In symbols, we may write (for any $r \geq 0$)

$$E^r_{*, *} \implies H_*(C_*),$$

or, if you want to be explicit about the degrees and which degree is the filtration degree,

$$E^r_{s, t} \implies H_{s+t}(C_*).$$

Notice right off that this contains the fact that cellular homology computes singular homology: In the spectral sequence associated to the skeleton filtration,

$$E^0_{s, t} = S_{s+t}(\text{Sk}_s X, \text{Sk}_{s-1} X)$$

$$E^1_{s, t} = H_{s+t}(\text{Sk}_s X, \text{Sk}_{s-1} X) = \begin{cases} C_s(X) & \text{if } t = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$E^2_{s, t} = \begin{cases} H^\text{cell}_s(X) & \text{if } t = 0 \\ 0 & \text{otherwise} \end{cases}$$

In a given total degree n there is only one nonzero group left by E^2, namely $E^2_{n, 0} = H^n_\text{cell}(X)$. Thus no further differentials are possible:

$$E^2_{*, *} = E^\infty_{*, *}.$$
The convergence theorem then implies that
\[\text{gr}_s H_n(X) = \begin{cases} \infty & \text{if } s = n \\ 0 & \text{otherwise} \end{cases} \]

So the filtration of \(H_n(X) \) changes only once:
\[0 = \cdots = F_{n-1}H_n(X) \subseteq F_nH_n(X) = \cdots = H_n(X), \]
and
\[F_nH_n(X)/F_{n-1}H_n(X) = E^\infty_{n,0} = H_n^\text{cell}(X). \]
So
\[H_n(X) = H_n^\text{cell}(X). \]

Before we explain how to construct the spectral sequence, let me point out one corollary at the present level of generality.

Corollary 61.4. Let \(f : C \to D \) be a map of first quadrant filtered chain complexes. If \(E^r_{s,t}(f) \) is an isomorphism for some \(r \), then \(f_* : H_*(C) \to H_*(D) \) is an isomorphism.

Proof. The map \(E^r(f) \) is an isomorphism which is also also a chain map, i.e., it is compatible with the differential \(d^r \). It follows that \(E^{r+1}(f) \) is an isomorphism. By induction, we conclude that \(E^\infty_{s,t}(f) \) is an isomorphism for all \(s,t \). By Theorem 61.3, the map \(\text{gr}_s(f_*) : \text{gr}_sH_s(C) \to \text{gr}_sH(D) \) is an isomorphism. Now the conditions in Definition 61.2 let us use induction and the five lemma to conclude the proof. \(\square \)

Direct construction

In a later lecture I will describe a structure known as an “exact couple” that provides a construction of a spectral sequence that is both clean and flexible. But the direct construction from a filtered complex has its virtues as well. Here it is. The detailed computations are annoying but straightforward.

Define the following subspaces of \(E^0_{s,t} = F_sC_{s+t}/F_{s-1}C_{s+t} \), for \(r \geq 1 \).
\[Z^r_{s,t} = \{ c : \exists \ x \in c \text{ such that } dx \in F_{s-r}C_{s+t-1} \}, \]
\[B^r_{s,t} = \{ c : \exists \ y \in F_{s+r-1}C_{s+t+1} \text{ such that } dy \in c \}. \]

So an “\(r \)-cycle” is a class that admits a representative whose boundary is \(r \) filtrations smaller; the larger \(r \) is the closer the class is to containing an actual cycle. An “\(r \)-boundary” is a class admitting a representative that is a boundary of an element allowed to lie in filtration degree \(r+1 \) stages larger. When \(r = 1 \), these are exactly the cycles and boundaries with respect to the differential \(d^0 \) on \(E^0_{s,t} \).

We have inclusions
\[B^1_{s,*} \subseteq B^2_{s,*} \subseteq \cdots \subseteq Z^2_{s,*} \subseteq Z^1_{s,*} \]
and define
\[E^r_{s,t} = Z^r_{s,t}/B^r_{s,t}. \]
CHAPTER 7. SPECTRAL SEQUENCES

These pages are successively smaller groups of cycles modulo successively larger subgroups of boundaries. The differential d^r is of course induced from the differential d in C_*, and $H_{s,t}(E^r_{s,s},d^r) \cong E^r_{s,t}$.

In the first quadrant situation, the r-boundaries and the r-cycles stabilize to

$$Z^\infty_{s,t} = \{ c : \exists x \in c \text{ such that } dx = 0 \},$$
$$B^\infty_{s,t} = \{ c : \exists y \in C_{s+t+1} \text{ such that } dy \in c \}.$$

The quotient, $E^\infty_{s,t}$, is exactly $F_sH_{s+t}(C_*)/F_{s-1}H_{s+t}(C_*)$.

62 Serre spectral sequence

Fix a fibration $p : E \to B$, with B a CW-complex. We obtain a filtration on E by taking the preimage of the s-skeleton of B: $E_s = p^{-1}\text{Sk}_sB$. This induces a filtration on $S_*(E)$ given by

$$F_sS_*(E) = S_*(p^{-1}\text{Sk}_s(B)) \subseteq S_*(E).$$

The spectral sequence resulting from Theorem 61.1 is the Serre spectral sequence.

This was not Serre’s construction, by the way; he did not employ a CW structure at all, but rather worked directly with a singular theory – but rather than simplices, he used cubes, which are well adapted to the study of bundles since a product of cubes is again a cube. We will describe a variant of Serre’s construction in a later lecture, one that is technically easier to work with and that makes manifest important multiplicative features of the spectral sequence. We will not try to dot all the i’s in the construction we describe in this lecture, and for simplicity we’ll imagine that p is actually a fiber bundle.

In this spectral sequence,

$$E^1_{s,t} = H_{s+t}(F_sE,F_{s-1}E).$$

Pick a cell structure

$$\coprod_{i \in I_s} S_i^{s-1} \longrightarrow \coprod_{i \in I_s} D_i^s \longrightarrow B_{s-1} \longrightarrow B_s$$

Let $\alpha : D_i^s \to B_s$ be characteristic map, and let F_i be the fiber over the center of e_i^s in B. The pullback of $E \to B$ under α is a trivial fibration since D_i^s is contractible. Now

$$\coprod_{i \in I_s} (D_i^s, S_i^{s-1}) \times F_i \to (F_sE,F_{s-1}E)$$

is a relative homeomorphism, so by excision

$$E^1_{s,t} = H_{s+t}(F_sE,F_{s-1}E) = \bigoplus_{i \in I_s} H_{s+t}((D_i^s, S_i^{s-1}) \times F_i) = \bigoplus_{i \in I_s} H_t(F_i).$$

In particular, this filtration satisfies the requirements of Definition 61.2, since $H_t(F_i) = 0$ for $t < 0$. We have a convergent spectral sequence. It remains to work out what d^1 is. I won’t do this in detail but I’ll tell you how it turns out.

It’s important to appreciate that the fibers F_i vary from one cell to the next. If B is not path-connected, these fibers don’t even have to be of the same homotopy type. If B is path connected,
then they are, but the homotopy equivalence is determined by a homotopy class of paths from one center to the other. If \(B \) is not simply connected, the functor

\[
p^{-1}(-) : \Pi_1(B) \to \text{Ho}(\text{Top})
\]

may not be constant. But at least we see that the fibration defines functors

\[
H_t(p^{-1}(-)) : \Pi_1(B) \to \text{Ab} \quad \text{with} \quad b \mapsto H_t(p^{-1}(b)).
\]

This is, or determines, a \textit{local coefficient system}. We encountered these before, in our exploration of orientability. There a “local coefficient system” was a covering space with continuously varying abelian group structures on the fibers. If the space is path connected and semi-locally simply connected, there is a universal cover, and giving a covering space is equivalent to giving an action of the fundamental group on a set. We can free this equivalence from dependence on path connectedness (and choice of basepoint) by speaking of functors from the fundamental groupoid to abelian groups. CW complexes are locally contractible \[8, \text{Appendix on CW complexes, Proposition 4}\] and so this equivalence applies in our case.

If this local system is in fact constant (for example if \(B \) is simply connected) the differential in \(E^1 \) is none other than the cellular differential in

\[
C_*(B; H_t(F))
\]

(where we write \(F \) for any fiber), and so

\[
E_{s,t}^2 = H_s(B; H_t(F)).
\]

This is the case we will mostly be concerned with. But the general case is the same, with the understanding that we mean homology of \(B \) with coefficients in the local system \(H_t(p^{-1}(-)) \).

Here’s a base-point dependent way of thinking of how to compute homology or cohomology of a space with coefficients in a local system. We assume that our space \(X \) is path-connected and nice enough to admit a universal cover \(\tilde{X} \). Pick a basepoint \(* \). Giving a local coefficient system is the same as giving a \(\mathbb{Z}[[\pi_1(X, *)]] \)-module. Write \(M \) for both. The fundamental group acts on \(\tilde{X} \) and so on its singular chain complex. Now we can say that

\[
H_*(X; M) = H_*(S_*(\tilde{X}) \otimes_{\mathbb{Z}[[\pi_1(X, *)]]} M), \quad H^*(X; M) = H^*(\text{Hom}_{\mathbb{Z}[[\pi_1(X, *)]]}(S_*(\tilde{X}), M)).
\]

Here’s the general result.

Theorem 62.1. Let \(p : E \downarrow B \) be a Serre fibration, \(R \) a commutative ring, and \(M \) an \(R \)-module. There is a first quadrant spectral sequence of \(R \)-modules with

\[
E_{s,t}^2 = H_s(B; H_t(p^{-1}(-); M))
\]

that converges to \(H_*(E; M) \). It is natural from \(E^2 \) on for maps of fibrations.

This theorem expresses one important perspective on spectral sequences: They can serve to implement a “local-to-global” strategy. A fiber bundle is locally a product. The spectral sequence explains how the “local” (in the base) homology of \(E \) gets integrated to produce the “global” homology of \(E \) itself.
Loops on spheres

Here’s a first application of the Serre spectral sequence: a computation of the homology of the space of pointed loops on a sphere, ΩS^n. It is the fiber of the fibration $PS^n \to S^n$, where PS^n is the space of pointed maps $(S^n)^I$. This space is contractible, by the spaghetti move.

It is often said that the Serre spectral sequence is designed to compute the homology of the total space starting with the homologies of the fiber and of the base. This is not true! It establishes a relationship between these three homologies, that can be used in many different ways. Here we know the homology of the total space (since PS^n is contractible) and of the base, and we want to know the homology of the fiber.

The case $n = 1$ is special: S^1 is a Eilenberg Mac Lane space, so $\Omega S^1 = K(\mathbb{Z},0)$, which is homotopy equivalent to the discrete space \mathbb{Z}.

So suppose $n \geq 2$. Then the base is simply connected and torsion-free, so in the Serre spectral sequence

$$E^2_{s,t} = H_s(S^n; H_t(\Omega S^n)) = H_s(S^n) \otimes H_t(\Omega S^n).$$

Here’s a picture, for $n = 4$.

<table>
<thead>
<tr>
<th>5</th>
<th>$H_5(\Omega S^4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>$H_4(\Omega S^4)$</td>
</tr>
<tr>
<td>3</td>
<td>$H_3(\Omega S^4)$</td>
</tr>
<tr>
<td>2</td>
<td>$H_2(\Omega S^4)$</td>
</tr>
<tr>
<td>1</td>
<td>$H_1(\Omega S^4)$</td>
</tr>
<tr>
<td>0</td>
<td>$H_0(\Omega S^4)$</td>
</tr>
</tbody>
</table>

As you can see, the only possible nonzero differentials are of the form

$$d^n : E^n_{n,t} \to E^n_{0,t+n-1}.$$

So $E^2_{*,*} = E^2_{*,*} = E^\infty_{*,*}$.

The spectral sequence converges to $H_* (PS^n)$, which is \mathbb{Z} in dimension 0 and 0 elsewhere. This immediately implies that

$$H_t(\Omega S^n) = 0 \quad \text{for} \quad 0 < t < n - 1$$

since nothing could kill these groups on the fiber.

The fiber is path connected, $H_0(\Omega S^n) = \mathbb{Z}$, so we know the bottom row in E^2. $E^2_{0,0}$ must die. It can’t be killed by being hit by a differential, since everything below the s-axis is trivial (and also because everything to its right is trivial). So it must die by virtue of d^n being injective on it. In fact that differential must be an isomorphism, since if it fails to surject onto $E^\infty_{0,n-1}$ there would be something left in $E^{n+1}_{0,n-1} = E^\infty_{0,n-1}$, and it would contribute nontrivially to $H_{n-1}(PS^n) = 0$.

This language of mortal combat gives extra meaning to the “spectral” in “spectral sequence.”
So $H_{n-1}(\Omega S^n) = \mathbb{Z}$. This feeds back into the spectral sequence: $E^2_{n,n-1} = \mathbb{Z}$. Now that class has to kill or be killed. It can’t be killed because everything to its right is zero, so d^n must be injective on it. And it must surject onto $E^n_{0,2(n-1)}$, for the same reason.

This establishes the inductive step. We have shown that all the d^n’s are isomorphisms (except the ones hitting or coming from $E^n_{0,0}$), and established:

Proposition 62.2. Let $n \geq 2$. Then

$$H_t(\Omega S^n) = \begin{cases} \mathbb{Z} & \text{if } (n-1)t \geq 0 \\ 0 & \text{otherwise} \end{cases}.$$

Evenness

Sometimes it’s easy to see that a spectral sequence collapses. For example, suppose that

$$E^r_{s,t} = 0$$

unless both s and t are even.

Then all differentials in E^r and beyond must vanish, because they all have total degree -1. Actually all that is needed for this argument is that $E^r_{s,t} = 0$ unless $s+t$ is even (or unless it is odd). There may still be extension problems, though.

63 Exact couples

Today I would like to show you a very simple piece of linear algebra called an *exact couple*. A filtered complex gives rise to an exact couple, and an exact couple gives rise to a spectral sequence. Exact couples were discovered by Bill Massey (1920–2017), Professor at Yale) independently of the French development of spectral sequences.

Definition 63.1. An *exact couple* is a diagram of abelian groups

$$
\begin{array}{ccc}
A & \xrightarrow{i} & A \\
\downarrow{k} & & \downarrow{j} \\
E & & \\
\end{array}
$$

which is exact at each node.

As $jkjk = 0$, the map $jk : E \to E$ is a differential, denoted d.

An exact couple determines a “derived couple”

$$
\begin{array}{ccc}
A' & \xrightarrow{j'} & A' \\
\downarrow{k'} & & \downarrow{j'} \\
E' & & \\
\end{array}
$$

where

$$A' = \text{im}(i) \quad \text{and} \quad E' = H(E,d).$$

Iterating this procedure, we get a sequence of exact couples

$$
\begin{array}{ccc}
A^{(r)} & \xrightarrow{j^{(r)}} & A^{(r)} \\
\downarrow{k^{(r)}} & & \downarrow{j^{(r)}} \\
E^{(r)} & & \\
\end{array}
$$
If we impose appropriate gradings, the “E” terms will form a spectral sequence.

We have to explain the maps in the derived couple.

i': this is just i restricted to $A' = \text{im}(i)$. Obviously i carries $\text{im}(i)$ into $\text{im}(i)$.

j': Note that ja is a cycle in E: $dja = jkja = 0$. Define

$$j'(ia) = [ja].$$

To see that this is well defined, we need to see that if $ia = 0$ then ja is a boundary. By exactness there is an element $e \in E$ such that $ke = a$. Then $de = jke = ja$.

k': Let $e \in E$ be a cycle. Since $0 = de = jke$, $ke \in \text{im}(i) = A'$ by exactness. Define

$$k'([e]) = ke.$$

To see that this is well defined, suppose that $e = de'$. Then $ke = kde' = kjke' = 0$.

Exercise 63.2. Check that these maps indeed yield an exact couple.

Gradings

Now suppose we are given a filtered complex. It will define an exact couple in which A is given by the homology groups of the filtration degrees and E is given by the homology groups of the associated quotient chain complexes.

In order to accommodate this example we need to add gradings – in fact, bigradings. Here’s the relevant definition.

Definition 63.3. An exact couple of bigraded abelian groups is of type r if the structure maps have the following bidegrees.

$$
i|| = (1, -1)
j|| = (0, 0)
k|| = (-r, r - 1)$$

It’s clear from this that $||d|| = ||jk|| = (-r, r - 1)$, the bidegree appropriate for the rth stage of a spectral sequence. We should specify the gradings on the abelian groups in the derived couple. Define $A'_{s,t}$ to sit in the factorization

\[
\begin{array}{ccc}
A_{s,t} & \xrightarrow{i} & A_{s+1,t-1} \\
\downarrow A'_{s,t} & & \\
& A'_{s,t} &
\end{array}
\]

Then if $e \in E_{s,t}$, $ke \in A_{s-r,t+r-1}$, but if e is a cycle then ke lies in the subgroup $A'_{s-r-1,t-r}$, so $||k'|| = (r + 1, -r)$: the derived couple is of type $(r + 1)$.

Given a filtered complex

$$
\cdots \subseteq F_{s-1}C_s \subseteq F_s C_s \subseteq F_{s+1}C_s \subseteq \cdots,
$$

define

$$A^1_{s,t} = H_{s+t}(F_sC_s), \quad E^1_{s,t} = H_{s+t}(\text{gr}_sC_s).$$
This agrees with our earlier use of the notation $E^{1}_{k,l}$. The structure maps are given in the obvious way: i^1 is induced by the inclusion of one filtration degree into the next (and has bidegree $(1,-1)$); j^1 is induced from the quotient map (and has bidegree $(0,0)$); and k^1 is the boundary homomorphism in the homology long exact sequence (and has bidegree $(-1,0)$).

Given any exact couple of type 1, (A^1, E^1), we’ll write $A^r = (A^1)^{(r-1)}$, $E^r = (E^1)^{(r-1)}$ for the $(r-1)$ times derived exact couple, which is of type r.

Differentials

An exact couple can be unfolded in a series of linked exact triangles, like this (taking $r = 1$ for concreteness, and omitting the second index):

\[\cdots \xrightarrow{i} A^1_{s-3} \xrightarrow{i} A^1_{s-2} \xrightarrow{i} A^1_{s-1} \xrightarrow{i} A^1_s \xrightarrow{i} \cdots \]

\[\xleftarrow{j} \xleftarrow{j} \xleftarrow{j} \]

\[\cdots \xleftarrow{k} E^1_{s-3} \xleftarrow{d^1} E^1_{s-2} \xleftarrow{d^1} E^1_{s-1} \xleftarrow{d^1} E^1_s \xleftarrow{d^1} \cdots \]

The triangles marked with \circ are exact; the lower ones commute, and define d^1.

This image is useful in understanding the differentials in the associated spectral sequence. Start with an element $x \in E^1_s$. Suppose it’s a cycle. Then its image $kx \in A^1_{s-1}$ is killed by j and hence pulls back under i, to, say, $x_1 \in A^1_{s-2}$. The image in E^1_{s-2} of x_1 under j is a representative for $d^2[x]$. Suppose that $d^2[x] = 0$. Then we can improve the lift x_1 to one that pulls back one step further, to, say, $x_2 \in A^1_{s-3}$; and $d^3[x] = [jx_2]$. This pattern continues. The further you can pull kx back, the longer x survives in the spectral sequence. If it pulls back forever, then you appeal to a convergence condition to conclude that $kx = 0$, and x therefore lifts under j to an element \bar{x} in A^1_s. The direct limit

\[L = \lim_{\rightarrow} (\cdots \rightarrow A^1_s \rightarrow A^1_{s+1} \rightarrow A^1_{s+2} \rightarrow \cdots) \]

is generally what one is interested in (it’s $H_*(C_*)$ in the first quadrant filtered complex situation, for example) and one may say that “x survives to” the image of \bar{x} in L.

Other examples

Topology is inhabited by many spectral sequences that do not arise from a filtered complex. For example, we have the homotopy long exact sequence of a fibration sequence. If you have a tower of fibrations, you get an exact couple. Well, almost. The problem is what happens at the bottom: groups may not be abelian, or even groups; and even if they are, you may not be able to guarantee exactness at π_0. For example, form the Whitehead tower of a space Y and map some well-pointed space X into it. “Well-pointed” means that the inclusion of the basepoint is a cofibration; so we get
a new tower of fibrations

\[\vdots \]

\[Y[2, \infty \rangle^X_\ast \rightarrow K(\pi_2(Y), 2)^X_\ast \]

\[\downarrow \]

\[Y[1, \infty \rangle^X_\ast \rightarrow K(\pi_1(Y), 1)^X_\ast \]

\[\downarrow \]

\[Y^X_\ast = Y[0, \infty \rangle^X_\ast \rightarrow K(\pi_0(Y), 0)^X_\ast. \]

The homotopy groups of the spaces on the right form the E^1-term, and are easy to compute:

\[\pi_n(K(\pi_p(Y), p)^X_\ast) = [S^n \wedge X, K(\pi_p(Y), p)] = [X, K(\pi_p(Y), p - n)] = H^{p-n}(X; \pi_p(Y)) \]

Insofar as this is a spectral sequence at all, the E^1 term is given by

\[E^1_{s,t} = H^{-2s-t}(X; \pi_{-s}(Y, *)) \]

It’s concentrated between the lines $t = -s$ and $t = -2s$, in the second quadrant of the plane.

This picture is very closely related to obstruction theory, and indeed obstruction theory can be set up using it. Its failings as a spectral sequence can be repaired in various ways I won’t discuss. If it can be repaired, the spectral sequence converges to $\pi_\ast(Y^X_\ast)$, or wants to.

For another example, there are many “generalized homology theories” – sequences of functors satisfying the Eilenberg-Steenrod axioms other than the dimension axiom – K-theory, bordism theories, and many others. Write $R_\ast(-)$ for some such theory. The skeleton filtration construction of the Serre spectral sequence can be applied to compute the R-homology of the total space of a fibration $p : E \rightarrow B$: To construct the exact couple, all you need is the long exact sequence of a pair, which is available in R-homology. You find for each t a local coefficient system $R_t(p^{-1}(-))$, and

\[E^2_{s,t} = H_s(B; R_t(p^{-1}(-))) \Rightarrow R_{s+t}(E) \]

Even the case $p : E \rightarrow B$ is interesting: then the local coefficient system is guaranteed to be trivial, and we get

\[E^2_{s,t} = H_s(E; R_t(*)) \Rightarrow R_{s+t}(E) \]

This is the “Atiyah-Hirzebruch spectral sequence,” and it provides a powerful tool for computing these generalized homology theories.

Both of these spectral sequences require us to move out of the first quadrant settings. The Atiyah-Hirzebruch-Serre spectral sequence can fill up the right half-plane.

64 Gysin sequence, edge homomorphisms, and the transgression

Now we’ll discuss a general situation, a common one, that displays many of the ways in which the Serre spectral sequence relates the homology groups of fiber, total space, and base.

Suppose $p : E \rightarrow B$ is a fibration with fiber of the weak homotopy type of S^{n-1}. Let us use the Serre spectral sequence to determine how the homologies of E and of B are related. We will
assume that this “spherical fibration” is orientable, and choose an orientation. This means that the local coefficient system $H_{n-1}(p^{-1}(\cdot))$ is trivial, and provided with a trivialization: a preferred generator of $H_{n-1}(p^{-1}(b))$ that varies continuously with $b \in B$. For example, we might be looking at $S^{2k-1} \to \mathbf{C}P^{k-1}$ (with $n = 1$), or $S^{4k-1} \to \mathbf{H}P^{k-1}$, or the complement of the zero-section in the tangent bundle of an oriented n-manifold.

There are just two nonzero rows in this spectral sequence. This means that there’s just one possibly nonzero differential:

$$E^2_{s,s} = E^3_{s,s} = \cdots = E^n_{s,s};$$

then a differential

$$d^n : E^n_{s,0} \to E^n_{s-n,n-1}$$

occurs; and then

$$E^{n+1}_{s,s} = \cdots = E^\infty_{s,s}.$$

Taking homology with respect to d^n gives the top row of

$$\begin{array}{cccccc}
0 & \to & E^\infty_{s,0} & \to & E^n_{s,0} & \to & E^n_{s-n,n-1} & \to & E^\infty_{s-n,n-1} & \to & 0 \\
\downarrow & & \\
H_s(B) & \to & H_{s-n}(B) & & & & & & & &
\end{array}$$

Path connectedness of S^{n-1} gives the isomorphism,

$$E^n_{s,0} = E^2_{s,0} = H_s(B),$$

and the orientation determines

$$E^n_{s-n,n-1} = E^2_{s-n,n-1} = H_{s-n}(B; H_{n-1}(S^{n-1})) = H_{s-n}(B).$$

Now look at total degree n. The filtration of $H_n(E)$ changes at most twice, with associated quotients given by the E^∞ term: so there is a short exact sequence

$$0 \to E^\infty_{s-n+1,n-1} \to H_s(E) \to E^\infty_{s,0} \to 0.$$

These two families of exact sequences splice together to give a long exact sequence:
Proposition 64.1. Let $p : E \to B$ be a Serre fibration whose fiber is a homology $(n - 1)$-sphere. Assume it is oriented (so the local coefficient system $H_{n-1}(p^{-1}(-))$ is trivialized). There is a naturally associated long exact sequence

$$\cdots \to H_{s+1}(B) \to H_{s-n+1}(B) \to H_s(E) \xrightarrow{p^*} H_s(B) \to H_{s-n}(B) \to \cdots.$$

The only part of this that we have not proven is that the middle map here is in fact the map induced by the projection p. That’s the story of “edge homomorphisms,” which we take up next.

First, though, and example. The Gysin sequence of the S^1-bundle $S^{\infty} \to CP^{\infty}$ looks like this:

$$\cdots \leftarrow 0 \to H_4(CP^{\infty}) \to H_2(CP^{\infty}) \leftarrow 0$$

$$\cdots \leftarrow 0 \to H_3(CP^{\infty}) \to H_1(CP^{\infty}) \leftarrow 0$$

$$\cdots \leftarrow 0 \to H_2(CP^{\infty}) \to H_0(CP^{\infty}) \leftarrow 0$$

$$\cdots \leftarrow 0 \to H_1(CP^{\infty}) \to 0$$

$$H_0(S^{\infty}) \leftarrow H_0(CP^{\infty}) \to 0.$$

Working inductively up the tower, you compute what we know:

$$H_n(CP^{\infty}) = \begin{cases} \mathbb{Z} & \text{if } 2|n \geq 0 \\ 0 & \text{otherwise}. \end{cases}$$

Edge homomorphisms

In the Serre spectral sequence for the fibration $p : E \to B$, what can we say about the evolution of the bottom edge, or of the left edge? Let’s assume that the base and fiber are both path connected, and that the local coefficient system is trivial, so in

$$E^2_{s,0} = H_s(B; H_t(F)) \Rightarrow H_{s+t}(E)$$

the bottom edge is canonically $H_s(B)$.

Being at the bottom, no nontrivial differentials can ever hit it. So the successive process of taking homology will be a succession of taking kernels:

$$E^r_{n,0} = \ker(d^r : E^r_{n,0} \to E^r_{n-r,r-1}).$$

Of course when $r > s$ things quiet down. So

$$E^2_{n,0} \supseteq E^3_{n,0} \supseteq \cdots \supseteq E^{n+1}_{n,0} = E^\infty_{n,0}.$$
Now $H_n(E)$ enters the picture, along with its filtration. The whole of $H_n(E)$ is already hit by $H_n(p^{-1}\operatorname{Sk}_n B)$. This is confirmed by the fact that the associated graded $\operatorname{gr}_s H_n(E) = E_{s,n-s}^\infty$ vanish for $s > n$. So $F_n H_n(E) = H_n(E)$.

Putting all this together, we get a map

$$H_n(E) = F_n H_n(E) \rightarrow \operatorname{gr}_n H_n(E) = E_{n,0}^{\infty} = E_{n,0}^{n+1} \hookrightarrow E_{n,0}^n \hookrightarrow \cdots \hookrightarrow E_{0,0}^2 = H_n(B).$$

This composite is an *edge homomorphism* for the spectral sequence. It’s something you can define for any first quadrant filtered complex. In the Serre spectral sequence case, it has a direct interpretation:

Proposition 64.2. This edge homomorphism coincides with the map $p^* : H_n(E) \rightarrow H_n(B)$.

This explains the role of the differentials off the bottom row of the spectral sequence. They are obstructions to classes lifting to the homology of the total space. This reflects the intuition we tried to develop several lectures ago. The image of $p^* : H_n(E) \rightarrow H_n(B)$ is precisely the intersection (so to speak) of the kernels of the differentials coming off of $E_{n,0}^2$.

Before we prove this, let’s notice that there is a dual picture for the vertical axis. Now all differentials leaving $E_{0,n}^r$ are trivial, so we get surjections

$$E_{0,n}^2 \rightarrow E_{0,n}^3 \rightarrow \cdots \rightarrow E_{0,n}^{n+2} = E_{0,n}^{\infty}.$$

On the other hand, the smallest nonzero filtration degree of $H_n(E)$ is $F_0 H_n(E)$. Thus we have another “edge homomorphism,”

$$H_n(F) = E_{0,n}^2 \rightarrow E_{0,n}^3 \rightarrow \cdots \rightarrow E_{0,n}^{n+2} = E_{0,n}^{\infty} = F_0 H_n(E) \hookrightarrow H_n(E).$$

Proposition 64.3. This edge homomorphism coincides with the map $i^* : H_n(F) \rightarrow H_n(E)$ induced by the inclusion of the fiber.

So the kernel of i^* is union of the images (so to speak) of the differentials coming into $E_{0,n}^2$. These represent chains in E which serve as null-homologies of cycles in F.

Proof of Propositions 64.2 and 64.3 The map of fibrations

\[
\begin{array}{ccc}
F & \longrightarrow & * \\
\downarrow & & \downarrow \\
E & \longrightarrow & B \\
\downarrow & & \downarrow \\
B & \longrightarrow & B
\end{array}
\]

induces a commutative diagram in which the top and bottom arrows are edge homomorphisms:

\[
\begin{array}{ccc}
H_n(E) & \longrightarrow & H_n(B) \\
\downarrow_{p^*} & & \downarrow_{(1_B)^*} \\
H_n(B) & \longrightarrow & H_n(B).
\end{array}
\]

So we just need to check that the bottom edge homomorphism associated to the identity fibration $1_B : B \rightarrow B$ is the identity map $H_n(B) \rightarrow H_n(B)$. This I leave to you.

The proof of Proposition 64.3 is similar. \qed
Very often you begin with some homomorphism, and you are interested in whether it is an isomorphism, or how it can be repaired to become an isomorphism. If you can write it as an edge homomorphism in a spectral sequence, then you can regard the spectral sequence as measuring how far from being an isomorphism your map is; it provides the reasons why the map fails to be either injective or surjective.

Transgression

There is a third aspect of the Serre exact sequence that deserves attention, namely, the differential going clear across the spectral sequence, all the way from base to fiber. We’ll study it in case the fiber is path connected and the local coefficient systems \(H_t(p^{-1}(-))\) are trivial. The differentials

\[d^n : E_{n,0}^n \to E_{0,n-1}^n,\]

are known as transgressions, and an element of \(E_{n,0}^2 = H_n(B)\) that survives to \(E_{n,0}^n\) is said to be transgressive. The first one is a homomorphism

\[d^2 : H_2(B) \to H_1(p^{-1}(-)),\]

but after that \(d^n\) is merely an additive relation between \(H_n(B)\) and \(H_{n-1}(F)\): It has a domain of definition

\[E_{n,0}^s \subseteq E_{n,0}^2 = H_n(B)\]

and indeterminacy

\[\ker(H_{n-1} = E_{0,n-1}^2 \to E_{0,n-1}^n).\]

Let me digress on what I mean by an additive relation. A good reference is [14, II §6].

Definition 64.4. An additive relation \(R : A \to B\) is a subgroup of \(R \subseteq A \times B\).

For example the graph of a homomorphism \(A \to B\) is an additive relation. Additive relations compose in the evident way: the composition of \(R : A \to B\) with \(S : B \to C\) is

\[\{(a, c) : \exists b \in B \text{ such that } (a, b) \in R \text{ and } (b, c) \in S\} \subseteq A \times C.\]

Every additive relation has a “converse,”

\[R^{-1} = \{(b, a) : (a, b) \in R\} : B \to A.\]

An additive relation has a domain

\[D = \{a \in A : \exists b \in B \text{ such that } (a, b) \in R\} \subseteq A\]

and an indeterminancy

\[I = \{b \in B : (0, b) \in R\},\]

and determines a homomorphism

\[f : D \to B/I\]

by

\[f(a) = b + I \text{ for } b \in B \text{ such that } (a, b) \in R.\]

Conversely, such a triple \((D, I, f)\) determines an additive relation,

\[R = \{(a, b) : a \in D \text{ and } b \in f(a)\}.\]
An additive relation is defined as a subspace of $A \times B$, but any “span”

\[
\begin{array}{c}
C \\
\downarrow A \\
\downarrow B
\end{array}
\]

determines one by taking the image of the resulting map $C \to A \times B$.

End of digression. We have the transgression $d^n : H_n(B) \to H_{n-1}(F)$. Another such additive relation is determined by the span

\[
H_n(B) = H_n(B, \ast) \xrightarrow{p_*} H_n(E, F) \xrightarrow{\partial} H_{n-1}(F) .
\]

Proposition 64.5. These two linear relations coincide.

Proof sketch. This phenomenon is actually how we began our discussion of spectral sequences. Let $x \in H_n(B)$. Since $n > 0$ we can just as well regard it as a class in $H_n(B, \ast)$. Represent it by a cycle $c \in Z_n(B, \ast)$. (In the Hopf fibration case this simplifies the representative by making the constant cycle optional.) Lift it to a chain in the total space E. In general, this chain will not be a cycle (consider the Hopf fibration). The differentials record this boundary; let us recall the geometric construction of the differential. Saying that the class x survives to the E^2-page is the same as saying that we can find a lift to a chain σ in E, with $d\sigma \in S_{n-1}(F)$, that is, to a relative cycle in $S_{n-1}(E,F)$. Then $d^n(x)$ is represented by the class $[dc] \in H_{n-1}(F)$. This is precisely the trangression.

\[
\begin{align*}
\text{65 Serre exact sequence and the Hurewicz theorem}
\end{align*}
\]

Serre exact sequence

Suppose $\pi : E \to B$ is a fibration over a path-connected base. Pick a point $\ast \in E$, use its image $\ast \in B$ as a basepoint in B, write $F = \pi^{-1}(\ast) \subseteq E$ for the fiber over \ast, and equip it with the point $\ast \in E$ as a basepoint. Suppose also that F is path connected.

Pick a coefficient ring R. Everything we’ve done works perfectly with coefficients in R – all abelian groups in sight come equipped with R-module structures. Let’s continue to suppress the coefficient ring from the notation. Suppose that the low-dimensional homology of both fiber and base vanishes:

\[
\begin{align*}
H_s(B) &= 0 \quad \text{for} \quad 0 < s < p \\
H_t(F) &= 0 \quad \text{for} \quad 0 < t < q .
\end{align*}
\]

Assume that $\pi_1(B, \ast)$ act trivially on $H_\ast(F)$, so the Serre spectral sequence (now with coefficients in R!) takes the form

\[
E^2_{s,t} = H_s(B; H_t(F)) \Rightarrow H_{s+t}(E) .
\]

Our assumptions imply that $E^2_{0,0} = R$ is all alone; otherwise everything with $s < p$ vanishes and everything with $t < q$ vanishes.

\[
\text{picture needed}
\]

For a while, the only possibly nonzero differentials are the transgressions

\[
d^s : E^s_{s,0} \to E^s_{0,s-1} .
\]
The result, in this range, is an exact sequence

\[0 \to E_{s,0}^\infty \to H_s(B) \xrightarrow{d^s} H_{s-1}(F) \to E_{0,s-1}^\infty \to 0. \]

Again, in this range, these end terms are only two possibly nonzero associated quotients in \(H_n(E) \) – there is a short exact sequence

\[0 \to E_{0,n}^\infty \to H_n(E) \to E_{n,0}^\infty \to 0. \]

– and splicing things together we arrive again at a long exact sequence

\[H_{p+q-1}(F) \xrightarrow{i_*} H_{p+q-1}(E) \xrightarrow{p_*} H_{p+q-1}(B) \]

\[H_{p+q-2}(F) \xrightarrow{i_*} H_{p+q-2}(E) \xrightarrow{p_*} H_{p+q-2}(B) \]

\[H_{p+q-3}(F) \xrightarrow{i_*} \cdots. \]

This is the Serre exact sequence: in this range of dimensions homology and homotopy behave the same! We can’t extend it further to the left because the kernel of the edge homomorphism \(H_{p+q-1}(F) \to H_{p+q-1}(E) \) has two sources: the image of \(d^p : E_{p,q}^p \to E_{0,p+q-1}^p \), and the image of \(d^{p+q} : E_{p+q,0}^{p+q}. \)

Comparison with homotopy

The Serre exact sequence mimics the homotopy long exact sequence of the fibration.

Proposition 65.1. The Hurewicz map participates in a commutative ladder

\[\cdots \to \pi_{p+q-1}(F) \xrightarrow{i_*} \pi_{p+q-1}(E) \xrightarrow{\pi_*} \pi_{p+q-1}(B) \xrightarrow{\partial} \pi_{p+q-2}(F) \xrightarrow{\partial} \cdots \]

\[H_{p+q-1}(F) \xrightarrow{i_*} H_{p+q-1}(E) \xrightarrow{\pi_*} H_{p+q-1}(B) \xrightarrow{\partial} H_{p+q-2}(F) \xrightarrow{\partial} \cdots \]

Proof. The left two squares commutes by naturality of the Hurewicz map. The right square commutes because, according to our geometric interpretation of the transgression, both boundary maps arise in the same way:

\[\pi_n(B) \xrightarrow{\cong} \pi_n(E,F) \xrightarrow{\partial} \pi_{n-1}(F) \]

\[H_n(B) \xrightarrow{\cong} H_n(E,F) \xrightarrow{\partial} H_{n-1}(F). \]

Let us now specialize to the case of the path-loop fibration

\[\Omega X \to PX \to X \]

where \(X \) is a simply-connected pointed space. The coefficient system is trivial. Suppose that in fact \(\overline{\pi}_i(X) = 0 \) for \(i < n \). Since the spectral sequence converges to the homology of a point, we find that \(\overline{\pi}_i(\Omega X) = 0 \) for \(i < n - 1 \). The Serre exact sequence, or direct use of the spectral sequence as in the computation of \(H_*(\Omega S^n) \), shows this:
Lemma 65.2. Let X be an $(n - 1)$-connected pointed space. The transgression relation provides an isomorphism

$$H_i(X) \rightarrow H_{i-1}(\Omega X)$$

for $i \leq 2n - 2$.

For example, if X is simply connected, we get a commutative diagram

$$\begin{array}{ccc}
\pi_2(X) & \cong & \pi_1(\Omega X) \\
\downarrow & & \downarrow \\
H_2(X) & \cong & H_1(\Omega X).
\end{array}$$

Since ΩX is a path-connected H-space its fundamental group is abelian, so Poincaré’s theorem shows that the Hurewicz homomorphism on the right is an isomorphism. Therefore the map on the left is. This is a case of the Hurewicz theorem! In fact, continuing by induction we discover a proof of the general case of the Hurewicz theorem.

Theorem 65.3 (Hurewicz). Let $n \geq 1$. Suppose X is a pointed space that is $(n - 1)$-connected: $\pi_i(X) = 0$ for $i < n$. Then $H_i(X) = 0$ for $i < n$ and the Hurewicz map $\pi_n(X)^{ab} \rightarrow H_n(X)$ is an isomorphism.

Going relative

Any topological concept seems to get more useful if you can extend it to a relative form. So let (B, A) be a pair of spaces. To make the construction for the Serre spectral sequence that we proposed earlier work, we should assume that this is a relative CW complex. Suppose that $E \rightarrow B$ is a fibration. The pullback or restriction

$$\begin{array}{ccc}
E_A & \rightarrow & E \\
\downarrow & & \downarrow \\
A & \rightarrow & B
\end{array}$$

provides us with a “fibration pair” (E, E_A). Suppose that B is path-connected and A nonempty, pick a basepoint $* \in A$, write F for the fiber of $E \rightarrow B$ over $*$ (which is of course also the fiber of $E|_A \rightarrow A$ over $*$), and suppose that $\pi_1(B, *)$ acts trivially on $H_*(F)$. With these assumptions, pulling back skelata of B rel A yields the relative Serre spectral sequence

$$E^2_{s,t} = H_s(B, A; H_t(F)) \Rightarrow H_{s+t}(E, E_A).$$

Let’s apply this right away to prove a relative version of the Hurewicz theorem. We will develop conditions under which

$$h : \pi_i(X, A) \rightarrow H_i(X, A)$$

is an isomorphism for all $i \leq n$. We will of course assume that X is path connected and that A is nonempty, which together imply that $H_0(X, A) = 0$. Since $\pi_1(X, A)$ is in general only a pointed set let’s begin by assuming that it vanishes. This implies that A is also path connected and that $\pi_1(A) \rightarrow \pi_1(X)$ is surjective. The induced map on abelianizations is then also surjective, so by Poincaré’s theorem $H_1(A) \rightarrow H_1(X)$ is surjective and so $H_1(X, A) = 0$.
Moving up to the next dimension, we may hope that \(h : \pi_2(X,A) \to H_2(X,A) \) is then an isomorphism, but \(\pi_2(X,A) \) is not necessarily abelian so this can’t be right in general. This can be fixed – in fact if we kill the action of \(\pi_1(A) \) on \(\pi_2(X,A) \) it becomes abelian and the resulting homomorphism to \(H_2(X,A) \) is an isomorphism (see [25 Ch. 5, Sec. 7]). But we’ll be assuming that \(\pi_1(X) = 0 \) in a minute anyway, so let’s just go ahead now and assume that \(\pi_1(A) = 0 \). The long exact homotopy sequence then shows that \(\pi_2(X,A) \) is a quotient of \(\pi_2(X) \) and so is abelian. We’ll show that \(h : \pi_2(X,A) \to H_2(X,A) \) is then an isomorphism.

We will use the fact that the projection map induces a isomorphism

\[
\pi_n(E, E_A) \overset{\cong}{\to} \pi_n(B, A)
\]

for any \(n \geq 1 \). In particular, let \(F \) be the homotopy fiber of the inclusion map \(A \hookrightarrow X \): that is, the pullback in

\[
\begin{array}{ccc}
F & \longrightarrow & PX \\
\downarrow & & \downarrow \\
A & \longrightarrow & X .
\end{array}
\]

The path space \(PX \) is contractible, so from the long exact homotopy sequence for the pair \((PX, F)\) we find that the maps on the top row of the following commutative diagram are isomorphisms.

\[
\begin{array}{ccc}
\pi_{n-1}(F) & \overset{\cong}{\longrightarrow} & \pi_n(PX, F) \overset{\cong}{\longrightarrow} \pi_n(X, A) \\
\downarrow h & & \downarrow h \\
\overline{H}_{n-1}(F) & \overset{\cong}{\longrightarrow} & H_n(PX, F) \overset{p_*}{\longrightarrow} H_n(X, A).
\end{array}
\]

Returning to our \(n = 2 \) case, the left arrow is an isomorphism by Poincaré’s theorem, since \(F \) is path connected and by our assumptions its fundamental group is abelian. What remains in this case then is to show that homology behaves like homotopy, in the sense that \(H_2(PX, F) \to H_2(X, A) \) is an isomorphism.

In general, if we assume that, for some \(n \geq 3 \), \(\pi_i(X, A) = 0 \) for \(i < n \), then the absolute case of the Hurewicz theorem implies that the left Hurewicz homomorphism is an isomorphism, and we are left wanting to show that \(H_n(PX, F) \to H_n(X, A) \) is an isomorphism.

For this we can appeal to the relative Serre spectral sequence for the fibration pair \((PX, F) \downarrow (X, A)\). It takes the form

\[
E^2_{s,t} = H_s(X, A; H_t(\Omega X)) \Longrightarrow H_{s+t}(PX, F) = \overline{H}_{s+t-1}(F).
\]

provided the coefficient system is trivial. Since \(H_0(\Omega X) = \mathbb{Z}[\pi_1(X)] \), we are pretty much forced to assume that \(X \) is simply connected if we want simple coefficients.

The universal coefficient theorem gives us a handle on the \(E^2 \) term:

\[
0 \to H_s(X, A) \otimes H_t(\Omega X) \to H_s(X, A; H_t(\Omega X)) \to \text{Tor}(H_{s-1}(X, A), H_t(\Omega X)) \to 0.
\]

Now is the time to think about using induction on \(n \): This will allow us to use the assumption that \(\pi_i(X, A) = 0 \) for \(i < n - 1 \) to conclude that \(H_i(X, A) = 0 \) for \(i < n - 1 \) and that \(\pi_{n-1}(X, A) \overset{\cong}{\to} H_{n-1}(X, A) \); but we have the additional assumption that \(\pi_{n-1}(X, A) = 0 \) as well, so \(H_{n-1}(X, A) = 0 \) too. The induction begins with the case \(n = 2 \).

So when \(s < n \) both end terms vanish, and the entire spectral sequence is concentrated along and to the right of \(s = n \).
We glean two facts from this vanishing result: first, \(H_i(PX, F) = 0 \) for \(i < n \), so \(\overline{H}_i(F) = 0 \) for \(i < n - 1 \). We knew this already from the absolute Hurewicz theorem.

The second fact is that \(E^{2}_{n,0} \) survives intact to \(E^{\infty}_{n,0} \); nothing can hit it, and it can hit nothing. This is the only nonzero group along the total degree line \(n \), so (using what we know about the bottom edge homomorphism) the projection map induces an isomorphism \(H_n(PX, F) \to H_n(X, A) \). This is a spectral sequence “corner argument.”

Putting this together:

Theorem 65.4 (Relative Hurewicz theorem). Let \(X \) be a space and \(A \) a subspace. Assume both of them are simply connected, and let \(n \geq 2 \). Assume that \(\pi_i(X, A) = 0 \) for \(2 \leq i < n \). Then \(H_i(X, A) = 0 \) for \(i < n \), and the relative Hurewicz map

\[
\pi_n(X, A) \to H_n(X, A)
\]

is an isomorphism.

With more care (see [25, Ch. 5, Sec. 7]) you can avoid the simple connectivity assumption. However, with it in place, you get a converse statement: Suppose that both \(X \) and \(A \) are simply connected, let \(n \geq 2 \), and assume that \(H_q(X, A) = 0 \) for \(q < n \). Simple connectivity of \(X \) implies that \(\pi_1(X, A) \) is trivial, so we have the hypotheses of the relative Hurewicz theorem with \(n = 2 \), and conclude from \(H_2(X, A) = 0 \) that \(\pi_2(X, A) = 0 \). Continuing in this manner, we have the

Corollary 65.5. Let \(X \) be a space and \(A \) a subspace. Assume both of them are simply connected, and let \(n \geq 2 \). Assume that \(H_i(X, A) = 0 \) for \(2 \leq i < n \). Then \(\pi_i(X, A) = 0 \) for \(i < n \), and the relative Hurewicz map

\[
\pi_n(X, A) \to H_n(X, A)
\]

is an isomorphism.

By replacing a general map by a relative CW complex, up to weak homotopy, we find the following important corollary (which we state without the simple connectivity assumptions needed to apply our work so far).

Corollary 65.6 (Whitehead theorem). Let \(f : X \to Y \) be a map of path connected spaces and let \(n \geq 1 \). If \(f_* : \pi_q(X) \to \pi_q(Y) \) is an isomorphism for \(q < n \) and an epimorphism for \(q = n \) then \(f_* : H_q(X) \to H_q(Y) \) is an isomorphism for \(q < n \) and an epimorphism for \(q = n \). The converse holds if both \(X \) and \(Y \) are simply connected.

Taking \(n = \infty \) gives the further corollary:

Corollary 65.7. Any weak equivalence induces an isomorphism in homology. Conversely, if \(X \) and \(Y \) are simply connected then any homology isomorphism \(f : X \to Y \) is a weak equivalence.

Combining this with “Whitehead’s little theorem,” we conclude that if a map between simply connected CW complexes induces an isomorphism in homology then it is a homotopy equivalence.

66 Double complexes and the Dress spectral sequence

A certain very rigid way of constructing a filtered complex occurs quite frequently – and, indeed, the Serre or even the Leray spectral sequence can be constructed in this way. It leads to an easy treatment of the multiplicative properties of the Serre spectral sequence (as well as, in due course, an account of the behavior of Steenrod operations in it).
Double complexes

A double complex is a bigraded abelian group \(A = A_{s,t} \) together with differentials \(d_h : A_{s,t} \to A_{s-1,t} \) and \(d_v : A_{s,t} \to A_{s,t-1} \) that commute:

\[
d_v d_h = d_h d_v.
\]

For our purposes we might as well assume that \(A_{s,t} \) is “first quadrant”:

\[
A_{s,t} = 0 \quad \text{unless} \quad s \geq 0 \quad \text{and} \quad t \geq 0.
\]

An example is provided by the tensor product of two chain complexes \(C_* \) and \(D_* \): define

\[
A_{s,t} = C_s \otimes D_t, \quad d_h(a \otimes b) = da \otimes b, \quad d_v(a \otimes b) = a \otimes db.
\]

The graded tensor product is then the “total complex,” which in general is the chain complex \(tA \) given by

\[
(tA)_n = \bigoplus_{s+t=n} A_{s,t}
\]

with differential determined by sending \(a \in A_{s,t} \) to

\[
da = d_h a + (-1)^s d_v a.
\]

Then

\[
d^2 a = d(d_h a + (-1)^s d_v a) = (d^2_h a + (-1)^s d_v d_h a) + (-1)^{s-1}(d_v d_h a + (-1)^s d^2_v a) = 0.
\]

Define a filtration on the chain complex \(tA \) as follows:

\[
F_p(tA)_n = \bigoplus_{s+t=n, s \leq p} A_{s,t} \subseteq (tA)_n
\]

Let’s compute the low pages of the resulting spectral sequence. For a start,

\[
E^0_{s,t} = \text{gr}_s(tA)_{s+t} = (F_s/F_{s-1})_{s+t} = A_{s,t}
\]

The differential in this associated graded object is determined by the vertical differential in \(A \):

\[
d^0 a = \pm d_v a.
\]

Then

\[
E^1_{s,t} = H_{s,t}(E^0, d^0) = H_{s,t}(A; d_v),
\]

which we might write as \(H^v_{s,t}(A) \).

Now \(d^1 \) is the part of the differential \(d \) that decreases \(s \) by 1: for a \(d_v \) cycle in \(A_{s,t} \),

\[
d^1[a] = [d_h a].
\]

So

\[
E^2_{s,t} = H^h_{s,t}(H^v(A)) \Rightarrow H_{s+t}(tA).
\]

But we can do something else as well. A double complex \(A \) can be "transposed" to produce a new double complex \(A^T \) with

\[
A^T_{t,s} = A_{s,t}
\]
and for \(a \in A^T_{t,s} \)
\[
d^h(a) = (-1)^s d_v a \quad , \quad d^v(a) = (-1)^t d_h a .
\]
When I set the signs up like that, then
\[
t A^T \cong t A
\]
as complexes. Anyway, \(A^T \) has its own filtration and its own spectral sequence,
\[
T^2 E_{t,s}^2 = H^t_{t,s}(H^h(A)) \Rightarrow H_{s+t}(tA) ,
\]
converging to the same thing.

Dress spectral sequence

Serre’s construction of the Serre spectral sequence isn’t the one that we gave. He wanted to use
singular homology, but as you know from the Eilenberg-Zilber construction the triangulation of a
product of simplices is somewhat complicated. Serre’s solution was to not use simplices, but rather
cubes. He defined a new kind of singular homology using maps from the standard \(n \)-cubes. It’s
more complicated and unpleasant, but he worked it out.

Andreas Dress [3] developed the following variation on this idea. He proposed to model a general
fibration – indeed, a general map – by a product projection
\[
\Delta^s \times \Delta^t \to \Delta^s
\]
He used these models to form a “singular” construction associated to any map \(\pi : E \to B \).

\[
\text{Sin}_{s,t}(\pi) = \left\{ (f, \sigma) : \begin{array}{c}
\Delta^s \times \Delta^t \\
\downarrow \text{pr}_1 \\
\Delta^s
\end{array} \xrightarrow{\quad \xrightarrow{f} \quad} E \xrightarrow{\quad \pi \quad} \begin{array}{c}
\downarrow \text{pr}_1 \\
B
\end{array}
\right. \text{commutes} \right\} .
\]
Since \(\Delta^s \times \Delta^t \downarrow \Delta^s \) is surjective, \(\sigma \) is determined by \(f \). Commutativity says that the map \(\sigma \) is
“fiberwise.”

This construction sends any map \(\pi : E \to B \) to a functor
\[
\text{Sin}_{s,t}(\pi) : \Delta^{op} \times \Delta^{op} \to \text{Set}
\]
a “bisimplicial set.”

Continuing to imitate the construction of singular homology, we will next apply the free \(R \)-
module functor to this, to get a bisimplicial \(R \)-module \(R \text{Sin}_{s,t}(\pi) \). The final step is to define
boundary maps by taking alternating sums of the face maps. This provides us with a double
complex, that I will write \(S_{s,t}(\pi) \).

There are two associated spectral sequences. One of them is a singular homology version of the
Leray spectral sequence, and specializes to the Serre spectral sequence in case \(\pi \) is a fibration. The
other serves to identify what the first one converges to. I will sketch the arguments.

Let’s compute the spectral sequence attached to the transposed double complex first. For this,
observe that an element of \(\text{Sin}_{s,t}(\pi) \) may be regarded as a pair of dotted arrows in the commutative
diagram
\[
\begin{array}{c}
\Delta^s \xrightarrow{i} E^\Delta^t \\
\downarrow \sigma \\
B \xrightarrow{c} B^\Delta^t
\end{array}
\]
where \(c \) denotes the inclusion of the constant maps. If we form the pullback \(E'_t \) in

\[
\begin{array}{ccc}
E'_t & \longrightarrow & E^{\Delta^t} \\
\downarrow & & \downarrow \pi \\
B & \overset{c}{\longrightarrow} & B^{\Delta^t}
\end{array}
\]

this is saying that \(\Sin_{s,t}(\pi) = \Sin_s(E'_t) \), so

\[
S_{s,t}(\pi) = S_s(E'_t)
\]

But the map \(E'_t \rightarrow E^{\Delta^t} \) is a weak equivalence (because \(c : B \rightarrow B^{\Delta^t} \) is), so

\[
S_s(E'_t) \xrightarrow{\simeq} S_s(E)
\]

is a quasi-isomorphism. This shows that

\[
\mathcal{T}_{E_{s,t}}^{1} = H_s(E)
\]

for every \(t \geq 0 \).

Now we should think about what the differential in the \(t \) direction does. Each face map will induce the identity, so the alternating sums will induce alternately 0 and the identity. The result is that

\[
\mathcal{T}_{E_{s,t}}^{2} = \begin{cases} H_s(E) & \text{if } t = 0 \\ 0 & \text{otherwise} \end{cases}
\]

The spectral sequence collapses at this point, and we learn that there is a canonical isomorphism

\[
H_s(tS_{s,*} (\pi)) = H_s(E).
\]

This is then what the un-transposed spectral sequence will converge to. So how does it begin?

Fix a singular simplex \(\sigma : \Delta^s \rightarrow B \), and pull \(\pi : E \downarrow B \) back along it. Any \(f : \Delta^s \times \Delta^t \rightarrow E \) compatible with \(\sigma \) then factors as

\[
\begin{array}{ccc}
\Delta^s \times \Delta^t & \longrightarrow & \Delta^s \\
\downarrow & \uparrow \pi \sigma & \downarrow \\
\Delta^s & \xrightarrow{\sigma} & B
\end{array}
\]

Adjointing this, we find that the set of such \(f \)'s forms the set of singular \(t \)-simplices in a space of sections:

\[
\Sin_{t} \Gamma(\Delta^s, \sigma^{-1} E).
\]

Forming the free \(R \)-module and then taking the corresponding chain complex gives a chain complex with for each \(\sigma \in \Sin_s(B) \),

\[
S_s(\Gamma(\Delta^s, \sigma^{-1} E)).
\]

So

\[
E_{s,t}^{1} = \bigoplus_{\sigma : \Delta^s \rightarrow B} H_t(\Gamma(\Delta^s, \sigma^{-1} E)).
\]
The association $\sigma \mapsto H_t(\Gamma(\Delta^s, \sigma^{-1}E))$ is a kind of “sheaf,” and the E^2-term that results is a kind of sheaf homology of B with these coefficients. This much you can say in general, for any map π; this is a singular homology form of the Leray spectral sequence.

If π is a fibration, the map $\sigma^{-1}E \downarrow \Delta^s$ is a fibration, and hence trivial because Δ^s is contractible. So the space of sections is then just the space of maps from the base to the fiber. Write F_σ for the fiber over the barycenter of Δ^s, so that

$$\Gamma(\Delta^s, \sigma^{-1}E) \simeq F_\Delta^s \simeq F_\sigma.$$

and

$$E^1_{s,t} \simeq \bigoplus_{\sigma \in \Sin_s(B)} H_t(F_\sigma).$$

The resulting E^2-term is the homology of B with coefficients in a corresponding local coefficient system:

$$E^2_{s,t} = H_s(B; H_t(p^{-1}(-))).$$

There are many advantages to this construction. It is transparently natural in the fibration, and a version exists for any map. It works just as well in cohomology; you work with the double cochain complex

$$\text{Map}(\Sin_{s,*}(\pi), R)$$

and produce a cohomology spectral sequence. Now each bidegree in this bicosimplicial object has the structure of an R-algebra – a rather dumb structure, just a product of (usually uncountably many copies of) R itself – and this provides the corresponding filtered complex with the structure of a differential graded R-algebra. Such a structure is easily seen to produce a multiplicative spectral sequence. If we were to try this with the construction based on a CW decomposition of the base, we would get involved with skeletal approximations of the diagonal map, not so much fun.

The multiplicative structure on the simplicial level leads to other important features of the Serre spectral sequence as well, notably the behavior of Steenrod operations in it [24].

67 Cohomological spectral sequences

Upper indexing

We have set everything up for homology, but of course there are cohomology versions of everything as well. Given a filtered space

$$\cdots \subseteq F_{-1}X \subseteq F_0X \subseteq F_1X \subseteq \cdots$$

we filtered the singular chains $S_*(X)$ by

$$F_sS_*(x) = S_*(F_sX).$$

Now we will filter the cochains with values in M by

$$F_{-s}S^*(X; M) = \ker(S^*(X; M) \to S^*(F_{s-1}X; M)).$$

Note the $-s$; this is necessary to produce an increasing filtration. Note also the $s - 1$. Since most of our filtered spaces will have $F_{-1} = \emptyset$, it’s convenient to change notation to upper indexing as follows:

$$F^s = F_{-s}.$$
Then F^* is a decreasing filtration: $F^s \supseteq F^{s+1}$. If $F_{-1}X = \emptyset$, then $F^0S^*(X; M) = S^*(X; M)$.

The singular cochain complex as normally written is the outcome of a similar sign reversal; so the differential is of degree +1. The combination of these two reversals produces a spectral sequence with the following “cohomological” indexing:

$$d_r : E_r^{s,t} \to E_r^{s+r,t-r+1}.$$

To set this up slightly more generally, suppose that C^* is a cochain complex equipped with a decreasing filtration F^*C^*. Write

$$\text{gr}^s C^n = F^s C^n / F^{s+1} C^n.$$

Call it first quadrant if

- $F^0C^* = C^*$,
- $H^n(\text{gr}^s C^*) = 0$ for $n < s$,
- $\bigcap F^s C^* = 0$.

Filter the cohomology of C^* by

$$F^s H^n(C^*) = \ker(H^n(C^*) \to H^n(F^{s-1}C^*)).$$

Theorem 67.1. Let C^* be a cochain complex with a first quadrant decreasing filtration. There is a naturally associated convergent spectral sequence

$$E_r^{s,t} \Rightarrow H^{s+t}(C)$$

with

$$E_1^{s,t} = H^{s+t}(\text{gr}^s C^*).$$

In particular we have the cohomology Serre spectral sequence of a fibration $p : E \downarrow B$:

$$E_2^{s,t} = H^s(B; H^t(p^{-1}(-))) \Rightarrow H_{s+t}(E).$$

Product structure

One of the reasons for passing to cohomology is to take advantage of the cup-product. It turns out that the cup product behaves itself in the cohomology Serre spectral sequence of a fibration $\xi : E \stackrel{p}{\to} B$. With a commutative coefficient ring R understood, the local coefficient system $H^* (p^{-1}(-))$ is now a contravariant functor from $\Pi_1(B)$ to graded commutative R-algebras. Such coefficients produce bigraded R-algebra

$$E_2^{s,t} = H^s(B; H^t(p^{-1}(-)))$$

that is graded commutative in the sense that

$$yx = (-1)^{|x||y|} xy$$

where $|x|$ and $|y|$ denote total degrees of elements. The entire spectral sequence is then “multiplicative” in the following sense.

- Each $E_r^{s,*}$ is a commutative bigraded R-algebra
• d_r is a derivation: $d_r(xy) = (d_r x)y + (-1)^{|x|}x(d_r y)$.
• The isomorphism $E^{*,*}_{r+1} \cong H^{*,*}(E^r_{*,*})$ is one of bigraded algebras.
• $E^{*,*}_2 = H^*(B; H^*(p^{-1}(-)))$ as bigraded R-algebras.
• The filtration on $H^*(E)$ satisfies
 \[F^s H^n(E) \cdot F^{s'} H^{n'}(E) \subseteq F^{s+s'} H_{n+n'}(E), \]
 and the isomorphisms
 \[E^{s,t}_\infty \cong \text{gr}^s H^{s+t}(E) \]
 together form an isomorphism of bigraded R-algebras.

Theorem 67.2. Let $p : E \downarrow B$ be a Serre fibration, and assume given any commutative coefficient ring. There is a naturally associated multiplicative cohomological first quadrant spectral sequence of R-modules

\[E^{s,t}_2 = H^s(B; H^t(p^{-1}(-))) \Rightarrow H^{s+t}(E). \]

One of the virtues of the construction of the Serre (or more generally Leray) spectral sequence by the method described in Lecture 66 is that it then arises from a filtered differential graded algebra. The multiplicative structure of the spectral sequence is then easy to produce. The construction from a CW filtration of the base requires us to choose a skeletal approximation of the diagonal. This does give a multiplication, but one should not expect it to be associative or have other good properties. Anyway, I will not make a further attempt to justify the multiplicative behavior of the Serre spectral sequence.

Instead, let’s look at an example: The cohomology Gysin sequence for the $(n - 1)$-spherical fibration ξ, $p : E \downarrow B$, takes the form

\[\cdots \to H^{s-n}(B) \xrightarrow{\pm e_\xi} H^s(B) \xrightarrow{p^*} H^s(E) \xrightarrow{p_*} H^{s-n+1}(B) \to \cdots. \]

The identity of the middle map with p^* follows from the edge-homomorphism arguments above but reformulated in cohomology. How about the other two maps?

Euler class

To understand them let’s look at the cohomological Serre spectral sequence giving rise to the Gysin exact sequence. It has two nonzero rows, $E^{*,0}_r$ and $E^{*,n-1}_r$. The multiplicative structure provides $E^{*,n-1}_r$ with the structure of a module over $E^{*,0}_r$. The assumed orientation of the spherical fibration determines a distinguished class σ in the R-module $E^{0,n-1}_2 = H^0(B; H^{n-1}(F))$ (one that evaluates to 1 on each orientation class – remember, the base may not be connected!), and $E^{*,n-1}_2$ is free as $E^{*,0}_2 = H^*(B)$-module on this generator.

The transgression of this element,

\[e_\xi = d_n \sigma \in E^{n,0}_n = H^n(B), \]

is a canonically defined class, called the Euler class of the R-oriented spherical fibration.

This class determines the entire transgression $H^*(B) \to H^*(B)$ in the Gysin sequence:

\[x \mapsto d_n (x \cdot \sigma) = (-1)^{|x|} x e_\xi = \pm e_\xi x \]
by the Leibnitz formula, since \(d_n x = 0 \).

The Euler class is a “characteristic class,” in the sense that if we use \(f : B' \to B \) to pull the spherical fibration \(\xi : E \downarrow B \) back to \(f^* \xi : E' \downarrow B' \) (along with the chosen orientation), then

\[
 f^*(e_\xi) = e_{f^* \xi}.
\]

In particular we can suppose that \(E \) is the complement of the zero section of an \(R \)-oriented real \(n \)-plane bundle. The universal case is then \(\xi_n : \text{ESO}(n) \downarrow BSO(n) \), and we receive a canonical cohomology class

\[
 e_n \in H^n(BSO(n); R).
\]

If we use coefficients in \(F_2 \), every \(n \)-plane bundle is canonically oriented and we receive a class

\[
 e_n \in H^n(BO(n); F_2).
\]

In a sense the Euler class is the fundamental characteristic class: it rules all others. To illustrate its importance, notice that if \(p : E \to B \) has a section \(s : B \to E \) then the map \(p^* : H^s(B) \to H^s(E) \) is a split injection. The Gysin sequence becomes a short exact sequence; \(p_* = 0 \). Said differently, the edge homomorphism story shows that in that case all differentials hitting the base are trivial; in particular \(e_\xi = 0 \). So if \(e_\xi \neq 0 \) then the bundle doesn’t admit a section. If the bundle was the complement of the zero section in an \(R \)-oriented vector bundle, \(e_\xi \) is an obstruction to the existence of a nowhere zero section.

The Euler class gets its name from the following theorem.

Theorem 67.3. Let \(M \) be an \(R \)-oriented closed manifold. Then evaluating the Euler class of the tangent bundle \(\tau \) on the fundamental class of \(M \):

\[
 < e_\tau, [M] > = \chi(M) \in R.
\]

So if \(M \) admits a nonvanishing vector field then \(\chi(M) = 0 \).

Integration along the fiber

How about the last map, \(H^s(E) \to H^{s-n+1}(B) \)? This is a “wrong-way” or “Umkher” map – it moves in the opposite direction from \(p^* : H^s(B) \to H^s(E) \) – and also decreases dimension by the dimension of the fiber. In fact let \(p : E \downarrow B \) be any fibration such that \(E^t_{2^t} = 0 \) for \(t \geq n \), and suppose we are given a map

\[
 E_{2^{n-1}}^{s,n-1} \to H^s(B).
\]

For example the fibers might be closed \((n-1)\)-manifolds, equipped with compatible orientations providing a map of local coefficient system

\[
 H^{n-1}(p^{-1}(-)) \to R
\]

to the trivial local system with fiber the ground ring \(R \).

Now we have a new edge, an upper edge, and our map is given by a new edge homomorphism:

\[
 p_* : H^s(E) = F^0 H^s(E) = E_{\infty}^{s-n+1} H^s(E) \to E_{\infty}^{s-n+1,n-1} \hookrightarrow E_{2}^{s-n+1,n-1} \to H^{s-n+1}(B).
\]

This can sometimes be given geometric meaning as well. With real coefficients, for example, we can use deRham cohomology, and regard the map \(p_* \) as “integration along the fiber.”
The row $E_2^{s,n-1}$ is in any case a module over $H^*(B)$. If the map $E_2^{r,n-1} \to H^*(B)$ arises from compatible fiber orientations then it is a map of $H^*(B)$-modules, and so the entire edge homomorphism $p_* : H^*(E) \to H^*(B)$ is a module map:

$$p_*((p^*x) \cdot y) = x \cdot p_* y.$$

This important formula has various names: “Frobenius reciprocity,” or the “projection formula.”

Loop space of S^n again

Let’s try to compute the cup product structure in the cohomology of ΩS^n, again using the Serre spectral sequence for $PS^n \to S^n$. One way to analyze this would be to set up the cohomology version of the Wang sequence, subject of a homework problem. But let’s just use the spectral sequence directly.

To begin,

$$E_2^{s,t} = H^s(\Omega^n; H^t(\Omega S^n)) = H^s(\Omega^n) \otimes H^t(\Omega S^n).$$

Two nonzero columns. Write $\iota_n \in H^n(S^n)$ for a generator. The cohomology transgression $d_n : E_2^{0,n-1} \to E_2^{n,0}$ must be an isomorphism. Write $x \in H^{n-1}(\Omega S^n)$ for the unique class mapping to ι_n.

As in the homology calculation (or because of it) we know that $H^{k(n-1)}(\Omega S^n)$ is an infinite cyclic group. A first question then is: Is the the cup k-th power x^k a generator?

First assume that n is odd, so that $|x| = n - 1$ is even. Then by the Leibniz rule

$$d_n x^2 = 2(d_n x)x = 2\iota_n x.$$

This is twice the generator of $E_2^{n,n-1}$. In order to kill the generator itself, we must be able to divide by 2 in $H^{2(n-1)}(\Omega S^n)$. So there is a unique element, call it γ_2, such that $2\gamma_2 = x^2$, and it serves as a generator for the infinite cyclic group $H^{2(n-1)}(\Omega S^n)$.

With this in the bag, let’s observe that the transgression of x^k is

$$d_n x^k = k(d_n x) x^{k-1} = k\iota_n x^{k-1}.$$

For example

$$d_n x^3 = 3\iota_n x^2 = 3 \cdot 2\iota_n \gamma_2.$$

Since $\iota_n \gamma_2$ is a generator of $E_2^{2(n-1)}$, the element x^3 must be divisible by $3 \cdot 2 = 3!$: there is a unique element of $H^{3(n-1)}(\Omega S^n)$, call it γ_3, such that $x^3 = 3! \gamma_3$.

This evidently continues: $H^{k(n-1)}(\Omega S^n)$ is generated by γ_k such that $x^k = k! \gamma_k$. This implies that these generators satisfy the product formula

$$\gamma_j \gamma_k = (j,k) \gamma_{j+k}, \quad (j,k) = \frac{(j+k)!}{j!k!}.$$

This is a *divided power algebra*, denoted by $\Gamma[x]$:

$$H^*(\Omega S^n) = \Gamma[x] \quad \text{for } n \text{ odd}, \quad |x| = n - 1.$$

The answer is the same for any coefficients. With rational coefficient, these divided classes are already present:

$$H^*(\Omega S^n; \mathbb{Q}) = \mathbb{Q}[x]$$

and $H^*(\Omega S^n; \mathbb{Z})$, being torsion-free, sits inside this as the sub-algebra generated additively by the classes $x^k/k!$.

Now let’s turn to the case in which \(n \) is even. Then \(|x|\) is odd, so by commutativity \(2x^2 = 0 \). But \(H^{2(n-1)}(\Omega S^n) \) is torsion-free, so \(x^2 = 0 \).

So we need a new indecomposable element in \(H^{2(n-1)}(\Omega S^n) \): call it \(y \). Choose the sign so that

\[
d_n y = \iota_n x \in E_{n,n-1}.
\]

Now \(|y| = 2(n-1)\) is even, so

\[
d_n y^k = k\iota_n y^{k-1} x
\]

and

\[
d_n (xy^k) = \iota_n y^k - ky^k - 1\iota_n x = \iota_n y^k
\]

(since \(x^2 = 0 \)). Reasoning as before, we find that

\[
H^*(\Omega S^n) = E[x] \otimes \Gamma[y] \quad \text{for } n \text{ even}, \quad |x| = n - 1, \quad |y| = 2(n - 1),
\]

again with any coefficients.

68 Serre classes

Suppose that \(X \) is a simply connected space such that \(\overline{H}_q(X) \) is a torsion group for all \(q \): every element \(x \in H_q(X) \) is killed by some positive integer. This is the same as saying that \(X \) has the same rational homology as a point. Is every homotopy group also a torsion group, or can rational homotopy make an appearance? What if the reduced homology was all \(p \)-torsion (i.e. every element is killed by some power of \(p \)) – must \(\pi_k(X) \) also be entirely \(p \)-torsion? What if the homology is assumed to be of finite type (finitely generated in every dimension) – Must the same be true of homotopy? Serre explained how things like this can be checked, without explicit computation (which is not an option!) by describing what is required of a class \(C \) of abelian groups that can be considered “negligible.”

Definition 68.1. A class \(C \) of abelian groups is a **Serre class** if \(0 \in C \), and, for any short exact sequence \(0 \to A \to B \to C \to 0 \), \(A \) and \(C \) lie in \(C \) if and only if \(B \) does.

Here are some immediate consequences of this definition.

- A Serre class is closed under isomorphisms.
- A Serre class is closed under subgroups and quotient groups.
- Let \(A \overset{i}{\to} B \overset{p}{\to} C \) be exact at \(B \). If \(A, C \in C \), then \(B \in C \): In

\[
\begin{array}{cccccc}
0 & \to & \ker p & \to & B & \to & \coker i & \to & 0 \\
& & \downarrow & & \downarrow & & \downarrow \\
& & \ker p & \to & B & \to & \coker i & \to & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
& & C & \to & 0 & \to & 0 & \to & 0
\end{array}
\]

the row is exact and the indicated factorizations exist since \(pi = 0 \); the surjectivity and injectivity follow from exactness.

Here are the main examples.
Example 68.2. The class of trivial abelian groups; the class C_{fin} of all finite abelian groups; the class C_{fg} of all finitely generated abelian groups; the class of all abelian groups.

Example 68.3. C_{tors}, the class of all torsion abelian groups. To see that this is a Serre class, start with a short exact sequence

$$0 \to A \xrightarrow{i} B \xrightarrow{\beta} C \to 0.$$

It’s clear that if B is torsion then so are A and C. Conversely, suppose that A and C are torsion groups. Let $b \in B$. Then $npb = 0$ for some $n > 0$, since C is torsion; so there is $a \in A$ such that $ia = nb$. But A is torsion too, so $ma = 0$ for some $m > 0$, and hence $mnb = 0$.

Example 68.4. Fix a prime p. The class of p-torsion groups forms a Serre class. More generally, let \mathcal{P} be a set of primes. Define $C_{\mathcal{P}}$ to be the class of torsion abelian groups such that no nontrivial element has order divisible by any element of \mathcal{P}. If $\mathcal{P} = \emptyset$ this is just C_{tors}. Write C_p for $C_{\{p\}}$. This is the class of torsion abelian groups without p-torsion. Since $\mathbb{Z}((p))$ is a direct limit of copies of \mathbb{Z} with bonding maps running through the natural numbers prime to p, $A \in C_p$ if and only if $A \otimes \mathbb{Z}((p)) = 0$. These are the kinds of groups you’re willing to ignore if you are only interested in “p-primary” information.

Example 68.5. The intersection of an collection of Serre classes is again a Serre class. For example, $C_{\text{fin}} \cap C_p$ is the class of finite abelian groups of order prime to p.

The definition of a Serre class is set up so that it makes sense to work “modulo C.” So we’ll say that A is “zero mod C” if $A \in C$. A homomorphism is a “mod C monomorphism” if its kernel lies in C; a “mod C epimorphism” if its cokernel lies in C; and a “mod C isomorphism” if both kernel and cokernel lie in C. So for example $f : A \to B$ is a mod C_{tors} isomorphism exactly when $f \otimes 1 : A \otimes \mathbb{Q} \to B \otimes \mathbb{Q}$ is an isomorphism of rational vector spaces.

Lemma 68.6. Let C be a Serre class. The classes of mod C monomorphisms, epimorphisms, and isomorphisms contain all isomorphisms and are closed under composition. The class of mod C isomorphisms satisfies 2-out-of-3.

Proof. Form

\[
\begin{array}{ccc}
0 & \to & \ker \beta \\
& \searrow & \downarrow \alpha \\
& B & \to \coker \alpha \\
& \nearrow & \uparrow \beta \\
\ker \beta \alpha & \to & A \\
& \swarrow \beta \alpha & \downarrow \coker \beta \alpha \\
C & \to & \coker \beta \\
& \searrow & \downarrow \coker \beta \alpha \\
& \swarrow & \downarrow \coker \beta \\
0 & \to & 0 \\
0 & \to & 0 \\
0 & \to & 0
\end{array}
\]

and check that the outside path is exact. \qed
Here are some straightforward consequences of the definition:

- If C_s is a chain complex, and $C_n \in C$, then $H_n(C_s) \in C$.
- Suppose $F_s A$ is a filtration on an abelian group. If $A \in C$, then $\text{gr}_s A \in C$ for all s. If $F_s A$ is finite (i.e. $F_m = 0$ and $F_n = A$ for some m, n) and $\text{gr}_s A \in C$ for all s, then $A \in C$.
- Suppose we have a spectral sequence $\{E^r_{s,t}\}$. If $E^2_{s,t} \in C$, then $E^r_{s,t} \in C$ for $r \geq 2$. If $\{E^r\}$ is a first quadrant spectral sequence (so that $E^\infty_{s,t}$ is defined and achieved at a finite stage) it follows that $E^\infty_{s,t} \in C$.

Thus if the spectral sequence comes from a first quadrant filtered complex and $E^2_{s,t} \in C$ for all $s + t = n$, then $H_n(C) \in C$.

The first implication in homology is this: Suppose that $A \subseteq X$ is a pair of path-connected spaces. If two of $\prod_n(A), \prod_n(X), H_n(X, A)$ are zero mod C for all n, then so is the third. More generally, if you have a ladder of abelian groups (a map of long exact sequences) and two out of every three consecutive rungs are mod C isomorphisms then so is the third: a mod C five-lemma.

Serre rings and Serre ideals

To apply this theory to the Serre spectral sequence we need to know that our class is compatible with tensor product. Let’s say that a Serre class C is a Serre ring if whenever A and B are in C, $A \otimes B$ and $\text{Tor}(A, B)$ are too. It’s a Serre ideal if we only require one of A and B to lie in C to have this conclusion.

All of the examples given above are Serre rings. The ones without finiteness assumptions are Serre ideals.

Here’s another closure property we might investigate, and will need. Suppose that C is a Serre ring and $A \in C$. Form the classifying space or Eilenberg Mac Lane space $BA = K(A, 1)$. We know that $H_1(K(A, 1)) = A$ (for example by Poincaré’s theorem) so it lies in C. How about the higher homology groups? If they are again in C, the Serre ring is “acyclic.”

This is a computational question. Suppose $C = C_{\text{fin}}$ for example. By the Künneth theorem (and the fact that C_{fin} is a Serre ring), it’s enough to consider finite cyclic groups. What is $H_*(BC_n)$, where C_n is a cyclic group of order n? To answer this we can embed C_n into the circle group S^1 as nth roots of unity. The group of complex numbers of norm 1 acts principally on the unit vectors in C^∞, and that space, S^∞, is contractible. So $C P^\infty = BS^1$. The subgroup $C_n \subset S^1$ acts principally on this contractible space as well, so

$$BC_n = C_n \setminus S^\infty = (C_n \setminus S^1) \times_{S^1} S^\infty$$

fibers over CP^∞ with fiber $C_n \setminus S^1 \cong S^1$. Let’s study the resulting Serre spectral sequence, first in homology.

In it, $E^2_{s,t} = H_s(CP^\infty) \otimes H_t(S^1)$. The only possible differential is d^2. The one thing we know about $K(C_n, 1)$ is that is fundamental group is C_n — abelian, so $H_1(K(C_n, 1)) = C_n$. The only way to accomplish this in the spectral sequence is by $d^2 a = n \sigma$, where $\sigma \in H_1(S^1)$ is one of the generators.

This implies that in the cohomology spectral sequence $d_2 e = nx$, where e generates $H^1(S^1)$ and x generates $H^2(CP^\infty)$. Then the multiplicative structure takes over: $d_2(x^i e) = nx^{i+1}$.

The effect is that $E^2_{s,t} = 0$ for $t > 0$. The edge homomorphism $H^*(CP^\infty) \to H^*(BC_n)$ is thus surjective, and we find

$$H^*(BC_n) = \mathbb{Z}[x]/(nx), \quad |x| = 2.$$
Passing to homology, we find that \(\overline{H}_i(BC_n) \) is cyclic of order \(n \) if \(i \) is a positive odd integer and zero otherwise. In particular, it is finite, so \(C_{\text{fin}} \) is acyclic.

Since any torsion abelian group \(A \) is the direct limit of the directed system of its finite subgroups, we find that \(\overline{H}_q(K(A,1)) \) is then torsion as well: so \(C_{\text{tors}} \) is also acyclic.

The calculation also shows that the class of finite \(p \)-groups and the class \(C_p \) are acyclic. To deal with \(C_{\text{fg}} \), we just have to add the infinite cyclic group, whose homology is certainly finitely generated in each degree. So all our examples of Serre rings are in fact acyclic.

Serre classes in the Serre spectral sequence

Let \(C \) be a Serre ideal. If \(H_n(X) \) and \(H_{n-1}(X) \) are zero mod \(C \) then \(H_n(X;M) \) is zero mod \(C \) for any abelian group \(M \), by the universal coefficient theorem. If \(C \) is only a Serre ring, we still reach this conclusion provided \(M \in C \).

The convergence theorem for the Serre spectral sequence shows this:

Proposition 68.7 (Mod \(C \) Vietoris-Begle Theorem). Let \(\pi : E \to B \) be a fibration such that \(B \) and the fiber \(F \) are path connected, and suppose \(\pi_1(B) \) acts trivially on \(H_*(F) \). Let \(C \) be a Serre ideal and suppose that \(H_t(F) \in C \) for all \(t > 0 \). Then \(\pi_* : H_n(E) \to H_n(B) \) is a mod \(C \) isomorphism for all \(n \).

Proof. The universal coefficient theorem guarantees that \(E_{s,t}^2 = H_*(B;H_t(F)) \in C \) as long as \(t > 0 \). The same is thus true of \(E_{s,t}^\infty \) and hence of \(E_{s,t}^\infty \), so the edge homomorphism \(\pi_* : H_n(E) \to H_n(B) \) is a mod \(C \) isomorphism.

This theorem admits a refinement that will be useful in proving the mod \(C \) Hurewicz theorem. For one thing, we would like a result that works for a Serre ring, not merely a Serre ideal, in order to cover cases like \(C_{\text{fg}} \)

Proposition 68.8. Let \(\pi : E \to B \) be a fibration such that \(B \) is simply connected and the fiber \(F \) is path connected. Let \(C \) be a Serre ring and suppose that

- \(H_s(B) \in C \) for all \(s \) with \(0 < s < n \), and
- \(H_t(F) \in C \) for all \(0 < t < n - 1 \).

Then \(\pi_* : H_i(E,F) \to H_i(B,*)) \) is an isomorphism mod \(C \) for all \(i \leq n \).

Proof. We appeal to the relative Serre spectral sequence

\[
E_{s,t}^2 = \overline{H}_s(B;H_t(F)) \implies H_{s+t}(E,F).
\]

At \(E_{s,t}^2 \), both the \(s = 0 \) column and the \(s = 1 \) column vanish. Also, \(E_{s,t}^2 \in C \) for \((s,t) \) in the rectangle

\[
2 \leq s \leq n - 1, \quad 1 \leq t \leq n - 2.
\]

In total degree \(i, i \leq n \), the only group not vanishing mod \(C \) is \(E_{1,0}^2 \). So the edge homomorphism \(\pi_* : H_i(E,F) \to \overline{H}_i(B) \) is a mod \(C \) isomorphism.

Theorem 68.9 (Mod \(C \) Hurewicz theorem). Assume that \(C \) is an acyclic Serre ring. Let \(X \) be a simply connected space and let \(n \geq 2 \). Then \(\pi_* : H_n(X) \to H_n(B,*)) \) is an isomorphism for all \(q < n \), and in that case the Hurewicz map \(\pi_n(X) \to H_n(X) \) is a mod \(C \) isomorphism.
Before we embark on the proof, a small selection of corollaries.

Corollary 68.10. Let X be a simply connected space and $n \geq 2$ or $n = \infty$.

1. $H_q(X)$ is finitely generated for all $q < n$ if and only if $\pi_q(X)$ is finitely generated for all $q < n$.
2. Let p be a prime number. $H_q(X)$ is p-torsion for all $q < n$ if and only if $\pi_q(X)$ is p-torsion for all $q < n$.
3. If $\overline{\mathcal{H}}_q(X; \mathbb{Q}) = 0$ for $q < n$, then $\pi_q(X) \otimes \mathbb{Q} = 0$ for $q < n$, and $h : \pi_n(X) \otimes \mathbb{Q} \to H_n(X; \mathbb{Q})$ is an isomorphism.

69 Mod C Hurewicz and Whitehead theorems

Theorem 69.1 (Mod C Hurewicz theorem). Assume that C is an acyclic Serre ring. Let X be a simply connected space and let $n \geq 2$. Then $\pi_q(X) \in C$ for all $q < n$ if and only if $\overline{\mathcal{H}}_q(X) \in C$ for all $q < n$, and in that case the Hurewicz map $\pi_n(X) \to H_n(X)$ is a mod C isomorphism.

Proof. This follows the proof of the Hurewicz theorem, but some extra care is needed. Again we use induction and the path-loop fibration. Again, it will suffice to show that if $\pi_q(X) \in C$ for $q < n$ then $\pi_n(X) \to H_n(X)$ is an isomorphism – now mod C. To start the induction, with $n = 2$, we can appeal to the Hurewicz isomorphism: the map $\pi_2(X) \to H_2(X)$ is an actual isomorphism.

The inductive step uses the commutative diagram

$$
\begin{array}{ccc}
\pi_q(X) & \xrightarrow{\cong} & \pi_q(PX, \Omega X) \\
\downarrow h & & \downarrow h \\
\overline{\mathcal{H}}_q(X) & \xrightarrow{\cong} & H_q(PX, \Omega X) \\
\end{array}
$$

Two thing need checking: (1) the map $H_n(PX, \Omega X) \to \overline{\mathcal{H}}_n(X)$ is an isomorphism mod C, and (2) the map $\pi_{n-1}(\Omega X) \to H_{n-1}(\Omega X)$ is an isomorphism mod C.

Both of these facts do follow from the inductive hypothesis if $\pi_2(X) = 0$, and both fail if $\pi_2(X) \neq 0$ (unless C is the trivial class).

Suppose $\pi_2(X) = 0$, so that ΩX is simply connected. Since $\pi_i(\Omega X) = \pi_{i+1}(X)$ we know it lies in C for $i < n - 1$. The inductive hypothesis applies to ΩX and shows that $\overline{\mathcal{H}}_i(\Omega X) \in C$ for $i < n - 1$ and that $\pi_{n-1}(\Omega X) \to H_{n-1}(\Omega X)$ is a mod C isomorphism. The inductive hypothesis also applies to X of course, and shows that $\overline{\mathcal{H}}_i(X) \in C$ for $i < n$. So we are in position to apply our Proposition from last lecture to see fact (1).

But if $\pi_2(X) \neq 0$, ΩX is not simply connected. To deal with that, let’s take the 2-connected cover in the Whitehead tower: This is a fibration $Y \to X$ with fiber $K = K(\pi_2(X), 1)$. This is where the acyclic condition comes in: since $\pi_2(X) \in C$, $H_i(K) \in C$ for $i > 0$. The long exact sequence for the pair (Y, K) shows that

$$
\overline{\mathcal{H}}_i(Y) \to H_i(Y, K)
$$

is a mod C isomorphism. We will apply proposition from last lecture to $(Y, K) \to (X, *)$, using the fact that X is simply connected and $H_i(X) \in C$ for $0 < i < n$. We find that

$$
H_i(Y, K) \to H_i(X, *)
$$

is a mod C isomorphism for $i \leq n$. Therefore the projection map $\overline{\mathcal{H}}_i(Y) \to \overline{\mathcal{H}}_i(X)$ is a mod C isomorphism for $i \leq n$.
The map \(\pi_i(Y) \to \pi_i(X) \) is an isomorphism for \(i \geq 2 \), so our hypothesis applies to \(Y \), and we can perform the inductive step on it instead of on \(X \).

Corollary 69.2. Let \(X \) be a simply connected space, \(p \) a prime, and \(n \geq 2 \). Then \(\pi_i(X) \otimes \mathbb{Z}_p = 0 \) for all \(i < n \) if and only if \(H_i(X; \mathbb{Z}_p) = 0 \) for all \(i < n \), and in that case

\[
\pi_n(X) \otimes \mathbb{Z}_p \to H_n(X; \mathbb{Z}_p)
\]

is an isomorphism.

Proof. The acyclic Serre ring \(C_p \) consists of abelian groups such that \(A \otimes \mathbb{Z}_p = 0 \).

Now for the relative version!

Theorem 69.3 (Relative mod \(C \) Hurewicz theorem). Let \(C \) be an acyclic Serre ideal, and \((X, A) \) a pair of spaces, both simply connected. Fix \(n \geq 1 \). Then \(\pi_i(X, A) \in C \) for all \(i \) with \(2 \leq i < n \) if and only if \(H_i(X, A) \in C \) for all \(i \) with \(2 \leq i < n \), and in that case \(h : \pi_n(X, A) \to H_n(X, A) \) is a mod \(C \) isomorphism.

The proof follows the same line as in the non-mod \(C \) case. But note the requirement here, in the relative case, that \(C \) is a Serre ideal. Let me just point out where that assumption is required. We use the same diagram, in which \(F \) is the homotopy fiber of the inclusion \(A \to X \):

\[
\begin{array}{ccc}
\pi_{n-1}(F) & \xrightarrow{\cong} & \pi_n(PX, F) \\
\downarrow h & & \downarrow h \\
\overline{H}_{n-1}(F) & \xrightarrow{\cong} & H_n(PX, F) \xrightarrow{p_*} H_n(X, A).
\end{array}
\]

In the proof that \(p_* \) is an isomorphism, we'll again use the relative Serre spectral sequence, but now the \(E^2 \) term is \(E^2_{s,t} = H_s(X, A; H_t(X)) \), and we have no control over \(H_t(X) \): all our assumptions related to the relative homology.

And this leads on to a mod \(C \) Whitehead theorem:

Theorem 69.4. Let \(C \) be an acyclic Serre ideal, and \(f : X \to Y \) a map of simply connected spaces. Fix \(n \geq 2 \). The following are equivalent.

1. \(f_* : \pi_i(X) \to \pi_i(Y) \) is a mod \(C \) isomorphism for \(i \leq n-1 \) and a mod \(C \) epimorphism for \(i = n \), and
2. \(f_* : H_i(X) \to H_i(Y) \) is a mod \(C \) isomorphism for \(i \leq n-1 \) and a mod \(C \) epimorphism for \(i = n \).

The theory of Serre classes is quite beautiful, but it does not relate easily to the standard way of working with homology with coefficients. The following lemma forms the link bewteen mod \(p \) homology and the mod \(C_p \) Whitehead theorem.

Lemma 69.5. Let \(X \) and \(Y \) be spaces whose \(p \)-local homology is of finite type, and suppose \(f : X \to Y \) induces an isomorphism in mod \(p \) homology. Then it induces a mod \(C_p \) isomorphism in homology.

Proof. Since \(\mathbb{Z}_p \) is flat, a homomorphism \(f : A \to B \) is a mod \(C \) isomorphism if and only if \(f \otimes 1 : A \otimes \mathbb{Z}_p \to B \otimes \mathbb{Z}_p \) is an isomorphism.

A finitely generated module over \(\mathbb{Z}_p \) is trivial if it’s trivial mod \(p \). So we want to show that the kernel and cokernel of \(f_* : H_*(X) \to H_*(Y) \) are trivial after tensoring with \(\mathbb{F}_p \).
Form the mapping cone Z of the map f. By assumption it has trivial mod p reduced homology. Since $\mathbb{Z}_{(p)}$ is Noetherian, $H_*(Z; \mathbb{Z}_{(p)})$ is of finite type. The universal coefficient theorem shows that $\Pi_* (Z; \mathbb{Z}_{(p)}) \otimes \mathbb{F}_p \hookrightarrow \Pi_* (Z; \mathbb{F}_p)$, so we conclude that $H_*(Z) \otimes \mathbb{Z}_{(p)} = \Pi_* (Z; \mathbb{Z}_{(p)}) = 0$, and hence that $f_* \otimes 1 : H_*(X) \otimes \mathbb{Z}_{(p)} \to H_*(Y) \otimes \mathbb{Z}_{(p)}$ is an isomorphism.

Corollary 69.6. Let X and Y be simply connected spaces whose p-local homology is of finite type, and suppose $f : X \to Y$ induces an isomorphism in mod p homology. Then $f_* : \pi_*(X) \otimes \mathbb{Z}_{(p)} \to \pi_*(Y) \otimes \mathbb{Z}_{(p)}$ is an isomorphism.

This is every topologist’s favorite theorem! Absent the fundamental group, you can treat primes one by one.

Some calculations

Let’s first compute the homology . . . well, at least the rational homology . . . of Eilenberg Mac Lane space $K(A, n)$, for A finitely generated. By the Künneth isomorphism it suffices to do this for A cyclic. When A is any torsion group, the mod C_{tors} Hurewicz theorem shows that $\Pi_* (K(A, n); \mathbb{Q}) = 0$. So we will focus on $K(\mathbb{Z}, n)$.

The case $n = 1$ is the circle, whose cohomology is an exterior algebra on one generator of dimension 1: $H^*(K(\mathbb{Z}, 1); \mathbb{Q}) = E[\iota_1]$, $|\iota_1| = 1$.

We know what $H^*(K(\mathbb{Z}, 2); \mathbb{Q})$ is, too, but let’s compute it in a way that starts an induction. It also follows the path laid down by Serre in his computation of the mod 2 cohomology of $K(A, n)$, using the fiber sequence

$$K(A, n - 1) \to PK(A, n) \to K(A, n).$$

When $n = 2$ there are only two rows – this is a spherical fibration. The class ι_2 must transgress to a generator, call it $\iota_2 \in H^2(K(\mathbb{Z}, 2); \mathbb{Q})$. Proceeding inductively, using $d_2(\iota_2^k \iota_1) = \iota_2^{k+1}$, you find that

$$H^*(K(\mathbb{Z}, 2); \mathbb{Q}) = \mathbb{Q}[\iota_2].$$

When $n = 3$, there is a polynomial algebra in the fiber. Again the fundamental class must transgress to a generator, $\iota_3 = d_3 \iota_2 \in H^3(K(\mathbb{Z}, 3); \mathbb{Q})$. The Leibniz formula gives $d^3(\iota_2^k) = k \iota_3 \iota_2^{k-1}$. This differential is an isomorphism: this is where working over \mathbb{Q} separates from working anywhere else. So we discover that

$$H^*(K(\mathbb{Z}, 3); \mathbb{Q}) = E[\iota_3].$$

This starts the induction, and leads to

$$H^*(K(\mathbb{Z}, n); \mathbb{Q}) = \begin{cases} E[\iota_n] & \text{if } n \text{ is odd} \\ \mathbb{Q}[\iota_n] & \text{if } n \text{ is even}. \end{cases}$$

In both cases, the cohomology is free as a graded commutative algebra.

Proposition 69.7. The homotopy group $\pi_i(S^n)$ is finite for all i except for $i = n$ and if n is even for $i = 2n - 1$, when it is finitely generated of rank 1.

Proof. The case $n = 1$ is special and simple, so suppose $n \geq 2$. Let

$$S^n \to K(\mathbb{Z}, n)$$

represent a generator of $H^n(S^n)$. It induces an isomorphism in π_n and in H_n.

When \(n \) is odd, it induces an isomorphism in rational homology, and therefore in rational homotopy.

When \(n \) is even, we should compute the cohomology of the fiber \(F \). The class \(\iota_n \) on the base survives to a generator of \(H^n(S^n; \mathbb{Q}) \), but \(\iota_n^2 \) must die. The only way to kill it is by a transgression from a class \(\iota_{2n-1} \in H^{2n-1}(F) \): \(d_{2n}\iota_{2n-1} = \iota_n^2 \). Then the Leibniz formula gives \(d_{2n}(\iota_n^k\iota_{2n-1}) = k\iota_n^{k-1} \), leaving precisely the cohomology of \(S^n \). So the fiber has the same rational cohomology as \(K(\mathbb{Z}, 2n-1) \). The generator \(\iota_{2n-1} \) gives a map \(F \to K(\mathbb{Z}, 2n-1) \) that induces an isomorphism in rational homology, and hence in rational homotopy.

You might ask: Why couldn’t this cancellation happen some other way? You can complete this argument, but perhaps you’ll prefer a different approach. Loop the Barratt-Puppe sequence back one notch, to a fiber sequence \(K(\mathbb{Z}, n-1) \to F \to S^n \), and work directly in homology. Now \(n-1 \) is odd, so the entire \(E^2 \) term has just four generators. The generator \(x \in H_n(S^n) \) must transgress to the fiber (else \(F \) would have the wrong homology in dimension \(n-1 \), or using the relationship between the transgression and the boundary map in homotopy), and what’s left at \(E^{n+1} \) is just a \(\mathbb{Q} \) for \(E_{0,0}^2 \) and a \(\mathbb{Q} \) for \(E_{n,n-1}^2 \).

The same calculation works for a while locally at a prime. Let’s look at \(S^3 \) for definiteness. Follow the Barratt-Puppe sequence back one stage, to get a fibration sequence

\[
K(\mathbb{Z}, 2) \to S^3(4, \infty) \to S^3
\]

In the spectral sequence, with integral coefficients,

\[
E_2^{*,*} = E[\sigma] \otimes \mathbb{Z}[\iota_2]
\]

The class \(\iota_2 \) must transgress to \(\sigma \) (at least up to sign), and then

\[
d_2(\iota_2^k) = k\sigma\iota_2^{k-1}.
\]

This map is always injective, leaving

\[
E_3^{3,2k-2} = \mathbb{Z}/k\mathbb{Z}
\]

and nothing else except for \(E_3^{0,0} = \mathbb{Z} \). The result is that

\[
H_{2k}(S^3(4, \infty)) = \mathbb{Z}/k\mathbb{Z}, \quad k \geq 1.
\]

The first time \(p \)-torsion appears is in dimension \(2p \): \(H_{2p}(S^3(4, \infty)) = \mathbb{Z}/p\mathbb{Z} \). This is the mod \(C_p \) Hurewicz dimension, so \(\pi_i(S^3) \) has no \(p \)-torsion in dimension less than \(2p \), and \(\pi_{2p}(S^3) = \mathbb{Z}/p\mathbb{Z} \).

70 Freudenthal, James, and Bousfield

Suspension

The transgression takes on a particularly simple form if the total space is contractible.

Remember the adjoint pair

\[
\Sigma : \text{Top}_* \rightleftharpoons \text{Top}_* : \Omega.
\]

The adjunction morphisms

\[
\sigma : X \to \Omega\Sigma X, \quad \text{ev} : \Sigma\Omega X \to X
\]

are given by

\[
\sigma(x)(t) = [x, t], \quad \text{ev}(\omega, t) = \omega(t).
\]
Proposition 70.1. Let \(X \) be path connected. The transgression relation
\[
\overline{H}_n(X) \to \overline{H}_{n-1}(\Omega X)
\]
associated to the path loop fibration \(p : PX \to X \) is the converse of the relation defined by the map
\[
\overline{\Pi}_{n-1}(\Omega X) = \overline{\Pi}_n(\Sigma \Omega X) \xrightarrow{ev} \overline{\Pi}_n(X).
\]

Proof. Recall that the transgression relation is given (in this case) by the span
\[
\begin{array}{ccc}
\Pi_n(PX, \Omega X) & \xrightarrow{p_*} & \Pi_n(X) \\
& \searrow & \nearrow \\
& \partial & \\
\Pi_n(X) & \xrightarrow{\partial} & \Pi_{n-1}(\Omega X).
\end{array}
\]

It consists of the subgroup
\[
\{(x, y) \in \Pi_n(X) \times \Pi_{n-1}(\Omega X) : \exists z \in H_n(PX, \Omega X) \text{ such that } p_*z = x \text{ and } \partial z = y\}.
\]

We are claiming that this is the same as the subgroup
\[
\{(x, y) \in \Pi_n(X) \times \Pi_{n-1}(\Omega X) : \exists w \in \Pi_n(\Sigma \Omega X) \text{ such that } ev_*w = x \text{ and } iw = y\}
\]
determined by the span
\[
\begin{array}{ccc}
\Pi_n(\Sigma \Omega X) & \xrightarrow{ev_*} & \Pi_n(X) \\
& \searrow & \nearrow \\
& & \Pi_{n-1}(\Omega X) \\
& & \\
& & \Pi_n(X) \\
& & \\
& & \Pi_{n-1}(\Omega X).
\end{array}
\]

where \(i : \Pi_{n-1}(\Omega X) \xrightarrow{\cong} \Pi_n(\Sigma \Omega X) \) is the canonical isomorphism.

To see this, we just have to remember how the boundary map and the isomorphism \(i \) are related. This is a general point. So suppose we have a space \(X \) and a subspace \(A \), so we are interested in \(i : \Pi_n(\Sigma X) \to \Pi_{n-1}(X) \) and the the boundary map \(\partial : H_n(X, A) \to H_{n-1}(A) \). The latter may be described geometrically like this. Form the mapping cylinder \(M \) of the inclusion map \(A \to X \).

Then \(A \hookrightarrow M \) is a cofibration with cofiber \(\Sigma A \), and we have the span
\[
\begin{array}{ccc}
(M, A) & \xrightarrow{\partial} & (\Sigma A, *) \\
\downarrow & & \downarrow \\
(X, A) & \xrightarrow{ev_*} & \Pi_n(X) \\
& \searrow & \nearrow \\
& & \Pi_n(X) \\
& & \Pi_n(X) \\
& & \Pi_{n-1}(\Omega X).
\end{array}
\]

in which the left arrow is a homology isomorphism. The boundary map is induced by this span, together with the isomorphism \(i \).

Specializing to the pair \((PX, \Omega X) \) gives commutativity of part of the diagram
\[
\begin{array}{ccc}
H_n(M, \Omega X) & \xrightarrow{\cong} & H_n(PX, \Omega X) \\
\downarrow & & \downarrow p_* \\
H_n(X) & \xrightarrow{ev_*} & H_n(\Sigma \Omega X, *) \\
& \searrow & \nearrow \\
& \partial & \\
& \Pi_n(X) & \xrightarrow{\partial} & \Pi_{n-1}(\Omega X).
\end{array}
\]
The other part follows from homotopy commutativity of

\[
\begin{array}{ccc}
(M, \Omega X) & \longrightarrow & (\Sigma \Omega X, *) \\
\downarrow & & \downarrow \\
(PX, \Omega X) & \longrightarrow & (X, *)
\end{array}
\]

Notation: the first entry is the map on \(PX = \{ \sigma : I \rightarrow X \text{ such that } \sigma(0) = * \} \); the second entry is the map on \(\Omega X \times I \). A homotopy between these two maps is given at time \(s \) by

\[
\sigma; \omega \mapsto \sigma(s); (t \mapsto \omega(st)).
\]

This diagram shows that the two relations are identical.

The evaluation map \(\Sigma \Omega X \rightarrow X \) also admits an interesting interpretation in cohomology, with coefficients in an abelian group \(\pi \):

\[
\begin{array}{ccc}
\overline{H}^n(X; \pi) & \longrightarrow & \overline{H}^{n-1}(\Omega X; \pi) \\
\downarrow & & \downarrow \\
\cong & \cong & \cong \\
[X, K(\pi, n)]_* & \longrightarrow & [\Omega X, \Omega K(\pi, n)]_*
\end{array}
\]

commutes.

Our identification of the evaluation map as the converse of a transgression allows us to invoke the Serre exact sequence. After all, if the total space is contractible, every third sequence in the Serre exact sequence vanishes, and the remaining map, the transgression, is an isomorphism. In fact, in that case we get just a little extra, the last clause in the following proposition, which we state in the generality of working modulo a Serre ring.

Proposition 70.2. Let \(C \) be a Serre ring. Let \(n \geq 1 \) and suppose \(X \) is simply connected and that \(\overline{H}_i(X) \in C \) for all \(i < n \). Then the evaluation map \(\ev_* : \overline{H}_{i-1}(\Omega X) \rightarrow \overline{H}_i(X) \) is an isomorphism mod \(C \) for \(i < 2n - 1 \) and an epimorphism mod \(C \) for \(i = 2n - 1 \).

This result leads the way to the “suspension theorem” of Hans Freudenthal. The relevant adjunction morphism is now the “suspension”

\[
\sigma_X : X \rightarrow \Omega \Sigma X.
\]

The formalism of adjunction guarantees commutativity of

\[
\begin{array}{ccc}
\Sigma X & \longrightarrow & \Sigma \Omega \Sigma X \\
\downarrow & & \downarrow \\
1 & \longrightarrow & \ev_{\Sigma X}
\end{array}
\]
which shows for a start that σ_X induces a split monomorphism in reduced homology. But we also know from 70.2 that if X is $(n-1)$ connected, the evaluation map in

$$H_i(X) \xrightarrow{(\sigma_X)_*} H_i(\Omega \Sigma X)$$

$$\downarrow (\text{ev}_{\Sigma X})_*$$

$$H_{i+1}(\Sigma X)$$

is an isomorphism mod C for $i < 2n$: so the same is true for $(\sigma_X)_*$. Now we can apply the mod C Whitehead theorem to conclude:

Theorem 70.3 (Mod C Freudenthal suspension theorem). Let C be an acyclic Serre ideal and $n \geq 1$. Let X be a simply connected space such that $\Pi_i(X)$ is zero mod C for $i < n$. Then the suspension map

$$\pi_i(X) \rightarrow \pi_i(\Omega \Sigma X) = \pi_{i+1}(\Sigma X)$$

is a mod C isomorphism for $i < 2n - 1$ and a mod C epimorphism for $i = 2n - 1$.

Corollary 70.4. Let $n \geq 2$. The suspension map

$$\pi_i(S^n) \rightarrow \pi_{i+1}(S^{n+1})$$

is an isomorphism for $i < 2n - 1$ and an epimorphism for $i = 2n - 1$.

For example, $\pi_2(S^2) \rightarrow \pi_3(S^3)$ is an isomorphism (the degree is a stable invariant), while $\pi_3(S^2) \rightarrow \pi_4(S^3)$ is only an epimorphism: the Hopf map $S^3 \rightarrow S^2$ suspends to a generator of $\pi_4(S^3)$, which as we saw has order 2.

In any case, the Freudenthal suspension theorem show that the sequence

$$\pi_k(X) \rightarrow \cdots \rightarrow \pi_{n+k}(\Sigma^n X) \rightarrow \pi_{n+1+k}(\Sigma^{n+1} X) \rightarrow \cdots$$

stabilizes. The direct limit is the reduced stable homotopy of the pointed space X, $\pi^*_k(X)$. This turns out to be a generalized homology theory. Its coefficients form a graded commutative ring, the stable homotopy ring

$$\pi^*_* = \pi^*_*(S^0) = \lim_{n \rightarrow \infty} \pi^{*+n}(S^n).$$

EHP sequence

The homotopy groups of spheres are related to each other via the suspension maps, but it turns out that there is more, based on the following theorem of Ioan James.

Proposition 70.5. Let $n \geq 2$. There is a map $h : \Omega S^n \rightarrow \Omega S^{2n-1}$ that induces an isomorphism in dimension $2n - 2$.

Granting this, we can compute the entire effect in cohomology. When n is even, the generator $y \in H^{2n-2}(\Omega S^{2n-1})$ hits the divided power generator in $H^{2n-2}(\Omega S^n)$, and hence embeds $H^*(\Omega S^{2n-1})$ into $H^*(\Omega S^n)$ isomorphically in dimensions divisible by $(2n - 2)$. The induced map in homology thus has the same behavior. It follows that the homotopy fiber has the homology of S^{2n-1}. But the suspension map $S^{n-1} \rightarrow \Omega S^n$ certainly composes into ΩS^{2n-1} to a null map, and hence lifts to a map to the homotopy fiber inducing a homology isomorphism. By Whitehead’s theorem, it is a weak equivalence.
It turns out that there is a map $w_n : S^{2n-1} \to S^n$, the “Whitehead square,” such that the composite

$$\Omega S^{2n-1} \xrightarrow{\Omega w_n} \Omega S^n \xrightarrow{h} \Omega S^{2n-1}$$

is an isomorphism in homology away from 2. So, using the product in ΩS^n, there is (for n even!) a map,

$$S^{n-1} \times \Omega S^{2n-1} \to \Omega S^n$$

that induces an isomorphism in homology away from 2, and hence by the mod C_2 Whitehead theorem in homotopy away from 2. For this reason, even spheres are not very interesting homotopy theoretically away from 2.

When n is odd, $y \in H^{2n-2}(\Omega S^{2n-1})$ maps to the divided square of $x \in H^{n-1}(\Omega S^n)$. This implies that

$$\gamma_k(y) = \frac{y^k}{k!} \mapsto \frac{(x/2)^k}{k!} = \frac{(2k)!}{2^kk!} \gamma_k(x).$$

A little thought shows that the fraction here is odd, so the map is still an isomorphism in $\mathbb{Z}(2)$ homology in dimensions divisible by $2n - 2$, and hence the fiber has the 2-local homology of S^{n-1}. The mod C_2 Whitehead theorem shows that it also has the 2-local homotopy of S^{n-1}. We conclude:

Theorem 70.6. For any positive even integer n there is a fiber sequence

$$S^{n-1} \to \Omega S^n \to \Omega S^{2n-1}.$$

Localized at 2, this sequence exists for n odd as well.

The long exact homotopy sequence then gives us the *EHP sequence*

$$
\pi_k(S^{n-1}) \xrightarrow{e} \pi_{k+1}(S^n) \xrightarrow{h} \pi_{k+1}(S^{2n-1})
\pi_{k-1}(S^{n-1}) \xrightarrow{e} \pi_k(S^n) \xrightarrow{h} \pi_k(S^{2n-1})
\cdots
$$

of homotopy groups localized at 2.

These sequences link together to form an exact couple! You can see this clearly from the diagram of fiber sequences obtained by looping down the sequences of Theorem 70.6

$$
\cdots \to \Omega^{s-1} S^{s-1} \to \Omega^s S^s \to \Omega^{s+1} S^{s+1} \to \cdots \to \Omega^\infty S^\infty
\Omega^{s-1} S^{2s-3} \to \Omega^s S^{2s-1} \to \Omega^{s+1} S^{2s+1}
$$

The limiting space $\Omega^\infty S^\infty$ has homotopy equal to π^s_*.

The resulting spectral sequence, the *EHP spectral sequence*, has the form

$$E^1_{s,t} = \pi_{2s+1+t}(S^{2s+1}) \Rightarrow \pi^s_{s+t}.$$
Bousfield localization

I can’t leave the subject of Serre classes without mentioning a more recent and more geometric approach to localization in algebraic topology, due to A. K. (“Pete”) Bousfield (following diverse early ideas of Dennis Sullivan, Mike Artin and Barry Mazur, and Frank Adams).

Theorem 70.7 (Bousfield). Let E_\ast be any generalized homology theory and X any CW complex. There is a space $L_{E_\ast}X$ and a map $X \to L_{E_\ast}X$ that is terminal in the homotopy category among E_\ast-equivalence.

So $L_{E_\ast}X$ is as far away (to the right) from X as possible while still receiving an E_\ast-equivalence from it.

The class of maps given by E_\ast-equivalences determines a class of objects: A space W is E_\ast-local if for every E_\ast-equivalence between CW complexes, the induced map $[X,W] \to [Y,W]$ is bijective. You can’t tell two E_\ast-equivalent spaces apart by mapping them into an E_\ast-local space.

Theorem 70.8 (Addendum to Theorem 70.7). For any CW complex X, $L_{E_\ast}X$ is E_\ast-local, and the localization map $X \to L_{E_\ast}X$ is initial among maps to E_\ast-local spaces.

The functor L_{E_\ast} is “Bousfield localization” at the homology theory E_\ast. The subcategory of E_\ast-local spaces represents the ultimate extension of the Whitehead theorem:

Lemma 70.9. Any E_\ast-equivalence $f : X \to Y$ between E_\ast-local CW complexes is a homotopy equivalence.
Proof. Take $W = X$ in the definition of “E_s-local”: then the identity map $X \to X$ lifts in the homotopy category uniquely through a map $g: Y \to X$. By construction $gf = 1_X$. But then both fg and 1_Y lift $f: X \to Y$ across f, and hence must be equal by uniqueness.

So the Whitehead theorem can be phrased as saying that any simply connected CW complex is $H\mathbb{Z}_s$-local. Another example is given by rational homology $H\mathbb{Q}_s$.

Proposition 70.10. A simply connected CW complex is $H\mathbb{Q}_s$-local if and only if its homology in each positive dimension is a rational vector space.

In this case we can also compute the homotopy: for a simply connected CW complex X, $\pi_*(X) \to \pi_*(L_{H\mathbb{Q}}X)$ simply tensors the homotopy with \mathbb{Q}. This is the beginning of an extensive development of “rational homotopy theory,” pioneered independently by Daniel Quillen and Dennis Sullivan. The entire homotopy theory of simply connected rational spaces of finite type over \mathbb{Q} is equivalent to the opposite of the homotopy theory of commutative differential graded \mathbb{Q}-algebras that are simply connected and of finite type. The quest for analogous completely algebraic descriptions of other sectors of homotopy theory has been a major research objective over the past half century.

Bousfield localization at $H\mathbb{F}_p$ is trickier, because the map from S^n to the Moore space $M(\mathbb{Z}_p, n)$ with homology given by the p-adic integers \mathbb{Z}_p in dimension n is an isomorphism in mod p homology. In fact $L_{H\mathbb{F}_p}S^n = M(\mathbb{Z}_p, n)$: so in this case Bousfield localization behaves like a completion.

When the fundamental group is nontrivial, even localization at $H\mathbb{Z}$ can lead to unexpected results. For example, let Σ_∞ be the group of permutations of a countably infinite set that move only finitely many elements. Then

$$L_{H\mathbb{Z}}B\Sigma_\infty \simeq \Omega^\infty S^\infty.$$

a single component of the union of $\Omega^s S^s$’s. This is the “Barratt-Priddy-Quillen theorem.”

For another example, let R be a ring and $GL_\infty(R)$ the increasing union of the groups $GL_n(R)$. The homotopy groups of the space $L_{H\mathbb{Z}}BGL_\infty(R)$ formed Quillen’s first definition of the higher algebraic K-theory of R.

Chapter 8

Characteristic classes, Steenrod operations, and cobordism

71 Chern classes, Stiefel-Whitney classes, and the Leray-Hirsch theorem

A good supply of interesting geometric objects is provided by the theory of principal G-bundles, for a topological group G. For example giving a principal $GL_n(\mathbb{C})$-bundle over X is the same thing as giving a complex n-plane bundle over X.

Just because they are so geometric, principal G-bundles are hard to understand. It’s reasonable to hope to construct invariants of principal G-bundles of some more computable type. A good candidate is a cohomology class.

So let’s fix n an A, and associate, in some way, a class $c(\xi) \in H^n(Y; A)$ to any principal G-bundle ξ over Y. To make this useful, this association should be natural: given $f : X \to Y$ and a principal G-bundle ξ over Y, we can pull ξ back under f to a principal G-bundle $f^*\xi$ over X, and find ourselves with two classes in $H^n(X; A)$: $f^*c(\xi)$ and $c(f^*(\xi))$. Naturality insists that these two classes coincide. This means, incidentally, that $c(\xi)$ depends only on the isomorphism class of ξ. Let $\text{Bun}_G(X)$ denote the set of isomorphism classes of principal G-bundles over X; it is a contravariant functor of X.

We have come to the definition:

Definition 71.1. Let G be a topological group, A an abelian group, and $n \geq 0$. A characteristic class for principal G-bundles (with values in $H^n(\cdot; A)$) is a natural transformation of functors $\text{Top} \to \text{Set}$:

$$c : \text{Bun}_G(X) \to H^n(X; A)$$

Cohomology classes are more formal or algebraic, but relatively easy to work with. $\text{Bun}_G(X)$ is often hard (or impossible) to compute, partly because it has no algebraic structure and partly exactly because its elements are interesting geometrically, while $H^n(X; A)$ is relatively easy to compute but its elements are not very geometric. A characteristic class provides a bridge between these two, and information flows across this bridge in both directions. It gives computable information about certain interesting geometric objects, and provides a geometric interpretation of certain formal or algebraic things.

Example 71.2. The Euler class is the first and most fundamental characteristic class. Let R be a commutative ring. The Euler class takes an R-oriented real n-plane bundle ξ and produces an n-dimensional cohomology class e_ξ, given by the transgression of the class in $H^n(B; H^{n-1}(\mathbb{S}\xi))$.
that evaluates to 1 on every orientation class. Naturality of the Gysin sequence shows that this assignment is natural. There are really only two cases: \(R = \mathbb{Z} \) and \(R = \mathbb{F}_2 \). A \(\mathbb{Z} \)-orientation of a vector bundle is the same thing as an orientation in the usual sense, and the Euler class is a natural transformation

\[
e : \text{Vect}^\mathbb{Z}_n(X) = \text{Bun}_{\text{SO}(n)}(X) \to H^n(X; \mathbb{Z}).
\]

Any vector bundle is canonically \(\mathbb{F}_2 \)-oriented, so the mod 2 Euler class is a natural transformation

\[
e : \text{Vect}_n(X) = \text{Bun}_{\mathbb{O}(n)}(X) \to H^n(X; \mathbb{F}_2).
\]

On CW complexes, \(\text{Bun}_G(__) \) is representable: there is a “universal” principal \(G \)-bundle \(\xi_G : EG \downarrow BG \) such that

\[
[X, BG] \to \text{Bun}_G(X), \quad f \mapsto f^*\xi_G
\]

is a bijection. A characteristic classes \(\text{Bun}_G(__) \to H^n(__; A) \) is the same thing as a class in \(H^n(BG; A) \), or, since cohomology is also representable, as a homotopy class of maps \(BG \to K(A, n) \).

Thus for example set of all integral characteristic classes of complex line bundles is given by \(H^*(BU(1)) = \mathbb{Z}[\xi] \). Is there an analogous classification of characteristic classes for higher dimensional complex bundles? How about real bundles?

Chern classes

We’ll begin with complex vector bundles. Any complex vector bundle (numerable of course) admits a Hermitian metric, well defined up to homotopy. This implies that \(\text{Bun}_{U(n)}(X) \to \text{Bun}_{GL_n(\mathbb{C})}(X) \) is bijective; \(BU(n) \to BGL_n(\mathbb{C}) \) is a homotopy equivalence. I will tend to favor using \(U(n) \) and \(BU(n) \).

A finite dimensional complex vector space \(V \) determines an orientation of the underlying real space: Pick an ordered basis \((e_1, \ldots, e_n) \) for \(V \) over \(\mathbb{C} \), and provide \(V \) with the ordered basis over \(\mathbb{R} \) given by \((e_1, ie_1, \ldots, e_n, ie_n) \). The group \(\text{Aut}_\mathbb{C}(V) \) acts transitively on the space of complex bases. But choosing a basis for \(V \) identifies \(\text{Aut}(V) \) with \(GL_n(\mathbb{C}) \), which is path connected. So the set of oriented real bases obtained in this way are all in the same path component of the set of all oriented real bases, and hence defines an orientation of \(V \).

This construction yields a natural transformation \(\text{Vect}_\mathbb{C}(__) \to \text{Vect}^\mathbb{R}_n(__) \). In particular, the real 2-plane bundle underlying a complex line bundle has a preferred orientation – the determined in each fiber \(\xi_x \) by \((v, iv) \) where \(v \neq 0 \) in \(\xi_x \).

Theorem 71.3 (Chern classes). There is a unique family of characteristic classes for complex vector bundles that assigns to a complex \(n \)-plane bundle \(\xi \) over \(X \) its \(k \)th Chern class \(c^{(n)}_k(\xi) \in H^{2k}(X; \mathbb{Z}) \), \(k \in \mathbb{N} \), such that:

1. \(c^{(n)}_0(\xi) = 1 \).
2. If \(n = 1 \) then \(c^{(1)}_1(\xi) = -e(\xi) \).
3. The Whitney sum formula holds: if \(\xi \) is a \(p \)-plane bundle and \(\eta \) is a \(q \)-plane bundle, then

\[
c^{(n)}_k(\xi \oplus \eta) = \sum_{i+j=k} c^{(p)}_i(\xi) \cup c^{(q)}_j(\eta) \in H^{2k}(X; \mathbb{Z}).
\]
Moreover, if ξ_n is the universal n-plane bundle, then

$$H^*(BU(n); \mathbb{Z}) \cong \mathbb{Z}[c_1^{(n)}, \ldots, c_n^{(n)}]$$

where $c_k^{(n)} = c_k^{(n)}(\xi_n)$.

This result says that all characteristic classes for complex vector bundles are given by polynomials in the Chern classes, and that there are no universal algebraic relations among the Chern classes.

Remark 71.4. Since $BU(n)$ supports the universal n-plane bundle ξ_n, the Chern classes $c_k(\xi_n)$ are themselves universal, pulling back to the Chern classes of any other n-plane bundle. We will denote $c_k^{(n)}(\xi_n) \in H^{2k}(BU(n))$ by $c_k^{(n)}$.

The $(p+q)$-plane bundle $\xi_p \times \xi_q = \text{pr}^*_p \xi_p \oplus \text{pr}^*_q \xi_q$ over $BU(p) \times BU(q)$ is classified by a map $BU(p) \times BU(q) \xrightarrow{\mu} BU(p+q)$. The Whitney sum formula computes the effect of μ on cohomology:

$$\mu^*(c_k^{(n)}) = \sum_{i+j=k} c_i^{(p)} \times c_j^{(q)} \in H^{2k}(BU(p) \times BU(q)),$$

where, you’ll recall, $x \times y = \text{pr}^*_x x \cup \text{pr}^*_y y$.

The Chern classes are “stable” in the following sense. Let ϵ be the trivial one-dimensional complex vector bundle over X and let ξ be an n-dimensional vector bundle over X. What is $c_k^{(n+q)}(\xi \oplus q\epsilon)$?

The trivial bundle is obtained by pulling back under $X \to *$:

$$X \times C^q = E(q\epsilon) \longrightarrow C^q$$

By naturality, we find that $c_j^{(n)}(\epsilon) = 0$ for $j > 0$. The Whitney sum formula therefore implies that

$$c_k^{(n+q)}(\xi \oplus q\epsilon) = c_k^{(n)}(\xi).$$

Thus the Chern class only depends on the “stable equivalence class” of the vector bundle. Also, the map $BU(n-1) \to BU(n)$ classifying $\xi_{n-1} \oplus \epsilon$ sends $c_k^{(n)}$ to $c_k^{(n-1)}$ for $k < n$ and $c_n^{(n)}$ to 0.

For this reason, we will drop the superscript on $c_k^{(n)}(\xi)$, and simply write $c_k(\xi)$.

Grothendieck’s construction

Let $\xi : E \xrightarrow{p} X$ be a complex n-plane bundle. Associated to it is a fiber bundle whose fiber over $x \in X$ is $P(p^{-1}(x))$, the projective space of the vector space given by the fiber of ξ over x. This “projectivization” can also be described using the $GL_n(\mathbb{C})$ action on $\mathbb{C}P^{n-1} = P(\mathbb{C}^n)$ induced from its action on \mathbb{C}^n, and forming the balanced product

$$P(\xi) = P \times_{GL_n(\mathbb{C})} \mathbb{C}P^{n-1}$$

where $P \downarrow X$ is the principalization of ξ.

Let us attempt to compute the cohomology of $P(\xi)$ using the Serre spectral sequence:

$$E_2^{s,t} = H^s(X; H^t(\mathbb{C}P^{n-1})) \Rightarrow H^{s+t}(P(\xi)).$$

We claim that this spectral sequence almost completely determines the cohomology of $P(\xi)$ as a ring. Here is a general theorem that tells us what to look for, and what we get.
Theorem 71.5 (Leray-Hirsch). Let \(\pi : E \to B \) be a fibration. Assume that \(B \) is path connected, so that the fiber is well defined up to homotopy. Call it \(F \), and suppose that \(H^t(F) \) is free of finite rank as a module over a coefficient ring \(R \). Finally, assume that the restriction \(H^*(E) \to H^*(F) \) is surjective. (One says that the fibration is “totally non-homologous to zero.”) Because \(H^t(F) \) is a free \(R \)-module for each \(t \), the surjection \(H^*(E) \to H^*(F) \) admits a splitting; pick one, say \(s : H^*(F) \to H^*(E) \). The projection map renders \(H^*(E) \) a module over \(H^*(B) \). The \(H^*(B) \)-linear extension of \(s \),
\[
\overline{s} : H^*(B) \otimes_R H^*(F) \to H^*(E)
\]
is then an isomorphism of \(H^*(B) \)-modules.

Proof. First we claim that the group \(\pi_1(B) \) acts trivially on the cohomology of \(F = \pi^{-1}(*) \). The map of fibrations
\[
\begin{array}{ccc}
E & \xrightarrow{1} & E \\
\pi \downarrow & & \downarrow \\
B & \longrightarrow & *
\end{array}
\]
shows that the map \(H_*(F) \to H_*(E) \) is equivariant with respect to the group homomorphisms \(\pi_1(B) \to \pi_1(*) \). In cohomology, this says that the restriction \(H^*(E) \to H^*(F) \) has image in the \(\pi_1(X) \)-invariant subgroup (which, by the way, is \(H^0(B; H^*(F)) \)). So the assumption that this map is surjective guarantees that the action of \(\pi_1(B) \) on \(H_*(E) \) is trivial.

Now the edge homomorphism in the Serre spectral sequence
\[
E_2^{s,t} = H^s(B; H^t(F)) \Rightarrow H^{s+t}(E)
\]
is that restriction map. Our assumption that \(H^t(F) \) is free of finite rank implies that
\[
E_2^{s,t} = H^s(B) \otimes_R H^t(F)
\]
as \(R \)-algebras. All the generators lie on either \(t = 0 \) or \(s = 0 \). The ones on the base survive because the differentials hit zero groups. The generators on the fiber survive by assumption. So inductively you find that \(E_r = E_{r+1} \), and hence that the entire spectral sequence collapses at \(E_2 \).

We now define a new filtration on \(H^*(E) \) with the advantage that it is a filtration by \(H^*(B) \)-modules. I call it the “Quillen filtration,” though it is probably older. It’s the increasing filtration given by
\[
F_r H^n(E) = F^{n-r} H^n(E) .
\]
For instance, \(F_0 H^n(E) = F^n H^n(E) = \text{im}(H^n(B) \to H^n(E)) \cong H^n(B) \); or
\[
F_0 H^*(E) = \text{im}(H^*(B) \to H^*(E)) .
\]
On the level of associated graded modules,
\[
\text{gr}_t H^n(E) = F^{n-t} H^n(E)/F^{n-t+1} H^n(E) = E_{\infty}^{n-t,t}
\]
– that is, the \(t \)th row: so
\[
\text{gr}_t H_*(E) = E_{\infty}^{*,t} = E_2^{*,t} = H^*(B) \otimes H^t(F)
\]
Now we can think about the map \(\overline{s} : H^*(B) \otimes H^*(F) \to H^*(E) \). Filter \(H^*(B) \otimes H^*(F) \) by degree in \(H^*(F) \):
\[
F_t(H^*(B) \otimes H^*(F)) = H^*(B) \otimes \bigoplus_{i \leq t} H^i(F) .
\]
The map π respects filtrations and is an isomorphism on associated graded modules: so it is an isomorphism.

Returning now to the example of the projectivization of a vector bundle, $\mathbb{P}(\xi) \downarrow X$, the hypotheses of the Leray-Hirsch Theorem are satisfied except perhaps surjectivity of the restriction to the fiber.

Here’s where the representation of a cohomology class as a characteristic class comes in useful. The cohomology of the fiber over $x \in X$ is generated as an R-module by powers of the Euler class λ_x of the canonical line bundle λ_x over $\mathbb{P}(\xi_x)$. Since $i^*: H^*(E) \to H^*(\mathbb{C}P^{n-1})$ is an R-algebra map, it will suffice to see that e_{λ_x} is in the image of i^*. Since the Euler class is natural, the natural thing to do is to construct a line bundle over the whole of $\mathbb{P}(\xi)$ that restricts to λ_x on ξ_x. And indeed these line bundles over fibers assemble themselves into a tautologous line bundle, call it λ, over $\mathbb{P}(\xi)$.

So we have an expression for $H^*(\mathbb{P}(\xi))$ as a module over $H^*(X)$:

$$H^*(\mathbb{P}(\xi)) = H^*(X)(1, e, e^2, \ldots, e^{n-1}).$$

where $e = e_{\lambda} \in H^2(\mathbb{P}(\xi))$. This gives us some information about the algebra structure in $H^*(\mathbb{P}(\xi))$, but not complete information. What is lacking is an expression for e^n in terms of the basis given by lower powers of e. The Euler class e satisfies a unique monic polynomial equation $c_\xi(e) = 0$, where $c(t)$ is the “Chern polynomial”

$$c_\xi(t) = t^n + c_1 t^{n-1} + \cdots + c_{n-1} t + c_n.$$

with $c_k \in H^{2k}(X)$.

The naturality of this construction guarantees that the c_k’s are natural in the n-plane bundle ξ; they are characteristic classes. We will see that they satisfy the axioms for Chern classes set out above.

The Whitney sum formula has a nice expression in terms of the Chern polynomials:

$$c_\xi(t)c_\eta(t) = c_{\xi \oplus \eta}(t).$$

Stiefel-Whitney classes

Exactly parallel theorems hold for real n-plane bundles, with mod 2 coefficients:

Theorem 71.6 (Stiefel-Whitney classes). There is a unique family of characteristic classes for real vector bundles that assigns to a real n-plane bundle ξ over X its “kth Chern class” $w_k(\xi) \in H^{2k}(X; \mathbb{F}_2)$, $k \in \mathbb{N}$, such that:

1. $w_0(\xi) = 1$.
2. If $n = 1$ then $w_1(\xi) = e(\xi)$.
3. The Whitney sum formula holds: if ξ is a p-plane bundle and η is a q-plane bundle, then

$$w_k(\xi \oplus \eta) = \sum_{i+j=k} w_i(\xi) \cup w_j(\eta) \in H^{2k}(X; \mathbb{Z}).$$

Moreover, if ξ_n is the universal n-plane bundle, then

$$H^*(BO(n); \mathbb{F}_2) \cong \mathbb{F}_2[w_1, \ldots, w_n]$$

where $w_k = w_k(\xi_n)$.
And the same construction produces them:

\[H^*(P(\xi); F_2) = H^*(B; F_2)[e]/(e^n + w_1e^{n-1} + \cdots + w_{n-1} + w_n) \]

for unique elements \(w_i \in H^i(B; F_2) \).

Remark 71.7. The Euler class depends only on the sphere bundle of the vector bundle \(\xi \), but these constructions depend heavily on the existence of an underlying vector bundle. This is a genuine dependence in the case of Chern classes, but it turns out that the Stiefel-Whitney classes depend only on the sphere bundle. We’ll explain this a little while.

Remark 71.8. The triviality of the local coefficient system can be verified in other ways as well. After all, the action of \(\pi_1(X) \) on the fiber \(H^*(\mathbb{C}P^{n-1}) \) is compatible with the action of \(\pi_1(BU(n)) \) on the homology of the fiber of the projectivized universal example. But since \(U(n) \) is connected, its classifying space is simply connected.

You can’t make this argument in the real case, but then you don’t have to since we are looking at an action of \(\pi_1(B) \) on a one-dimensional vector space over \(F_2 \).

Example 71.9. Complex projective space \(\mathbb{C}P^n \) is a complex manifold, and its tangent bundle is thereby endowed with a complex structure. A standard argument shows that \(\tau_{\mathbb{C}P^n} = \text{Hom}(\lambda, \lambda^\perp) \).

Adding \(\epsilon = \text{Hom}(\lambda, \lambda) \), we find

\[\tau_{\mathbb{C}P^n} \oplus \epsilon = (n + 1)\lambda. \]

Thus by the Whitney sum formula

\[c_\tau(t) = c_{\tau \oplus \epsilon}(t) = c_\lambda(t)^{n+1} = (1 - e)^{n+1} \]

and so

\[c_k(\tau_{\mathbb{C}P^n}) = (-1)^k \binom{n+1}{k} e^k. \]

72 \(H^*(BU(n)) \) and the splitting principle

We will now set about computing the cohomology of \(BU(n) \). We will induct on \(n \). Embed \(U(n - 1) \to U(n) \) by

\[A \mapsto \begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix}. \]

This subgroup is exactly the set of matrices fixing the last basis vector \(e_n \) in \(\mathbb{C}^n \). The orbit of \(e_n \) is the subspace \(S^{2n-1} \) of unit vectors in \(\mathbb{C}^n \), which is thus identified with the homogenous space \(U(n)/U(n - 1) \).

Make a choice of \(EU(n) \) – a contractible on which \(U(n) \) acts principally – the Stiefel model \(V_n(\mathbb{C}^\infty) \) for example. The orbit space is then the Grassmann model for \(BU(n) \). The subgroup \(U(n - 1) \) also acts principally on \(EU(n) \), so we get a model for \(BU(n-1) \):

\[BU(n-1) = EU(n)/U(n-1) = (EU(n) \times_{U(n)} U(n))/U(n-1) = EU(n) \times_{U(n)} (U(n)/U(n-1)) = EU(n) \times_{U(n)} S^{2n-1}. \]

Two other perspectives: (1) This establishes \(p : BU(n-1) \to BU(n) \) as the unit sphere bundle in the universal complex \(n \)-plane bundle \(\xi_n \). (2) This map classifies the \(n \)-plane bundle \(\xi_{n-1} \oplus \epsilon \).
Theorem 72.1. There exist unique classes $c_i \in H^{2i}(BU(n))$ for $1 \leq i \leq n$ such that:

1. the map $p_* : H^*(BU(n)) \to H^*(BU(n-1))$ sends

 \[c_i \mapsto \begin{cases}
 c_i & \text{for } i < n \\
 0 & \text{for } i = n.
 \end{cases} \]

2. the Euler class e of the oriented real $2n$-plane bundle underlying the universal complex n-plane bundle ξ_n is related to the top class c_n by the equation

 \[c_n = (-1)^n e \in H^{2n}(BU(n)). \]

Moreover,

\[H^*(BU(n)) = \mathbb{Z}[c_1, \ldots, c_n]. \]

We postpone the verification that the classes we constructed in the last lecture coincide with these.

Proof. We will study the Gysin sequence of the spherical fibration

\[S^{2n-1} \to BU(n-1) \overset{p}{\to} BU(n). \]

For a general oriented spherical fibration

\[S^{2n-1} \to E \overset{p}{\to} B \]

it takes the form

\[\cdots \to H^{q-1}(E) \overset{p^*}{\to} H^{q-2n}(B) \overset{e}{\to} H^q(B) \overset{p^*}{\to} H^q(E) \overset{p^*}{\to} H^{q-2n+1}(B) \to \cdots. \]

where $e \in H^{2n}(B)$ is the Euler class.

Suppose we know that $H^*(E)$ vanishes in odd dimensions. Then either the source or the target of each instance of the Umkler map p_* is zero, so we receive a short exact sequence

\[0 \to H^{q-2n}(B) \overset{e}{\to} H^q(B) \overset{p^*}{\to} H^q(E) \to 0. \]

This shows:

- $e \in H^{2n}(B)$ is a non-zero-divisor;
- p^* is surjective and induces an isomorphism $H^*(B)/(e) \to H^*(E)$;
- p^* is an isomorphism in dimensions less than $2n$;
- $H^q(B) = 0$ for q odd.
The last is clear for $q < 2n$, but feeding this into the leftmost term we find by induction that $H^q(B) = 0$ for all odd q.

Now let's suppose in addition that $H^*(E)$ is a polynomial algebra. Lift the generators to elements in $H^*(B)$. (If they all happen to lie in dimension less than $2n$, these lifts are unique.) Extending to a map of algebras gives a map $H^*(E) \to H^*(B)$ Further adjoining e gives us an algebra map

$$\pi \in H^*(E)[e] \to H^*(B)$$

which when composed with p^* kills e and maps $H^*(E)$ by the identity. We claim this map is an isomorphism. To see this, filter both sides by powers of e. Modulo e this map is an isomorphism from what we observed above. On both sides, multiplication by e induces an isomorphism from one associated quotient to the next, so the map induces an isomorphism on associated graded modules. The five-lemma shows that it induces an isomorphism mod e^k for any k. But the powers of e increase in dimension, so we obtain an isomorphism in each dimension.

These observations provide the inductive step. All that remains is to start the induction. We can, if we like, use what we know about $H^*(\mathbb{CP}^\infty)$ and start with $n = 2$, though starting at $n = 1$ makes sense too, and provides another perspective on the computation of $H^*(\mathbb{CP}^\infty)$.

We define $c_n \in H^{2n}(BU(n))$ to be $(-1)^n e$, also a generator. The choice of sign will make it agree with our earlier definition.

Once we verify that these classes coincide with the classes constructed in the last lecture, we will have available an important interpretation of the top Chern class: up to sign it is the Euler class of the underlying oriented real vector bundle.

The splitting principle

A wonderful fact about Chern classes is that it suffices to check relations among them on sums of line bundles. This is captured by the following theorem.

Theorem 72.2 (Splitting principle). Let $\xi : E \to X$ be a complex n-plane bundle. There exists a map $f : \text{Fl}(\xi) \to X$ such that:

1. $f^* \xi \cong \lambda_1 \oplus \cdots \oplus \lambda_n$, where the λ_i are line bundles on $\text{Fl}(\xi)$, and
2. the map $f^* : H^*(X) \to H^*(\text{Fl}(\xi))$ is monic.

Proof. We have already done the hard work, in our study of the projectivization $\pi : P(\xi) \to X$. We found that the Serre spectral sequence collapses at E^2. This implies that the projection map induces a monomorphism in cohomology. We used the “tautologous” line bundle λ on $P(\xi)$. The key additional point about this construction is that there is a canonical embedding $\lambda \hookrightarrow \pi^* \xi$ of vector bundles over $P(\xi)$. A vector in $E(\lambda)$ is $(v \in L \subseteq \xi_x)$ (where L is a line in the fiber ξ_x). A vector in the pullback $\pi^* \xi$ is $(v \in \xi_x, L \subseteq \xi_x)$.

By picking a metric on ξ we see that when pulled back to $P(\xi)$ a line bundle splits off. Now just induct (using our important standing assumption that vector bundles have finite dimensional fibers).

It’s worth being more explicit about what this “flag bundle” $\text{Fl}(\xi)$ is. The complement of λ in $\pi^* \xi$ over $P(\xi)$ is the space of vectors of the form $(v \in L^+, L \subseteq \xi_x)$. If we iterated this construction, we will get, in the end, the space of ordered orthogonal decompositions of fibers into lines. This can be built by a balanced product. Let Fl_n be the space of “orthogonal flags,” that is,
decompositions of \mathbb{C}^n into an ordered sequence of n 1-dimensional subspaces. There is an evident action of $GL_n(\mathbb{C})$ on this space, and

$$\text{Fl}(\xi) = P \times_{U(n)} \text{Fl}_n$$

where $P \downarrow X$ is the principal $U(n)$ bundle associated to ξ (and a choice of Hermitian metric).

This action is transitive, and the isotropy subgroup of $(\mathbb{C}e_1, \ldots, e_n)$ is the subgroup of diagonal unitary matrices,

$$T^n = (S^1)^n \subseteq U(n).$$

So

$$\text{Fl}_n = U(n)/T^n.$$

In the universal case, over $BU(n)$,

$$\text{Fl}(\xi_n) = EU(n) \times_{U(n)} (U(n)/T^n) = EU(n)/T^n = BT^n$$

and this is just a product of n copies of $\mathbb{C}P^\infty$. So we have discovered that

$$H^*(BU(n)) \hookrightarrow H^*(BT^n) = \mathbb{Z}[t_1, \cdots, t_n]$$

where t_i is the Euler class of the line bundle $pr^*_i \lambda$, the pull back of the universal line bundle under the projection onto the ith factor of $\mathbb{C}P^\infty$. What is the image?

Well, the symmetric group Σ_n sits inside the unitary group as matrices with a single 1 in each column. The maximal torus T^n is sent to itself by conjugation by a permutation matrix, which has the effect of reordering the diagonal entries. In cohomology, the action permutes the generators. These permutation matrices also act by conjugation on all of $U(n)$, but there they act trivially on $H^*(BU(n))$ since any matrix is connected to the identity matrix by a path in $U(n)$. The consequence is that the image of $H^*(BU(n))$ lies in the symmetric invariants:

$$H^*(BU(n)) \hookrightarrow H^* (BT^n)^{\Sigma_n}.$$

These symmetric invariants are well-studied in algebra! Define the elementary symmetric polynomials σ_i as the coefficients in the product of $t - t_i$’s:

$$\prod_{i=1}^n (t - t_i) = \sum_{j=0}^n \sigma_j t^{n-j}$$

The theorem from algebra is that the elementary symmetric polynomials are algebraically independent and generate the ring of symmetric invariants –

$$R[t_1, \ldots, t_n]^{\Sigma_n} = R[\sigma_1, \ldots, \sigma_n]$$

– over any coefficient ring R.

For example,

$$\sigma_1 = -\sum_{j=1}^n t_j \quad , \quad \sigma_n = (-1)^n \prod_{j=1}^n t_j.$$

If we give each t_i a grading of 2, the elementary symmetric polynomials are homogeneous and $|\sigma_i| = 2i$.

So $H^*(BU(n))$ embeds into a graded algebra of exactly the same size. This does not yet show that the embedding is surjective! But because $H^*(BU(n))$ is torsion free, exactly the same argument shows that $H^*(BU(n); F_p) \hookrightarrow H^*(BT^n; F_p)$ for any prime p. This implies that no prime can divide the index of the image of $H^q(BU(n))$ in $H^q(BT^n)$ for any q. We have proven most of:
Theorem 72.3. The inclusion $T^n \hookrightarrow U(n)$ induces an isomorphism

$$H^*(BU(n)) \cong H^*(BT^n)^{\Sigma_n}.$$

Under this identification, the classes c_i constructed in Theorem 2 map to the elementary symmetric functions.

In the context of Chern classes, the elements t_i are called “Chern roots.” The extension $H^*(BU(n)) \hookrightarrow H^*(BT^n)$ adjoins the roots of the Chern polynomial

$$c(t) = t^n + c_1 t^{n-1} + \cdots + c_n$$

Remark 72.4. Everything we have done admits a version for real vector bundles, with mod 2 coefficients. One point deserves some special attention: the argument we gave for why conjugation by a permutation induces the identity on $H^*(BU(n))$ fails because the group $O(n)$ is not path-connected. However, there is a better and more general argument available.

Lemma 72.5. Let G be any topological group and $g \in G$. The self-map of BG induced by conjugation by g is homotopic to the identity.

Proof. The proof is an easy exercise using the material from Lecture 59. We regard G as a topological category with one object. Conjugation induces an endofunctor c_g. A natural transformation from the identity to c_g is given by the morphism g:

\[
\begin{array}{ccc}
* & \xrightarrow{g} & *\\
h \downarrow & & \downarrow c_g(h) = ghg^{-1} \\
* & \xrightarrow{g} & * \\
\end{array}
\]

And natural transformations induce homotopies. \qed

Of course the map $c_g : BG \to BG$ is not homotopic to the identity through basepoint preserving homotopies! On $\pi_1(BG) = \pi_0(G)$ it induces conjugation by $[g] \in \pi_0(G)$.

Bibliography

http://math.mit.edu/~hrm/papers/ss.pdf

