Problem 1. Let \(n \geq 1 \) and let \(T\mathbb{C}P^n \) be the tangent bundle of \(\mathbb{C}P^n \). Recall from Problem Set 4 that \(T\mathbb{C}P^n \cong \gamma \vee \gamma' \), where \(\gamma \) is the tautological line bundle on \(\mathbb{C}P^n \), \(\gamma' \) is its dual, and \(\gamma' \) is defined by the short exact sequence

\[
0 \to \gamma \to \mathbb{C}^{n+1} \to \gamma' \to 0.
\]

(a) Show that \(c_1(\gamma) \in H^2(\mathbb{C}P^n) \) is a generator of the cohomology ring \(H^*(\mathbb{C}P^n) \).

(b) Define an isomorphism \(T\mathbb{C}P^n \oplus \mathbb{C} \cong (\gamma')^{n+1} \), and deduce that

\[
c_i(T\mathbb{C}P^n) = (-1)^i \binom{n+1}{i} c_1(\gamma)^i.
\]

The same arguments show that \(w_1(\gamma) \) is the generator of \(H^*(\mathbb{R}P^n, \mathbb{Z}/2) \) and that

\[
w_i(T\mathbb{R}P^n) = \binom{n+1}{i} w_1(\gamma)^i.
\]

Problem 2. Recall from Problem Set 4 that \(c_1(L \otimes M) = c_1(L) + c_1(M) \) for complex line bundles \(L \) and \(M \). Combining this with the Cartan formula and the splitting principle, it is possible to express the Chern classes of any tensor product \(V \otimes W \) of complex vector bundles in terms of the Chern classes of \(V \) and \(W \).

(a) Do this explicitly when \(V \) and \(W \) have rank at most 2.

(b) Compute the Chern classes of the tangent bundle of \(\text{Gr}_2(\mathbb{C}^4) \) in terms of the Chern classes of the tautological bundle.

Problem 3.

(a) Let \(X \) be a CW complex and \(V \) a vector bundle over \(X \) with a nonvanishing global section. Show that the zero section \(X \to XV \) is nullhomotopic. Assuming \(V \) is \(R \)-orientable, deduce that \(e(V) = 0 \) in \(H^*(X, R) \).

(b) Show that every continuous vector field on \(\mathbb{C}P^n, \mathbb{R}P^{2n}, \) or \(S^{2n} \) has a zero.

Problem 4. (Fundamental classes) Throughout this problem, cohomology is taken with coefficients in \(\mathbb{Z}/2 \), for simplicity. Let \(M \) be smooth manifold and \(i: N \hookrightarrow M \) a compact submanifold of codimension \(c \) with normal bundle \(\nu \). Recall that \(\nu \) is defined by the short exact sequence

\[
0 \to TN \xrightarrow{T_i} i^*(TM) \to \nu \to 0.
\]
The tubular neighborhood theorem states that there exists an open neighborhood U of N in M and a diffeomorphism $\phi: \nu \to U$ such that \bar{U} is compact and the triangle

\[
\begin{array}{ccc}
\nu & \xrightarrow{\phi} & U \\
\uparrow zero & & \\
N & \xrightarrow{\phi} & U
\end{array}
\]

commutes. In particular, we can identify $\bar{U}/\partial U$ with the Thom space N^ν. The map

$M_+ \to M/(M \setminus U) \cong \bar{U}/\partial U \cong N^\nu$

is called the Pontryagin–Thom collapse; up to homotopy, it does not depend on the choices of U and ϕ. On mod 2 cohomology, the Pontryagin–Thom collapse induces

$$i_! : H^*(N) \cong \tilde{H}^{*+c}(N^\nu) \to \tilde{H}^{*+c}(M_+) \cong H^{*+c}(M),$$

where the first isomorphism is the Thom isomorphism. This map is variously called the transfer map, or the Gysin map, or the Umkehr map. Define the fundamental class of N by

$$[N] = i_!(1) \in H^c(M).$$

(a) Assume that M is compact connected of dimension d and let $*$ be a point in M. Show that $[*]$ is the generator of $H^d(M) = \mathbb{Z}/2$.

(b) Let N_1 and N_2 be compact submanifolds of M intersecting transversely. This means that, for every $x \in N_1 \cap N_2$, T_xN_1 and T_xN_2 span T_xM. By the implicit function theorem, $N_1 \cap N_2$ is a submanifold of M with $T_x(N_1 \cap N_2) = T_xN_1 \cap T_xN_2$. Show that

$$[N_1 \cap N_2] = [N_1] \cup [N_2] \in H^*(M).$$

Problem 5.

(a) Let M be a closed smooth n-manifold and ν an R-orientable vector bundle of rank k on M. Show that the Euler class $e(\nu) \in H^k(M, R)$ is an obstruction to the existence of an embedding $M \hookrightarrow \mathbb{R}^{n+k}$ with normal bundle ν (i.e., if $e(\nu) \neq 0$, such an embedding does not exist).

Hint: Use the tubular neighborhood theorem.

(b) Suppose that $\mathbb{R}P^n$ embeds in \mathbb{R}^{n+1}. Show that $n + 1$ is a power of 2. (In fact, $n = 0$ or $n = 1$, but this is trickier to prove.)

Problem 6.

(a) The Stiefel–Whitney class w_i, viewed as a characteristic class for complex vector bundles of rank n, must be a polynomial in the Chern classes c_1, \ldots, c_n modulo 2. What is this polynomial?

Hint: You already know the answer for the top Stiefel–Whitney class: $w_{2n} = e = c_n$.

(b) Define a new characteristic class r_i for real vector bundles of rank n by $r_i(V) = c_i(V \otimes_R \mathbb{C})$. Then r_i modulo 2 must be a polynomial in the Stiefel–Whitney classes w_1, \ldots, w_n. What is this polynomial?

The characteristic class $p_i = (-1)^i r_{2i}$ is called the ith Pontryagin class.