Lie Group Analysis at the Mittag Lefller Institute.

I am deeply grateful for the invitation to participate in this festive occasion. It has been most
gratifying to refresh my memories from the years 1970-1971 and Fall 1995.

According to Stubhaug’s splendid book on Sophus Lie, he travelled to Uppsala in 1881 and met
Mittag Leffler in Stockholm. Here Lie suggested the start of a Nordic Mathematical Periodical with
Mittag-Leffler as editor. ML was in favor of the idea but set his aims higher, namely an that of
an International Journal which shortly after became Acta Mathematica. Lie considered ML 1000
times more of a diplomat than himself as regards obtaining moral and financial support: “It has
more clout when you write”.

I like to think that if ML and Lie were to suggest a topic for a year’s concentration at the
Institute they might have considered “Analysis on Lie group” a suitable topic. This was in fact the
topic for 1970-1971 and again 25 years later 1995-1996.

While several topics in analysis appeared during 1970-1971, for example Feffermann’s approach
to Carleson’s L? convergence theorem and Gundy’s one semester lectures on probabilistic analysis,
Analysis on Lie Groups was the main topic. I gave lectures on it during the whole year and several
experts, Kordnyi, Eymard, Weiss, Sherman, Guzman and others came for short visits. Personally
this was a very happy and eventful year for me. I received many rewarding invitations for lectures
various places in Europe but managed not to have these trips interfere with my usual activity at
the Institute. In those days the members were younger and for the most part stayed here for the
whole year. Four of these, M. Flensted-Jensen, L. Lindahl, A. Hole and A. Melin were just starting
research in this area and I gave them some research problems on topics related to my lectures.
They were all very dedicated, were brimming with energy combined with ravenous appetite for
mathematics. They assimilated the basic Lie group theory very quickly and at the end of the year
each of them produced a respectable research paper published either in Arkiv for Matematik or
Mathematica Scandinavica. Let me indicate the main topics where I suggested to them research
problems.

1. Spherical Function Theory. Here the basic results were obtained by Harish Chandra
during 1958-1966. These can be described very concretely in the case when the symmetric space
X = G/K has rank one or equivalently, X is a two-point homogeneous space. The radial eigen-
functions ¢y of the Laplacian L can be parametrized by X in C and one considers the spherical .
transform

Fo) = / F(F)p-a(r)A(r)

where A(r) = the surface area of a sphere of radius r. Actually
A(r) = sinh? rsinh? 2r
the constants p and q being certain integers which characterize X.

The radial part of the Laplacian has the form
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The main result is the Plancherel formula
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where the density §(\) has a very interesting interpretation. He also proved the Schwartz type
theorem $(RT) = §(RT).

Later I proved the analog of the Paley Wiener type theorem D(R*) = 3((C) describing the
image of the space D under the spherical transform as the space of even holomorphic functions of
exponential type.

Harish Chandra had indicated to me that the Plancherel formula (which he proved group
theoretically for G/K of all ranks ) could perhaps in this rank one case be derived from Weyl’s
thesis work on singular second order operators. I was not sure but suggested to Flensted-Jensen to
try to carry out such a proof. He managed to do so and in the process proved a more general result
in that in the formula for A(r) the two constants p and ¢ can be any positive real numbers. In this
generality he proved both the Schwartz theorem and the Paley-Wiener theorem. This required new
methods since the group theory was no longer present. This also led to an extensive collaboration
with Koornwinder (who was here for the whole year) on the Jacobi transform which also is a
generalization of the rank one spherical transform.

This was further generalized substantially by Chebli who allowed much more general A(r)
but also added a potential g(r) to L. He proved the Plancherel formula as well as the Paley Wiener
theorem in this greater generality. Thus one can say that the spherical function theory in the
simplest case of rank one has led to a new chapter in the theory of Sturm-Liouville operators.

For X of higher rank a related and quite explosive development took place primarily in
Holland through the work of Beerends, Heckman and Opdam and others. This has become a long
term project of theirs. Again while the work is motivated by the group theory, at a certain stage
the group disappears and the subject becomes a topic in several complex variables.

II. Harmonic Functions. Consider again the symmetric space X = G/K and the differential
operators D on X which are invariant under the action of G and have no zero order term. A ‘
function v on X is said to be harmonic if Du = 0 for all D.

Godement proved in 1952 that these functions are characterized by a certain mean value
property. Furstenberg and Karpelevic then proved a Poisson integral formula

e / P(z,b)F(b)db  F e L°(B)
‘ "B

for bounded harmonic functions, B being a certain orbit of K and P(x,b) a certain explicit Poisson
kernel. They also proved that a bounded solution of Lu = 0 also satifies Du = 0 for all D.

The next problem ‘was to establish the analog of the Fatou theorem. This was done by
Koranyi and myself in 1967 and can be stated:

If u is a bounded solution of Lu = 0 then for almost all geodesics a(t) from o the limit

lim u(a(t)) exists.
t—oo
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This raised many questions of analogs and generalizations: In the Poisson formula

i = / P(z,b)F(b) db
B

the bounded u correspond to F' € L®(B). For F € LP(B), u is still harmonic. Is Fatou’s theorem
still valid? I raised this question with Lindahl and he made substantial progress on it. He showed
that for a certain p, this holds for all F' € LP for p > p,. But there are also other “boundaries”
associated with X besides the Furstenberg boundary B and Poisson integral representations for
these and he proved similar results for these too. This was the substance of his Uppsala thesis.

II1. Eigenspace Representations. Consider the Euclidean space R™ and the corresponding
group M(n) of isometries. Let L denote the Laplacian and for each A in C consider the eigenspace

Ex = {f € €°[R")|Lf = 3*f}.

Since L is invariant under M(n) one has a natural representation Ty of M(n) on E) .When is it
irreducible? It turns out that it is irreducible if and only if A # 0.

For the sphere S each eigenspace of the Laplacian on S is irreducible under the rotation group
of the sphere. This comes from theory for spherical harmonics. For the non-Euclidean disk with
the Poincaré metric
dz? + dy?
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the Laplacian is given by L = (1 — 22 — y?)(1 — 2% — ¢?) (-6%25 T aa_;z)
For each A € C consider the eigenspace

Ex={feC®D)Lf =-(N+1)f}

and the corresponding representation T3 of the isometry group SU(1,1) of D on the eigenspace
E. Here it turns out that

T is irreducible if and only if i\ + 1 ¢ 27Z.

For a symmetric space X above of rank one there is a certain Gamma function I'x associated to
X , namely ' :

)

Tx(\) =T (3 (3p+1+4\))T (3 (Ap+q+iN))
and I had recently proved that

Ty, is irreducible if and only if

1
—FX()\) #0.

The eigenspace representation problem arises for every homogeneous space G/H of Lie groups.
Let D(G/H) denote the algebra of differential operators on G/H which are invariant under the
action of G. The most interesting case is when D(G/H) is commutative and this happens for
example if G/H is symmetric. Given a homomorphism x of D(G/H) into C consider the joint
eigenspace
E{f € C®(X)|Df =x(D)f forall DeD(G/H)

and the representation Ty of G on E,. Again the question of irreducibility arises. Also: what are
the representations that arise in this way?




Since Arne Hole had some experince with Kirillov’s theory of representations of nilpotent
Lie groups I suggested to him the eigenspace problem for G/H when G and H are nilpotent. He
obtained some fairly definitive results (published in Math. Scand.) on this problem which then
form a natural complement to Kirillov’s theory. Further work in this direction was later done by
Stetkaer and Jacobsen in Aarhus, even with extensions to some solvable groups.

IV. Invariant differential and pseudo differential operators on G and G/K.
Invariant differential operators are central to analysis on G and the associated symmetric
space G/K. For G we consider invariance under both left and right translations on G and for G/K
we consider invariance under the action zK — gzK. Many questions arise as analogs to the theory
of constant coefficient differential operators on R™. One such result is that for each invariant D on
G/K the surjectivity (that is global solvability)

D C®(G/K) = C°(G/K)

holds. I worked on proving this during the M-L stay but did not find the complete proof until
1972. The analog remains valid for several spaces instead of C*°G /K) but it has not yet been
proved for the space of all distributions. For each invariant D on G one has local solvability and
for the Laplace-Beltrami operator even global solvability.

Because of Melin’s background in pseudo-differential operators I suggested to him the prob-
lem of describing the invariant pseudo-differential operators on G. This had actually been solved
by Stetkaer in his MIT thesis. It implies that such an operator is the sum of an invariant diff-
ferential operator and an operator with a smooth kernel. The same conclusion was derived from
the requirement of pseudo-local property. Melin clarified the situation by showing that the two
requirements are indeed equivalent by proving the following result.

Definition. A Lie group G has the property (*) if each conjugacy-invariant @ function on G— (e)
is the restriction of a C* function on G.

Theorem. G has property (x) if and only if the adjoint group Ad (G) is not compact.

In the process Melin proved the following very concrete result on a finite-dimensional vector
space V. :

Theorem. Let N _# 0 be a nilpotent linear transformation on V. Then every C*° function on '
V — (0) which is conjugacy invariant under the group exp(tN) can be extended to C*(V).

V. Fourier transforms on symmetric spaces.
On the hyperbolic space I have defined a natural Fourier transform as follows:

\
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I. then defines the Fourier transform as follows:

FOb) = /f(z)e(_i’\H(Z’b)) dz .
D

It turns out that there is an inversion formula

f(z) = FO,b)eMHDED 5(0) dX db
/]

as well as a Plancherel formula.

/lf(z)|2dz=//]f(,\,b)F(s(A) d\db.
D
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There is also a Paley Wiener Theorem describing explicitly the image of the space €°(X)
under this Fourier transform. A similar Schwartz type theorem holds describing the image of the
L? Schwartz space under the Fourier transform.

There is also an Integral Representation of all the eigenfunctions u of the Laplacian L

e / ehl=b) 4T (p)

B

where p € C is arbitrary and T is an arbitrary analytic functional (hyperfunction) on B. (Gener-
alization of a distribution).

By the end of the seventies all these definitions and results had been extended to Riemannian
Symmetric Spaces.

The next step would be to find analogs for non-Riemannian symmetric spaces G/H. Some
~examples had been developed in considerable detail but one of the first general results was the
construction of the so-called discrete series for G/H, started by Flensted-Jensen followed by an
important supplement by Oshima and Vogan. Gradually a definition of a Fourier transform emerged
through work of Gestur Olafsson, E. van den Ban, Oshima and Schlichtkrull as well as a Plancherel
formula. The main project of the 1995-1996 year organized by Flensted Jensen, P. Sjogren (Fall)
and Gestur Olafsson and B. Orsted (Spring) was a development of this Fourier transform theory, .
particularly of the proof of the Paley Wiener theorem for this new Fourier transform. This project
was led by van den Ban and Schlichtkrull who gave alternate lectures on the subject. The other
principal contributors, Oshima and Delorme were also here for extended visits. Now the principal
results, the Plancherel formula and the Paley Wiener theorem are finally in print with full proofs.

Thinking back one sees that the stimulating conditions at the Mittag Leffler Institute have
played a prominent role in this development of Analysis on Lie Groups and Symmetric Spaces.
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