Cobordism and the Pontryagin-Thom Construction

Rune Haugseng

MIT

18 March 2011
Exercise

(i) Classify all compact n-manifolds up to diffeomorphism.

(ii) Give computable invariants that distinguish all diffeomorphism classes of compact n-manifolds.
Classifying Manifolds

Exercise

(i) Classify all compact n-manifolds up to diffeomorphism.
(ii) Give computable invariants that distinguish all diffeomorphism classes of compact n-manifolds.

This is hard.
Exercise

(i) Classify all compact n-manifolds up to diffeomorphism.

(ii) Give computable invariants that distinguish all diffeomorphism classes of compact n-manifolds.

This is hard.
In fact, (ii) is impossible.
Classifying Manifolds

Exercise

(i) Classify all compact n-manifolds up to diffeomorphism.
(ii) Give computable invariants that distinguish all diffeomorphism classes of compact n-manifolds.

This is hard.
In fact, (ii) is impossible.

Idea: Replace diffeomorphism with simpler equivalence relation.
Exercise

(i) Classify all compact n-manifolds up to cobordism.
(ii) Give computable invariants that distinguish all cobordism classes of compact n-manifolds.
Exercise

(i) Classify all compact n-manifolds up to cobordism.
(ii) Give computable invariants that distinguish all cobordism classes of compact n-manifolds.

Surprisingly, this can be done.
Exercise

(i) Classify all compact n-manifolds up to cobordism.
(ii) Give computable invariants that distinguish all cobordism classes of compact n-manifolds.

Surprisingly, this can be done.

Goal: Explain how (i) is equivalent to computing some homotopy groups (via the Pontryagin-Thom construction).
Exercise

(i) Classify all compact n-manifolds up to cobordism.
(ii) Give computable invariants that distinguish all cobordism classes of compact n-manifolds.

Surprisingly, this can be done.

Goal: Explain how (i) is equivalent to computing some homotopy groups (via the *Pontryagin-Thom construction*). Thom did this calculation using methods of homotopy theory unrelated to manifolds.
A **cobordism** between compact n-manifolds M and N is an $(n + 1)$-manifold B with

$$\partial B \cong M \sqcup N.$$

M and N are **cobordant** if \exists a cobordism between them.
What is Cobordism?

A **cobordism** between compact n-manifolds M and N is an $(n+1)$-manifold B with

$$\partial B \cong M \amalg N.$$

M and N are **cobordant** if \exists a cobordism between them. This is an equivalence relation:
A **cobordism** between compact n-manifolds M and N is an $(n+1)$-manifold B with

$$\partial B \cong M \sqcup N.$$

M and N are **cobordant** if \exists a cobordism between them. This is an equivalence relation:

- Reflexive: $M \times I$

Cobordism and the Pontryagin-Thom Construction
What is Cobordism?

A **cobordism** between compact n-manifolds M and N is an $(n + 1)$-manifold B with

\[\partial B \simeq M \sqcup N. \]

M and N are **cobordant** if \exists a cobordism between them. This is an equivalence relation:

- Reflexive: $M \times I$
- Symmetric: obvious
A **cobordism** between compact n-manifolds M and N is an $(n+1)$-manifold B with

$$\partial B \cong M \sqcup N.$$

M and N are **cobordant** if \exists a cobordism between them. This is an equivalence relation:

- **Reflexive**: $M \times I$
- **Symmetric**: obvious
- **Transitive**: use analysis to smoothly glue cobordisms
The Cobordism Ring

Definition

\[\mathcal{N}_n := \text{set of cobordism classes of compact } n\text{-manifolds} \]
The Cobordism Ring

Definition

$\mathcal{M}_n := \text{set of cobordism classes of compact } n\text{-manifolds}$

- Disjoint union \sqcup makes this an abelian group.
The Cobordism Ring

Definition

\[\mathcal{M}_n := \text{set of cobordism classes of compact } n\text{-manifolds} \]

- Disjoint union \(\amalg \) makes this an abelian group.
- Unit: \([\emptyset]\)
The Cobordism Ring

Definition

\(\mathcal{M}_n \) := set of cobordism classes of compact \(n \)-manifolds

- Disjoint union \(\sqcup \) makes this an abelian group.
- Unit: \([\emptyset] \)
- Well-defined:

\[
\partial A \cong M \sqcup M' \\
\partial B \cong N \sqcup N'
\]
The Cobordism Ring

Definition

\(\mathcal{M}_n \) := set of cobordism classes of compact \(n \)-manifolds

- Disjoint union \(\sqcup \) makes this an abelian group.
- Unit: \([\emptyset] \)
- Well-defined:

\[
\partial A \cong M \sqcup M'
\]

\[
\partial B \cong N \sqcup N'
\]

\[
\partial(A \sqcup B) \cong (M \sqcup N) \sqcup (M' \sqcup N')
\]

Everything has order 2:

\[
\partial((M \times I)) \cong (M \sqcup M) \sqcup [\emptyset].
\]
The Cobordism Ring

Definition

\(\mathcal{M}_n := \text{set of cobordism classes of compact } n\text{-manifolds} \)

- Disjoint union \(\amalg \) makes this an abelian group.
- Unit: \([\emptyset] \)
- Well-defined:

\[
\partial A \cong M \amalg M' \\
\partial B \cong N \amalg N'
\]

\[
\partial(A \amalg B) \cong (M \amalg N) \amalg (M' \amalg N')
\]

- Everything has order 2:

\[
\partial(M \times I) \cong (M \amalg M) \amalg \emptyset.
\]
The Cobordism Ring

Definition

\[\mathcal{N}_* := \text{graded abelian group of cobordism classes of compact manifolds} \]
Definition

$\mathcal{M}_* := \text{graded abelian group of cobordism classes of compact manifolds}$

- Cartesian product \times makes \mathcal{M}_* a graded ring.
The Cobordism Ring

Definition

\[N_* := \text{graded abelian group of cobordism classes of compact manifolds} \]

- Cartesian product \(\times \) makes \(N_* \) a graded ring.
- Well-defined:

 \[
 \partial A \cong M \amalg M' \\
 \partial B \cong N \amalg N'
 \]
The Cobordism Ring

Definition

\[\mathcal{N}_* := \text{graded abelian group of cobordism classes of compact manifolds} \]

- Cartesian product \(\times \) makes \(\mathcal{N}_* \) a graded ring.
- Well-defined:

\[
\partial A \cong M \amalg M' \\
\partial B \cong N \amalg N'
\]

\[
\partial (A \times N) \cong (M \times N) \amalg (M' \times N)
\]
Definition

$\mathcal{N}_* := \text{graded abelian group of cobordism classes of compact manifolds}$

- Cartesian product \times makes \mathcal{N}_* a graded ring.
- Well-defined:

 \begin{align*}
 \partial A & \cong M \amalg M' \\
 \partial B & \cong N \amalg N'
 \end{align*}

 $\partial (A \times N) \cong (M \times N) \amalg (M' \times N)$

 $\partial (M' \times B) \cong (M' \times N) \amalg (M' \times N')$
X a space.

A **vector bundle** on X is:

\[p : V \to X \quad \text{(continuous, surjective)} \]

$p^{-1}(x)$ is a vector space $\forall x \in X$.

Each $x \in X$ has a neighbourhood U with p the same as $U \times \mathbb{R}^k \to U$.

Trivial bundle: $\mathbb{R}^k : \mathbb{R}^k \times X \to X$.

A smooth manifold M has a **tangent bundle** TM.

Rune Haugseng
Cobordism and the Pontryagin-Thom Construction
A vector bundle on X is:

- $p: V \rightarrow X$ (continuous, surjective)
A vector bundle on X is:

- $p: V \to X$ (continuous, surjective)
- $p^{-1}(x)$ is a vector space $\forall x \in X$
A space.

A **vector bundle** on X is:

- $p: V \to X$ (continuous, surjective)
- $p^{-1}(x)$ is a vector space $\forall x \in X$
- Each $x \in X$ has neighbourhood U with p same as $U \times \mathbb{R}^k \to U$
A vector bundle on \(X \) is:

- \(p: V \to X \) (continuous, surjective)
- \(p^{-1}(x) \) is a vector space \(\forall x \in X \)
- Each \(x \in X \) has neighbourhood \(U \) with \(p \) same as \(U \times \mathbb{R}^k \to U \)

Trivial bundle: \(\mathbb{R}^k := \mathbb{R}^k \times X \to X \)
A vector bundle on X is:

- $p: V \rightarrow X$ (continuous, surjective)
- $p^{-1}(x)$ is a vector space $\forall x \in X$
- Each $x \in X$ has neighbourhood U with p same as $U \times \mathbb{R}^k \rightarrow U$

Trivial bundle: $\mathbb{R}^k := \mathbb{R}^k \times X \rightarrow X$

A smooth manifold M has a tangent bundle TM.

X a space.
If X is nice (paracompact), every bundle has a metric,
If X is nice (paracompact), every bundle has a metric, i.e. a continuously varying family of inner products on each fibre.
Thom Spaces

If X is nice (paracompact), every bundle has a metric, i.e. a continuously varying family of inner products on each fibre.

Definition

- $\mathbb{D}(V) := \text{subspace with norm} \leq 1$
- $\mathbb{S}(V) := \text{subspace with norm} = 1$
- Thom space $T(V) := \mathbb{D}(V)/\mathbb{S}(V)$
If X is nice (paracompact), every bundle has a metric, i.e. a continuously varying family of inner products on each fibre.

Definition

- $\mathbb{D}(V) := \text{subspace with norm } \leq 1$
- $\mathbb{S}(V) := \text{subspace with norm } = 1$
- Thom space $T(V) := \mathbb{D}(V)/\mathbb{S}(V)$

If X compact, same as $V^+ := \text{one-point compactification.}$
If X is nice (paracompact), every bundle has a metric, i.e. a continuously varying family of inner products on each fibre.

Definition

- $\mathbb{D}(V) := \text{subspace with norm } \leq 1$
- $\mathbb{S}(V) := \text{subspace with norm } = 1$
- Thom space $T(V) := \mathbb{D}(V)/\mathbb{S}(V)$

If X compact, same as $V^+ := \text{one-point compactification}$.

Point “at infinity” in $T(V)$ from $\mathbb{S}(V)$ is canonical base point.
Example

Zero bundle $\mathbb{R}^0 = X \times \{0\}$ on X:

$$D(\mathbb{R}^0) \simeq X \quad S(\mathbb{R}^0) \simeq \emptyset$$

So $T(\mathbb{R}^0) = X / \emptyset = X \amalg \{\ast\}$, with added base point.

Lemma

$T(V \oplus \mathbb{R}) \simeq \Sigma T(V)$

(X, x) a pointed space, reduced suspension is $\Sigma X := X \times I \cup X \times \{0\} \cup X \times \{1\} \cup \{x\} \times I$.
Thom Spaces

Example

Zero bundle $\mathbb{R}^0 = X \times \{0\}$ on X:

- $D(\mathbb{R}^0) \simeq X$
Thom Spaces

Example

Zero bundle $\mathbb{R}^0 = X \times \{0\}$ on X:

- $D(\mathbb{R}^0) \simeq X$
- $S(\mathbb{R}^0) \simeq \emptyset$
Example

Zero bundle $\mathbb{R}^0 = X \times \{0\}$ on X:

- $D(\mathbb{R}^0) \simeq X$
- $S(\mathbb{R}^0) \simeq \emptyset$

So $T(\mathbb{R}^0) = X/\emptyset = X \amalg \{\ast\}$, X with added base point.
Example

Zero bundle $\mathbb{R}^0 = X \times \{0\}$ on X:

- $D(\mathbb{R}^0) \simeq X$
- $S(\mathbb{R}^0) \simeq \emptyset$

So $T(\mathbb{R}^0) = X/\emptyset = X \amalg \{*\}$, X with added base point.

Lemma

$T(V \oplus \mathbb{R}) \simeq \Sigma T(V)$
Thom Spaces

Example

Zero bundle $\mathbb{R}^0 = X \times \{0\}$ on X:
- $D(\mathbb{R}^0) \simeq X$
- $S(\mathbb{R}^0) \simeq \emptyset$

So $T(\mathbb{R}^0) = X/\emptyset = X \amalg \{\ast\}$, X with added base point.

Lemma

$T(V \oplus \mathbb{R}) \simeq \Sigma T(V)$

(X, x) a pointed space, reduced suspension is

$$\Sigma X := \frac{X \times I}{X \times \{0\} \cup X \times \{1\} \cup \{x\} \times I}$$
Grassmannians

$$\text{Gr}_{n+k}(n) := \text{space of } n\text{-dimensional subspaces of } \mathbb{R}^{n+k}.$$
Grassmannians

\[\text{Gr}_{n+k}(n) := \text{space of } n\text{-dimensional subspaces of } \mathbb{R}^{n+k}. \]

- This is a manifold.
Grassmannians

\[\text{Gr}_{n+k}(n) := \text{space of } n\text{-dimensional subspaces of } \mathbb{R}^{n+k}. \]

- This is a manifold.
- **Tautological bundle:** \(\gamma^n_{n+k} := \{(V \in \text{Gr}_{n+k}(n), v \in V)\}. \)
Grassmannians

\(\text{Gr}_{n+k}(n) \) := space of \(n \)-dimensional subspaces of \(\mathbb{R}^{n+k} \).

- This is a manifold.
- **Tautological bundle:** \(\gamma_{n+k}^n := \{(V \in \text{Gr}_{n+k}(n), v \in V)\} \).
- \(\text{Gr}_{n+k}(n) \subseteq \text{Gr}_{n+k+1}(n) \) and \(\gamma_{n+k}^n \subseteq \gamma_{n+k+1}^n \) via
 \[\mathbb{R}^{n+k} \cong \mathbb{R}^{n+k} \times \{0\} \subseteq \mathbb{R}^{n+k+1} \]
Grassmannians

$$\text{Gr}_{n+k}(n) := \text{space of } n\text{-dimensional subspaces of } \mathbb{R}^{n+k}.$$

- This is a manifold.
- **Tautological bundle:** $\gamma_{n+k}^n := \{(V \in \text{Gr}_{n+k}(n), v \in V)\}$.
- $\text{Gr}_{n+k}(n) \subseteq \text{Gr}_{n+k+1}(n)$ and $\gamma_{n+k}^n \subseteq \gamma_{n+k+1}^n$ via
 $$\mathbb{R}^{n+k} \cong \mathbb{R}^{n+k} \times \{0\} \subseteq \mathbb{R}^{n+k+1}$$

Take a colimit — glue together spaces along these maps:

$$\text{Gr}_n(n) \hookrightarrow \text{Gr}_{n+1}(n) \hookrightarrow \text{Gr}_{n+2}(n) \hookrightarrow \cdots \hookrightarrow BO(n)$$

$$\gamma_{n}^n \hookrightarrow \gamma_{n+1}^n \hookrightarrow \gamma_{n+2}^n \hookrightarrow \cdots \hookrightarrow \gamma^n$$
Fact

$BO(n)$ is a classifying space for rank-n vector bundles: For a nice space X, there's a natural bijection

$$[X, BO(n)] \cong \{\text{isomorphism classes of rank-n vector bundles on } X\}$$
Fact

BO(n) is a classifying space for rank-n vector bundles: For a nice space X, there’s a natural bijection

\[[X, BO(n)] \cong \{ \text{isomorphism classes of rank-n vector bundles on } X \} \]

One direction: pull back \(\gamma^n \)

\[
\begin{array}{ccc}
 f^* \gamma^n & \rightarrow & \gamma^n \\
 \downarrow \quad & & \downarrow \\
 X & \longrightarrow & BO(n)
\end{array}
\]
Some justification:
If \(X \) is compact, rank-\(n \) bundle \(V \to X \) embeds in \(\mathbb{R}^N \) for \(N \gg 0 \).
Some justification:
If X is compact, rank-n bundle $V \to X$ embeds in \mathbb{R}^N for $N \gg 0$. This gives map $X \to \text{Gr}_N(n) \hookrightarrow BO(n)$:

$$x \in X \mapsto V_x \text{ as subspace of } \mathbb{R}^N$$
The Universal Thom Space

\[MO(k) := T(\gamma^k) \]
The Universal Thom Space

- $MO(k) := T(\gamma^k)$
- $\gamma^k \oplus \mathbb{R}$ is rank-$(k + 1)$ bundle on $BO(k)$
The Universal Thom Space

\[MO(k) := T(\gamma^k) \]

\[\gamma^k \oplus \mathbb{R} \] is rank- \((k + 1)\) bundle on \(BO(k)\)

So it comes from a map \(BO(k) \to BO(k + 1)\) by pullback of \(\gamma^{k+1}\)
The Universal Thom Space

- $MO(k) := T(\gamma^k)$
- $\gamma^k \oplus \mathbb{R}$ is rank-$(k + 1)$ bundle on $BO(k)$
- So it comes from a map $BO(k) \to BO(k + 1)$ by pullback of γ^{k+1}
- Get map $\gamma^k \oplus \mathbb{R} \to \gamma^{k+1}$
The Universal Thom Space

- $MO(k) := T(\gamma^k)$
- $\gamma^k \oplus \mathbb{R}$ is rank-$(k + 1)$ bundle on $BO(k)$
- So it comes from a map $BO(k) \to BO(k + 1)$ by pullback of γ^{k+1}
- Get map $\gamma^k \oplus \mathbb{R} \to \gamma^{k+1}$
- Apply T: get $T(\gamma^k \oplus \mathbb{R}) \simeq \Sigma MO(k) \to MO(k + 1)$
Homotopy Groups

- (X, x) and (Y, y) pointed spaces
- $f, g : X \to Y$ pointed maps
Homotopy Groups

- \((X, x)\) and \((Y, y)\) pointed spaces
- \(f, g : X \to Y\) pointed maps
- A **pointed homotopy** from \(f\) to \(g\) is

\[
h : X \times I \to Y
\]

with

\[
h(-, 0) = f, \quad h(-, 1) = g, \quad h(x, t) = y \forall t
\]
Homotopy Groups

- (X, x) and (Y, y) pointed spaces
- $f, g: X \to Y$ pointed maps
- A **pointed homotopy** from f to g is
 \[h: X \times I \to Y \]

 with
 \[h(-, 0) = f, \quad h(-, 1) = g, \quad h(x, t) = y \forall t \]

- $\pi_n(X, x) :=$ pointed homotopy classes of pointed maps
 \[(S^n, *) \to (X, x) \]
Homotopy Groups

- \((X, x)\) and \((Y, y)\) pointed spaces
- \(f, g : X \to Y\) pointed maps
- A **pointed homotopy** from \(f\) to \(g\) is

\[
h : X \times I \to Y
\]

with

\[
h(-, 0) = f, \quad h(-, 1) = g, \quad h(x, t) = y \forall t
\]

- \(\pi_n(X, x) :=\) pointed homotopy classes of pointed maps

\[
(S^n, \ast) \to (X, x)
\]

- Pinch map \(S^n \to S^n \vee S^n\): collapse equator to point
Homotopy Groups

- (X, x) and (Y, y) pointed spaces
- $f, g : X \to Y$ pointed maps
- A **pointed homotopy** from f to g is

 \[h : X \times I \to Y \]

 with

 \[h(-, 0) = f, \quad h(-, 1) = g, \quad h(x, t) = y \forall t \]

- $\pi_n(X, x) :=$ pointed homotopy classes of pointed maps

 \[(S^n, \ast) \to (X, x)\]

- Pinch map $S^n \to S^n \vee S^n$: collapse equator to point
- $f + g : S^n \to S^n \vee S^n \xrightarrow{f \vee g} X$
The Universal Thom Space

Have

\[\sigma_{k,n+k} : \pi_{n+k} \text{MO}(k) \xrightarrow{\Sigma} \pi_{n+k+1} \Sigma \text{MO}(k) \to \pi_{n+k+1} \text{MO}(k+1) \]
The Universal Thom Space

Have
\[\sigma_{k,n+k} : \pi_{n+k} \text{MO}(k) \xrightarrow{\Sigma} \pi_{n+k+1} \Sigma \text{MO}(k) \to \pi_{n+k+1} \text{MO}(k+1) \]

Definition
\[\pi_n \text{MO} := \text{colim}_k \pi_{n+k} \text{MO}(k) \]
Have

\[\sigma_{k,n+k} : \pi_{n+k} MO(k) \xrightarrow{\Sigma} \pi_{n+k+1}\Sigma MO(k) \rightarrow \pi_{n+k+1} MO(k+1) \]

Definition

\[\pi_n MO := \text{colim}_k \pi_{n+k} MO(k) \]

I.e. \(\bigoplus_k \pi_{n+k} MO(k)/(\phi - \sigma_{k,n+k}(\phi)) \)
The Universal Thom Space

Have
\[\sigma_{k,n+k} : \pi_{n+k} \text{MO}(k) \xrightarrow{\Sigma} \pi_{n+k+1} \Sigma \text{MO}(k) \to \pi_{n+k+1} \text{MO}(k+1) \]

Definition

\[\pi_n \text{MO} := \text{colim}_k \pi_{n+k} \text{MO}(k) \]

I.e. \(\bigoplus_k \pi_{n+k} \text{MO}(k)/(\phi - \sigma_{k,n+k}(\phi)) \)

Or: Take adjoint \(\text{MO}(n) \to \Omega \text{MO}(n+1) \), get

\[\text{MO}(0) \to \Omega \text{MO}(1) \to \Omega^2 \text{MO}(2) \to \cdots \]
The Universal Thom Space

Have
\[\sigma_{k,n+k} : \pi_{n+k} \text{MO}(k) \xrightarrow{\Sigma} \pi_{n+k+1} \Sigma \text{MO}(k) \rightarrow \pi_{n+k+1} \text{MO}(k+1) \]

Definition

\[\pi_n \text{MO} := \text{colim}_k \pi_{n+k} \text{MO}(k) \]

I.e.
\[\bigoplus_k \pi_{n+k} \text{MO}(k)/(\phi - \sigma_{k,n+k}(\phi)) \]

Or: Take adjoint \(\text{MO}(n) \rightarrow \Omega \text{MO}(n + 1) \), get

\[\text{MO}(0) \rightarrow \Omega \text{MO}(1) \rightarrow \Omega^2 \text{MO}(2) \rightarrow \cdots \]

Could build a space \(\text{MO} \) with homotopy groups \(\pi_* \text{MO} \) by “fattening” these maps into inclusions, then glue.
The Universal Thom Space

Have
\[\sigma_{k,n+k} : \pi_{n+k} \text{MO}(k) \xrightarrow{\Sigma} \pi_{n+k+1} \Sigma \text{MO}(k) \rightarrow \pi_{n+k+1} \text{MO}(k+1) \]

Definition

\[\pi_n \text{MO} := \operatorname{colim}_k \pi_{n+k} \text{MO}(k) \]

i.e. \[\bigoplus_k \pi_{n+k} \text{MO}(k) / (\phi - \sigma_{k,n+k}(\phi)) \]

Or: Take adjoint \(\text{MO}(n) \rightarrow \Omega \text{MO}(n+1) \), get

\[\text{MO}(0) \rightarrow \Omega \text{MO}(1) \rightarrow \Omega^2 \text{MO}(2) \rightarrow \cdots \]

Could build a space \(\text{MO} \) with homotopy groups \(\pi_* \text{MO} \) by “fattening” these maps into inclusions, then glue. \(\text{MO} \) should really be a **spectrum**, but that’s another story...
Theorem (Thom, 1954)

$\mathcal{N}_* \cong \pi_* MO$
Normal Bundles

- M a compact n-manifold
- M a compact n-manifold
- This embeds in \mathbb{R}^{n+k} for $k \gg 0$:

$$i : M \hookrightarrow \mathbb{R}^{n+k}$$
- **M** a compact \(n \)-manifold
- This embeds in \(\mathbb{R}^{n+k} \) for \(k \gg 0 \):

\[
i: M \hookrightarrow \mathbb{R}^{n+k}
\]

- By definition, this means \(TM \) injects into

\[
i^* \mathbb{R}^{n+k} \cong \mathbb{R}^{n+k}
\]
Normal Bundles

- M a compact n-manifold
- This embeds in \mathbb{R}^{n+k} for $k \gg 0$:

$$i : M \hookrightarrow \mathbb{R}^{n+k}$$

- By definition, this means TM injects into

$$i^* \mathbb{R}^{n+k} \cong \mathbb{R}^{n+k}$$

- Pick metric, get splitting

$$\mathbb{R}^{n+k} \cong TM \oplus \nu$$
Normal Bundles

- M a compact n-manifold
- This embeds in \mathbb{R}^{n+k} for $k \gg 0$:

\[i : M \hookrightarrow \mathbb{R}^{n+k} \]

- By definition, this means TM injects into

\[i^* \mathbb{R}^{n+k} \cong \mathbb{R}^{n+k} \]

- Pick metric, get splitting

\[\mathbb{R}^{n+k} \cong TM \oplus \nu \]

- $\nu := \textbf{normal bundle}$ of embedding
The embedding i extends to an embedding $\nu \hookrightarrow \mathbb{R}^{n+k}$. The image N of ν is called a tubular neighbourhood of $i(M)$.

Theorem (Tubular Neighbourhood Theorem)
Theorem (Tubular Neighbourhood Theorem)

The embedding i extends to an embedding $\nu \hookrightarrow \mathbb{R}^{n+k}$. The image N of ν is called a **tubular neighbourhood** of $i(M)$.

- Then $\bar{N}/\partial \bar{N} \simeq T(\nu)$
The Pontryagin-Thom Collapse Map

Theorem (Tubular Neighbourhood Theorem)

The embedding i extends to an embedding $\nu \hookrightarrow \mathbb{R}^{n+k}$. The image N of ν is called a **tubular neighbourhood** of $i(M)$.

- Then $\tilde{N}/\partial \tilde{N} \cong T(\nu)$
- Pontryagin-Thom collapse map:
 \[
 C_i : S^{n+k} := (\mathbb{R}^{n+k})^+ \to \tilde{N}/\partial \tilde{N}
 \]
 Identity on N, everything outside N goes to “point at ∞”
We’ve made $S^{n+k} \to T(\nu)$
We’ve made $S^{n+k} \to T(\nu)$

But ν is a rank-k vector bundle, so is pulled back from γ^k
The Pontryagin-Thom Construction

- We’ve made $S^{n+k} \to T(\nu)$
- But ν is a rank-k vector bundle, so is pulled back from γ^k
- This induces $T(\nu) \to T(\gamma^k) = MO(k)$
The Pontryagin-Thom Construction

- We’ve made $S^{n+k} \to T(\nu)$
- But ν is a rank-k vector bundle, so is pulled back from γ^k
- This induces $T(\nu) \to T(\gamma^k) = MO(k)$
- Composing we’ve got $\alpha(i): S^{n+k} \to MO(k)$
The Pontryagin-Thom Construction

- We’ve made $S^{n+k} \to T(\nu)$
- But ν is a rank-k vector bundle, so is pulled back from γ^k
- This induces $T(\nu) \to T(\gamma^k) = MO(k)$
- Composing we’ve got $\alpha(i): S^{n+k} \to MO(k)$
- I.e. a class in $\pi_{n+k} MO(k) \hookrightarrow \pi_n MO$
We’ve made $S^{n+k} \to T(\nu)$
But ν is a rank-k vector bundle, so is pulled back from γ^k
This induces $T(\nu) \to T(\gamma^k) = MO(k)$
Composing we’ve got $\alpha(i): S^{n+k} \to MO(k)$
I.e. a class in $\pi_{n+k} MO(k) \hookrightarrow \pi_n MO$

Claim
$[\alpha(i)]$ in $\pi_n(MO)$ depends only on the cobordism class of M.
Independent of Embedding

- \(i: M \hookrightarrow \mathbb{R}^{n+k} \) an embedding
Independent of Embedding

- \(i: M \hookrightarrow \mathbb{R}^{n+k} \) an embedding
- Then \(i': M \hookrightarrow \mathbb{R}^{n+k} \hookrightarrow \mathbb{R}^{n+k+1} \) is another embedding
Independent of Embedding

- $i: M \hookrightarrow \mathbb{R}^{n+k}$ an embedding
- Then $i': M \hookrightarrow \mathbb{R}^{n+k} \hookrightarrow \mathbb{R}^{n+k+1}$ is another embedding
- $\nu_{i'}$ is $\nu_i \oplus \mathbb{R}$ and $C_{i'}: S^{n+k+1} \to T(\nu_{i'}) \cong \Sigma T(\nu_i)$ is ΣC_i
Independent of Embedding

- $i : M \hookrightarrow \mathbb{R}^{n+k}$ an embedding
- Then $i' : M \hookrightarrow \mathbb{R}^{n+k} \hookrightarrow \mathbb{R}^{n+k+1}$ is another embedding
- $\nu_{i'}$ is $\nu_i \oplus \mathbb{R}$ and $C_{i'} : S^{n+k+1} \to T(\nu_{i'}) \simeq \Sigma T(\nu_i)$ is ΣC_i
- Then $\alpha(i')$ is $\sigma_{k,n+k}(\alpha(i))$ so same in $\pi_n MO$
Independent of Embedding

- $i: M \hookrightarrow \mathbb{R}^{n+k}$ an embedding
- Then $i': M \hookrightarrow \mathbb{R}^{n+k} \hookrightarrow \mathbb{R}^{n+k+1}$ is another embedding
- $\nu_{i'}$ is $\nu_i \oplus \mathbb{R}$ and $C_{i'}: S^{n+k+1} \to T(\nu_{i'}) \cong \Sigma T(\nu_i)$ is ΣC_i
- Then $\alpha(i')$ is $\sigma_{k,n+k}(\alpha(i))$ so same in $\pi_n MO$

Fact

- $i: M \hookrightarrow \mathbb{R}^{n+k}$ and $j: M \hookrightarrow \mathbb{R}^{n+l}$ embeddings
- For $m \gg 0$ get “same” tubular neighbourhoods from

$$M \overset{i}{\hookrightarrow} \mathbb{R}^{n+k} \overset{}{\hookrightarrow} \mathbb{R}^{n+m}$$

$$M \overset{j}{\hookrightarrow} \mathbb{R}^{n+l} \overset{}{\hookrightarrow} \mathbb{R}^{n+m}$$
Independent of Embedding

- $i: M \hookrightarrow \mathbb{R}^{n+k}$ an embedding
- Then $i': M \hookrightarrow \mathbb{R}^{n+k} \hookrightarrow \mathbb{R}^{n+k+1}$ is another embedding
- $\nu_{i'}$ is $\nu_i \oplus \mathbb{R}$ and $C_{i'}: S^{n+k+1} \to T(\nu_{i'}) \simeq \Sigma T(\nu_i)$ is ΣC_i
- Then $\alpha(i')$ is $\sigma_{k,n+k}(\alpha(i))$ so same in $\pi_n MO$

Fact

- $i: M \hookrightarrow \mathbb{R}^{n+k}$ and $j: M \hookrightarrow \mathbb{R}^{n+l}$ embeddings
- For $m \gg 0$ get “same” tubular neighbourhoods from

\[
M \xrightarrow{i} \mathbb{R}^{n+k} \hookrightarrow \mathbb{R}^{n+m} \\
M \xrightarrow{j} \mathbb{R}^{n+l} \hookrightarrow \mathbb{R}^{n+m}
\]

- So $\alpha(i)$ and $\alpha(j)$ are same in $\pi_n MO$!
Homomorphism

- M and N two compact n-manifolds
- M and N two compact n-manifolds
- Embedding $M \amalg N \hookrightarrow \mathbb{R}^{n+k}$ gives embeddings

 $M \hookrightarrow \mathbb{R}^{n+k}$

 $N \hookrightarrow \mathbb{R}^{n+k}$
Homomorphism

- M and N two compact n-manifolds
- Embedding $M \amalg N \hookrightarrow \mathbb{R}^{n+k}$ gives embeddings

 \[
 M \hookrightarrow \mathbb{R}^{n+k} \\
 N \hookrightarrow \mathbb{R}^{n+k}
 \]

- $T(\nu_{M \amalg N}) \simeq T(\nu_M) \vee T(\nu_N)$
Homomorphism

- M and N two compact n-manifolds
- Embedding $M \amalg N \hookrightarrow \mathbb{R}^{n+k}$ gives embeddings

 $M \hookrightarrow \mathbb{R}^{n+k}$

 $N \hookrightarrow \mathbb{R}^{n+k}$

- $T(\nu_{M \amalg N}) \simeq T(\nu_M) \vee T(\nu_N)$
- $C_{M \amalg N}$ factors as

 $S^{n+k} \to S^{n+k} \vee S^{n+k} \xrightarrow{C_M \vee C_N} T(\nu_M) \vee T(\nu_N)$

 and $\alpha(M \amalg N)$ is

 $S^{n+k} \to S^{n+k} \vee S^{n+k} \xrightarrow{(\alpha(M), \alpha(N))} MO(k)$
Homomorphism

- M and N two compact n-manifolds
- Embedding $M \amalg N \hookrightarrow \mathbb{R}^{n+k}$ gives embeddings
 \[M \hookrightarrow \mathbb{R}^{n+k} \]
 \[N \hookrightarrow \mathbb{R}^{n+k} \]
- $T(\nu_{M\amalg N}) \simeq T(\nu_M) \vee T(\nu_N)$
- $C_{M\amalg N}$ factors as
 \[S^{n+k} \to S^{n+k} \vee S^{n+k} \xrightarrow{C_M \vee C_N} T(\nu_M) \vee T(\nu_N) \]
 and $\alpha(M \amalg N)$ is
 \[S^{n+k} \to S^{n+k} \vee S^{n+k} \xrightarrow{(\alpha(M), \alpha(N))} MO(k) \]
- But this defined addition in π_{n+k} so
 \[\alpha(M \amalg N) \simeq \alpha(M) + \alpha(N) \]
We’re left with showing that if M is a boundary then $\alpha(M)$ is zero.
We’re left with showing that if M is a boundary then $\alpha(M)$ is zero.

Theorem

If $M = \partial W$ then any embedding of M in S^{n+k} extends to a nice embedding of W in the disc D^{n+k+1}.

Rune Haugseng

Cobordism and the Pontryagin-Thom Construction
We’re left with showing that if M is a boundary then $\alpha(M)$ is zero.

Theorem

If $M = \partial W$ then any embedding of M in S^{n+k} extends to a nice embedding of W in the disc D^{n+k+1}.

- Tubular neighbourhood of M in S^{n+k} is intersection of sphere with a tubular neighbourhood of W in the disc.
We’re left with showing that if M is a boundary then $\alpha(M)$ is zero.

Theorem

If $M = \partial W$ then any embedding of M in S^{n+k} extends to a nice embedding of W in the disc D^{n+k+1}.

- Tubular neighbourhood of M in S^{n+k} is intersection of sphere with a tubular neighbourhood of W in the disc.
- Normal bundle of M is pulled back from that of W.
So we have

\[S^{n+k} \rightarrow T(\nu_M) \rightarrow MO(k) \]

Factors through

\[D^{n+k+1} \rightarrow T(\nu_W) \]
So we have

\[S^{n+k} \to T(\nu_M) \]

\[D^{n+k+1} \to T(\nu_W) \]

\[\alpha(M) \]

\[MO(k) \]

\[\alpha(M) \text{ factors through } D^{n+k+1} \cong * \text{ so is zero.} \]
Have well-defined homomorphism $\alpha : \mathcal{N}_n \to \pi_n MO$. Want inverse $\beta : \pi_n MO \to \mathcal{N}_n$.

WLOG $\phi : S^{n+k} \to MO(k)$ is compact so factors through $T(\gamma_{k+m+k}) \to Gr(m+k)(k)$ for $m \gg 0$ $T(\gamma_{k+m+k})$ is manifold away from ∞.

Zero section gives $\zeta : Gr(k+m+k) \to T(\gamma_{k+m+k})\{\infty\}$ ζ is embedding of codimension-k submanifold.

WLOG pre-image of $\zeta(Gr(k+m+k))$ is submanifold $\beta(\phi)$ of S^{n+k} of codimension k.

Rune Haugseng
Cobordism and the Pontryagin-Thom Construction
Have well-defined homomorphism $\alpha : \mathcal{N}_n \to \pi_n MO$. Want inverse $\beta : \pi_n MO \to \mathcal{N}_n$.

Take $\phi : S^{n+k} \to MO(k)$
Have well-defined homomorphism $\alpha : \mathcal{N}_n \to \pi_n MO$. Want inverse $\beta : \pi_n MO \to \mathcal{N}_n$.

Take $\phi : S^{n+k} \to MO(k)$

S^{n+k} compact so factors through $T(\gamma_{m+k} \to Gr_{m+k}(k))$ for $m \gg 0$
Have well-defined homomorphism $\alpha : \mathfrak{N}_n \rightarrow \pi_n MO$. Want inverse $\beta : \pi_n MO \rightarrow \mathfrak{N}_n$.

Take $\phi : S^{n+k} \rightarrow MO(k)$

S^{n+k} compact so factors through $T(\gamma_{m+k}^k \rightarrow Gr_{m+k}(k))$ for $m \gg 0$

$T(\gamma_{m+k}^k)$ is manifold away from ∞
Have well-defined homomorphism $\alpha: \mathcal{N}_n \to \pi_n MO$. Want inverse $\beta: \pi_n MO \to \mathcal{N}_n$.

Take $\phi: S^{n+k} \to MO(k)$

S^{n+k} compact so factors through $T(\gamma_{m+k}^k \to Gr_{m+k}(k))$ for $m \gg 0$

$T(\gamma_{m+k}^k)$ is manifold away from ∞

Zero section gives $\zeta: Gr_{m+k}^k \hookrightarrow T(\gamma_{m+k}^k) \setminus \{\infty\}$
Have well-defined homomorphism $\alpha : \mathcal{N}_n \to \pi_n MO$. Want inverse $\beta : \pi_n MO \to \mathcal{N}_n$.

Take $\phi : S^{n+k} \to MO(k)$

S^{n+k} compact so factors through $T(\gamma^k_{m+k} \to Gr_{m+k}(k))$ for $m \gg 0$

$T(\gamma^k_{m+k})$ is manifold away from ∞

Zero section gives $\zeta : Gr^k_{m+k} \hookrightarrow T(\gamma^k_{m+k}) \setminus \{\infty\}$

ζ is embedding of codimension-k submanifold
Have well-defined homomorphism \(\alpha : \mathcal{N}_n \to \pi_n MO \). Want inverse \(\beta : \pi_n MO \to \mathcal{N}_n \).

Take \(\phi : S^{n+k} \to MO(k) \)

\(S^{n+k} \) compact so factors through \(T(\gamma_{m+k}^k \to Gr_{m+k}(k)) \) for \(m \gg 0 \)

\(T(\gamma_{m+k}^k) \) is manifold away from \(\infty \)

Zero section gives \(\zeta : Gr_{m+k}^k \hookrightarrow T(\gamma_{m+k}^k) \setminus \{\infty\} \)

\(\zeta \) is embedding of codimension-\(k \) submanifold

WLOG \(\phi \) is smooth away from base point
• Have well-defined homomorphism $\alpha: \mathcal{N}_n \rightarrow \pi_n MO$. Want inverse $\beta: \pi_n MO \rightarrow \mathcal{N}_n$.
• Take $\phi: S^{n+k} \rightarrow MO(k)$
• S^{n+k} compact so factors through $T(\gamma_{m+k}^k \rightarrow Gr_{m+k}(k))$ for $m \gg 0$
• $T(\gamma_{m+k}^k)$ is manifold away from ∞
• Zero section gives $\zeta: Gr_{m+k}^k \hookrightarrow T(\gamma_{m+k}^k) \setminus \{\infty\}$
• ζ is embedding of codimension-k submanifold
• WLOG ϕ is smooth away from base point
• WLOG pre-image of $\zeta(Gr_{m+k}^k)$ is submanifold $\beta(\phi)$ of S^{n+k} of codimension $k = \text{dimension } n$
If two such smooth ϕ's are homotopic can choose a nice, smooth homotopy $S^{n+k} \times I \to T(\gamma^k_{m+k})$.

Then WLOG pre-image of $\zeta(Gr_k^{m+k})$ in $S^{n+k} \times I$ is a cobordism. Let's skip rest of proof that this is a well-defined homomorphism $\pi_n^{MO} \to \pi_n^N$.

Rune Haugseng
• If two such smooth ϕ’s are homotopic can choose a nice, smooth homotopy $S^{n+k} \times I \to T(\gamma_{m+k}^k)$

• Then WLOG pre-image of $\zeta(\text{Gr}_m^k)$ in $S^{n+k} \times I$ is a cobordism
If two such smooth ϕ's are homotopic can choose a nice, smooth homotopy $S^{n+k} \times I \to T(\gamma_{m+k}^k)$

Then WLOG pre-image of $\zeta(\text{Gr}_m^k)$ in $S^{n+k} \times I$ is a cobordism

Let’s skip rest of proof that this is a well-defined homomorphism $\pi_n MO \to \mathcal{N}_n$.
Let’s show $\phi = \alpha(\beta(\phi))$:
Let’s show $\phi = \alpha(\beta(\phi))$:

- $T(\gamma_{m+k}^k) \setminus \{\infty\}$ is tubular neighbourhood of $\zeta(\text{Gr}_{m+k}(k))$
Let’s show $\phi = \alpha(\beta(\phi))$:

- $T(\gamma_{m+k}^k) \setminus \{\infty\}$ is tubular neighbourhood of $\zeta(\text{Gr}_{m+k}(k))$
- So its pre-image is a tubular neighbourhood of M
Let’s show $\phi = \alpha(\beta(\phi))$:

- $T(\gamma_{m+k}) \setminus \{\infty\}$ is tubular neighbourhood of $\zeta(\text{Gr}_{m+k}(k))$
- So its pre-image is a tubular neighbourhood of M
- Then $S^{n+k} \to T(\gamma_{m+k})$ factors through collapse map $S^{n+k} \to T(\nu_M)$
Let’s show $\phi = \alpha(\beta(\phi))$:

- $T(\gamma^k_{m+k}) \setminus \{\infty\}$ is tubular neighbourhood of $\zeta(\text{Gr}_{m+k}(k))$
- So its pre-image is a tubular neighbourhood of M
- Then $S^{n+k} \to T(\gamma^k_{m+k})$ factors through collapse map $S^{n+k} \to T(\nu_M)$
- Have pullback diagram

$$
\begin{array}{ccc}
\nu_M & \to & \gamma^k_{m+k} = T(\gamma^k_{m+k}) \setminus \{\infty\} \\
\downarrow & & \downarrow \\
M & \to & \text{Gr}_{m+k}(k)
\end{array}
$$
Let’s show $\phi = \alpha(\beta(\phi))$:

- $T(\gamma^k_{m+k}) \setminus \{\infty\}$ is tubular neighbourhood of $\zeta(\text{Gr}_{m+k}(k))$
- So its pre-image is a tubular neighbourhood of M
- Then $S^{n+k} \to T(\gamma^k_{m+k})$ factors through collapse map
- $S^{n+k} \to T(\nu_M)$
- Have pullback diagram

$$
\begin{array}{ccc}
\nu_M & \to & \gamma^k_{m+k} = T(\gamma^k_{m+k}) \setminus \{\infty\} \\
\downarrow & & \downarrow \\
M & \to & \text{Gr}_{m+k}(k)
\end{array}
$$

- So $M \to \text{Gr}_{m+k}(k) \hookrightarrow BO(k)$ classifies ν_M and map $T(\nu_M) \to T(\gamma^k_{m+k}) \to MO(k)$ comes from this
Let’s show \(\phi = \alpha(\beta(\phi)) \):

- \(T(\gamma_{m+k}^k) \setminus \{\infty\} \) is tubular neighbourhood of \(\zeta(\text{Gr}_{m+k}(k)) \)
- So its pre-image is a tubular neighbourhood of \(M \)
- Then \(S^{n+k} \to T(\gamma_{m+k}^k) \) factors through collapse map \(S^{n+k} \to T(\nu_M) \)
- Have pullback diagram

\[
\begin{array}{ccc}
\nu_M & \to & \gamma_{m+k}^k = T(\gamma_{m+k}^k) \setminus \{\infty\} \\
\downarrow & & \downarrow \\
M & \to & \text{Gr}_{m+k}(k)
\end{array}
\]

- So \(M \to \text{Gr}_{m+k}(k) \leftarrow BO(k) \) classifies \(\nu_M \) and map \(T(\nu_M) \to T(\gamma_{m+k}^k) \to MO(k) \) comes from this
- Thus \(\phi = \alpha(M) \).
And now $\beta(\alpha(M)) = M$:
And now $\beta(\alpha(M)) = M$:

- $M \hookrightarrow \mathbb{R}^{n+k}$, get ν_M and $C_M: S^{n+k} \to T(\nu_M)$
And now $\beta(\alpha(M)) = M$:

- $M \hookrightarrow \mathbb{R}^{n+k}$, get ν_M and $C_M : S^{n+k} \to T(\nu_M)$
- By compactness, $M \to BO(k)$ factors through $Gr_{m+k}(k)$ for $m \gg 0$,

\[
\begin{array}{ccc}
\nu_M & \to & \gamma_{m+k}^k \\
\downarrow & & \downarrow \\
M & \to & Gr_{m+k}(k)
\end{array}
\]
And now \(\beta(\alpha(M)) = M \):

- \(M \hookrightarrow \mathbb{R}^{n+k} \), get \(\nu_M \) and \(C_M : S^{n+k} \to T(\nu_M) \)
- By compactness, \(M \to BO(k) \) factors through \(Gr_{m+k}(k) \) for \(m \gg 0 \),

\[
\begin{array}{ccc}
\nu_M & \longrightarrow & \gamma_{m+k}^k \\
\downarrow & & \downarrow \\
M & \longrightarrow & Gr_{m+k}(k)
\end{array}
\]

- So \(T(\nu_M) \to MO(k) \) factors through \(T(\gamma_{m+k}^k) \)
And now $\beta(\alpha(M)) = M$:

- $M \hookrightarrow \mathbb{R}^{n+k}$, get ν_M and $C_M : S^{n+k} \to T(\nu_M)$
- By compactness, $M \to BO(k)$ factors through $Gr_{m+k}(k)$ for $m \gg 0$,

$$
\begin{align*}
\begin{array}{ccc}
\nu_M & \to & \gamma^k_{m+k} \\
\downarrow & & \downarrow \\
M & \to & Gr_{m+k}(k)
\end{array}
\end{align*}
$$

- So $T(\nu_M) \to MO(k)$ factors through $T(\gamma^k_{m+k})$
- And pre-image of $\zeta(Gr_{m+k}(k))$ in $T(\nu_M)$ is just zero section of ν_M
And now $\beta(\alpha(M)) = M$:

- $M \hookrightarrow \mathbb{R}^{n+k}$, get ν_M and $C_M : S^{n+k} \to T(\nu_M)$
- By compactness, $M \to BO(k)$ factors through $\text{Gr}_{m+k}(k)$ for $m \gg 0$

\[
\begin{array}{ccc}
\nu_M & \longrightarrow & \gamma^k_{m+k} \\
\downarrow & & \downarrow \\
M & \longrightarrow & \text{Gr}_{m+k}(k)
\end{array}
\]

- So $T(\nu_M) \to MO(k)$ factors through $T(\gamma^k_{m+k})$
- And pre-image of $\zeta(\text{Gr}_{m+k}(k))$ in $T(\nu_M)$ is just zero section of ν_M
- So pre-image in S^{n+k} is just M
And now $\beta(\alpha(M)) = M$:

- $M \hookrightarrow \mathbb{R}^{n+k}$, get ν_M and $C_M: S^{n+k} \to T(\nu_M)$
- By compactness, $M \to BO(k)$ factors through $Gr_{m+k}(k)$ for $m \gg 0$,

\[
\begin{array}{ccc}
\nu_M & \longrightarrow & \gamma^k_{m+k} \\
\downarrow & & \downarrow \\
M & \longrightarrow & Gr_{m+k}(k)
\end{array}
\]

- So $T(\nu_M) \to MO(k)$ factors through $T(\gamma^k_{m+k})$
- And pre-image of $\zeta(Gr_{m+k}(k))$ in $T(\nu_M)$ is just zero section of ν_M
- So pre-image in S^{n+k} is just M
- I.e. $\beta(\alpha(M)) = M$.

The Result

Theorem (Thom)

$\mathcal{N}_* \cong \mathbb{F}_2[x_2, x_4, x_5, x_6, x_8, \ldots]$ is a polynomial algebra with one generator in each degree not of the form $2^k - 1$.

Theorem (Milnor)

For k even, can take $x_k = \mathbb{RP}_k$

For k odd, can take x_k the hypersurface of degree $(1, 1)$ in $\mathbb{RP}_{2p+1} \times \mathbb{RP}_{2p}$ where $k = 2p(2q+1) - 1$.

Rune Haugseng

Cobordism and the Pontryagin-Thom Construction
The Result

Theorem (Thom)

\[\mathcal{N}_* \cong F_2[x_2, x_4, x_5, x_6, x_8, \ldots] \text{ is a polynomial algebra with one generator in each degree not of the form } 2^k - 1. \]

Theorem (Milnor)

- For \(k \) even, can take \(x_k = \mathbb{RP}^k \)
- For \(k \) odd, can take \(x_k \) the hypersurface of degree \((1, 1)\) in \(\mathbb{RP}^{2p+1}q \times \mathbb{RP}^{2p} \) where \(k = 2^p(2q + 1) - 1 \)
Oriented Cobordism: compact oriented manifolds M and N
oriented cobordant: \exists oriented B with

$$\partial B \cong M \amalg \bar{N}$$
Oriented Cobordism: compact oriented manifolds M and N oriented cobordant: \exists oriented B with

$$\partial B \cong M \amalg \tilde{N}$$

Theorem (Thom)

$$\Omega_{SO}^* \cong \pi_* MSO$$

$$\Omega_{SO}^* \otimes \mathbb{Q} \cong \mathbb{Q}[\mathbb{CP}^{2i} | i \geq 1]$$
Oriented Cobordism: compact oriented manifolds M and N oriented cobordant: \exists oriented B with

$$\partial B \cong M \amalg \tilde{N}$$

Theorem (Thom)

$$\Omega_*^{SO} \cong \pi_* MSO$$

$$\Omega_*^{SO} \otimes \mathbb{Q} \cong \mathbb{Q}[\mathbb{CP}^2 | i \geq 1]$$

Has been computed integrally, but complicated.
Oriented Cobordism: compact oriented manifolds M and N
oriented cobordant: \exists oriented B with

$$\partial B \cong M \amalg \bar{N}$$

Theorem (Thom)

$$\Omega^*_{SO} \cong \pi_* MSO$$

$$\Omega^*_{SO} \otimes Q \cong Q[CP^{2i} \mid i \geq 1]$$

Has been computed integrally, but complicated.
(Too easy!)
Framed cobordism: M with trivialization of $TM \oplus R^m$ for $m \gg 0$, cobordisms with trivialization
\[\Omega_*^1 \cong \pi_* M \cong \pi_* S^0 = ??? \] — stable homotopy of spheres
Framed cobordism: M with trivialization of $TM \oplus R^m$ for $m \gg 0$, cobordisms with trivialization

$\Omega^1_* \cong \pi_* M \cong \pi_* S^0 = ???$ — stable homotopy of spheres

(Too hard!)
Other Cobordisms

Complex cobordism: M with almost complex structure on $TM \oplus R^m$ for $m \gg 0$

Theorem (Milnor)

$\Omega_*^U \cong \pi_* MU \cong \mathbb{Z}[x_1, x_2, \ldots]$ with x_i in degree $2i$.
Complex cobordism: M with almost complex structure on $TM \oplus R^m$ for $m \gg 0$

Theorem (Milnor)

$$\Omega_*^U \cong \pi_* MU \cong \mathbb{Z}[x_1, x_2, \ldots] \text{ with } x_i \text{ in degree } 2i.$$

(*Just right!*)
• $V \to M$ a rank-n vector bundle, get $f_V : M \to BO(n)$

For $x \in H^n(BO(n); \mathbb{R})$, get $x^V := f_V^* V(x)$ — a characteristic class of V.

For $V = TM$, get $x^M := x^{TM}([M]) \in \mathbb{R}$, these are characteristic numbers of M.
- $V \to M$ a rank-n vector bundle, get $f_V : M \to BO(n)$
- $f_V^* : H^*(BO(n); R) \to H^*(M; R)$
• $V \to M$ a rank-n vector bundle, get $f_V : M \to BO(n)$
• $f_V^* : H^*(BO(n); R) \to H^*(M; R)$
• For $x \in H^*(BO(n); R)$, get $x_V := f_V^*(x)$ — a characteristic class of V
V → M a rank-\(n \) vector bundle, get \(f_V : M \to BO(n) \)

\(f_V^* : H^\ast(BO(n); R) \to H^\ast(M; R) \)

For \(x \in H^\ast(BO(n); R) \), get \(x_V := f_V^*(x) \) — a characteristic class of \(V \)

\(M \) a connected compact \(n \)-manifold, \(x \in H^n(BO(n); R) \), can evaluate on fundamental class — get \(x_V([M]) \in R \)
- \(V \rightarrow M \) a rank-\(n \) vector bundle, get \(f_V : M \rightarrow BO(n) \)
- \(f_V^* : H^*(BO(n); R) \rightarrow H^*(M; R) \)
- For \(x \in H^*(BO(n); R) \), get \(x_V := f_V^*(x) \) — a characteristic class of \(V \)
- \(M \) a connected compact \(n \)-manifold, \(x \in H^n(BO(n); R) \), can evaluate on fundamental class — get \(x_V([M]) \in R \)
- For \(V = TM \), get

\[
x_M := x_{TM}([M]) \in R,
\]

these are characteristic numbers of \(M \)
Stiefel-Whitney Classes

Theorem

\[H^*(BO(n); \mathbb{F}_2) \cong \mathbb{F}_2[w_1, \ldots, w_n] \text{ with } w_i \text{ in degree } i \]
Stiefel-Whitney Classes

Theorem

\[H^*(BO(n); \mathbb{F}_2) \cong \mathbb{F}_2[w_1, \ldots, w_n] \text{ with } w_i \text{ in degree } i \]

- So \(H^k(BO(n); \mathbb{F}_2) \) has generators

\[w(i_1, \ldots, i_n) := w_1^{i_1} \cdots w_n^{i_n} \]

where \(i_1 + 2i_2 + \cdots + ni_n = k \).
Stiefel-Whitney Classes

Theorem

\[H^\ast(BO(n); \mathbb{F}_2) \cong \mathbb{F}_2[w_1, \ldots, w_n] \text{ with } w_i \text{ in degree } i \]

- So \(H^k(BO(n); \mathbb{F}_2) \) has generators

\[
w(i_1, \ldots, i_n) := w_1^{i_1} \cdots w_n^{i_n}
\]

where \(i_1 + 2i_2 + \cdots + ni_n = k \).

- \(w(i_1, \ldots, i_n)_M \in \mathbb{F}_2 \) are **Stiefel-Whitney numbers** of \(M \)
Stiefel-Whitney Classes

Theorem

\[H^*(BO(n); \mathbb{F}_2) \cong \mathbb{F}_2[w_1, \ldots, w_n] \text{ with } w_i \text{ in degree } i \]

- So \(H^k(BO(n); \mathbb{F}_2) \) has generators

\[w(i_1, \ldots, i_n) := w_1^{i_1} \cdots w_n^{i_n} \]

where \(i_1 + 2i_2 + \cdots + ni_n = k \).

- \(w(i_1, \ldots, i_n)_M \in \mathbb{F}_2 \) are **Stiefel-Whitney numbers** of \(M \)

Theorem

Two compact connected n-manifolds are cobordant if and only if they have the same Stiefel-Whitney numbers.