Problem Set 2

Due: 28 February 2013 in class

1. (10 points) Show that
 \[L = \begin{pmatrix} 1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & 0 & 1 \end{pmatrix} \] is the inverse of \[S = \begin{pmatrix} 1 & 0 & 0 \\ -\ell_{21} & 1 & 0 \\ -\ell_{31} & 0 & 1 \end{pmatrix} \]

2. (10 points) By trial and error, find examples of 2 by 2 matrices such that
 (a) \(AB \neq BA \)
 (b) \(A^2 = -I \), with only real entries in \(A \)
 (c) \(B^2 = 0 \), with no zeros in \(B \)

3. (10 points) By hand, factor the matrix \(A = LU \), where \(L \) is lower triangular, \(U \) is upper triangular, and
 \[A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \]

4. (10 points) Use back substitution twice by hand to solve \(LUx = f \), where
 \[L = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} , \quad U = \begin{pmatrix} 2 & 8 & 0 \\ 0 & 3 & 5 \\ 0 & 0 & 7 \end{pmatrix} , \quad \text{and} \quad f = \begin{pmatrix} 0 \\ 3 \\ 6 \end{pmatrix} \]

5. (20 points) Consider a line of \(n \) nodes, each connected to its neighbors by a resistor of resistance \(R \). At the first node, potential is set to 1. At the \(n \)th node, potential is set to 0.

 (a) Write down \(n \) equations relating \(v_1, v_2, \ldots, v_n \). For \(n = 5 \), write out by hand the equations in the form \(Ax = b \).

 (b) Write a Matlab program that, for arbitrary \(n \), forms \(A \) and \(b \) and solves for \(x \). Solve \(Ax = b \) in the case of \(n = 10,000 \). What is the computed value of \(v_{5000} \)? Provide 6 digits. How long does it take to solve \(Ax = b \) in this case? Ignore the time it takes to build the matrix \(A \). Print out your Matlab code.

6. (20 points) Consider the 2d lattice of points from (1, 1) to \((n, n)\). Each is connected to its neighbors by a resistor of resistance \(R \). At the first node \(v_1 = 1 \). At the last node, \(v_{n^2} = 0 \).
(a) In the \(n = 3 \) case, write out by hand the 9 linear equations in the form \(Ax = b \).

(b) Write a Matlab program that, for arbitrary \(n \), forms \(A \) and \(b \) and solves for \(x \). Solve \(Ax = b \) in the case of \(n = 100 \). What is the computed value of \(v_{50} \)? Provide 6 digits. How long does it take to solve \(Ax = b \) in this case? Ignore the time it takes to build the matrix \(A \). Print out your Matlab code.

(c) Based on the results of 5b and 6b: is a one-dimensional problem involving 10,000 nodes more, less, or equally expensive as a two-dimensional problem involving 10,000 nodes?