Singualrity, character formulas, and a q-analog of weight multiplicities

George Lusztig *
Department of Mathematics
M.I.T.
Cambridge, MA 02139

1. The purpose of this paper is to discuss examples in which the intersection cohomology theory of Deligne-Goretsky-MacPherson [4] enters in an essential way in the character formula for some irreducible representation of a semisimple group or Lie algebra. Thus, sections 3-5 are an exposition of the connection between singularities of Schubert varieties and multiplicities in Verma modules. In sections 6-11 we give an interpretation in terms of intersection cohomology for the multiplicities of weights in a finite dimensional representation of a simple Lie algebra. I wish to thank J. Bernstein for allowing me to use his unpublished results on the center of a Hecke algebra. (I learned about his results from D. Kazhdan.) These are used in the proof of Theorem 6.1; the original proof of that theorem was based on [10] and on Macdonald's formulas for spherical functions.

2. Notations. For an irreducible complex algebraic variety X, we denote by $H^i(X)$ the i-th cohomology sheaf of the intersection cohomology complex of X. Let \mathfrak{g} be a simple complex Lie algebra, $\mathfrak{b} \subset \mathfrak{g}$ a Borel subalgebra, $\mathfrak{h} \subset \mathfrak{b}$ a Cartan subalgebra, \mathfrak{h}^* its dual space. Let $W \subset \text{Aut}(\mathfrak{h}^*)$ be the Weyl group, and let $S \subset W$ be the set of simple reflections (with respect to \mathfrak{b}). $Q \subset \mathfrak{h}^*$ is the subgroup generated by the roots.

$P \subset \mathfrak{h}^*$ is the subgroup consisting of those elements of \mathfrak{h}^* which take integral values on any coroot. Then Q has finite index in P.

*Supported in part by the National Science Foundation.

$\tilde{W}_a \subset (\text{affi})$ (acting by trans. transform of λ)

W_a is the group. It is a C with the reflect $Y_0 \in \mathfrak{h}$ is the h is a semi-direct

For $\lambda \in \mathfrak{g}$, the group law in $\lambda, \lambda' \in \mathfrak{p}$, \tilde{W}_a by $x(y) = \lambda'$.

Corresponding sub.

Let P^{++} is a possible cosets \tilde{W}_a' in \tilde{W}, $\max_{\gamma} (q)$ is an indeterminate half the sum of γ coroots.

The fundamental by the fixed hypo simplex in $P \otimes \mathbb{C}$ (left) action of $\lambda = (A_0)\gamma \otimes \lambda$ For each the standard parts $s_1 s_2 \ldots s_n$ with $1 \leq i \leq n$. We extend $w \leq w'$, $(\gamma, \gamma') \in \Omega$.
SINGULARITIES, CHARACTER FORMULAS WEIGHT MULTIPLICITIES

\[\mathcal{W}_a \subset \text{affine transformations of } h^* \] is the semidirect of \(W \) and of \(P \) (acting by translations). We shall regard \(\mathcal{W}_a \) as acting on the right on \(h^* \). The transform of \(\lambda \in h^* \) under \(w = \mathcal{W}_a \) will be denoted \((\lambda)w\).

\(\mathcal{W}_a \) is the subgroup of \(\mathcal{W}_a \) generated by \(W \) and \(Q \). This is the affine Weyl group. It is a Coxeter group whose set \(S_a \) of simple reflections is \(S \) together with the reflection in \(a_a \) whose fixed point set is \(\{ x \in h^* \mid \langle x, a_a \rangle = 1 \} \); here \(a_\gamma \in h^* \) is the highest coroot. Let \(\Omega \) be the normalizer of \(S_a \) in \(\mathcal{W}_a \). Then \(\mathcal{W}_a \) is a semi-direct product \(\Omega \cdot \mathcal{W}_a \).

For \(\lambda \in P \), we denote by \(p_\lambda \) the same element, regarded in \(\mathcal{W}_a \). Since the group law in \(\mathcal{W}_a \) is written multiplicatively, we have \(p_{\lambda \lambda'} = p_{\lambda} p_{\lambda'} \) for \(\lambda, \lambda' \in P \). \(\ell \) is the length function on the Coxeter group \(\mathcal{W}_a \). We extend it to \(\mathcal{W}_a \) by \(\ell(\gamma w) = \ell(w) - \ell(\gamma) \), \(w \in \mathcal{W}_a \), \(\gamma \in \Omega \). For \(s \in S \), let \(a_s \in Q \) be the corresponding simple root and let \(a_s^\vee \in h \) be the corresponding simple coroot.

Let \(P^+ = \{ p \in P \mid \langle p, a_s^\vee \rangle > 0, \forall s \in S \} \). Then \(P^+ \) parametrizes the double cosets \(\mathcal{W}_a \backslash W / \mathcal{W}_a \). For \(\lambda \in P^+ \), \(\mathcal{W}_\lambda \) denotes the stabilizer of \(\lambda \) in \(W \), \(m_\lambda \) is the element of minimal length of \(\mathcal{W}_\lambda \), \(n_\lambda \) is the element of maximal length of \(\mathcal{W}_\lambda \), \(\nu_\lambda \) is the number of reflections in \(\mathcal{W}_\lambda \), \(\varrho_\lambda = \sum q_\lambda(w) \) (\(q \) is an indeterminate). For \(\lambda = 0 \), we set \(\nu_0 = \nu, \varrho_0 = \varrho \); \(p \in P \) denotes half the sum of all positive roots; \(p \in h \) denotes half the sum of all positive coroots.

The fundamental alcove \(A_0 \) is the open simplex in \(P \otimes \mathbb{R} \) (embedded in \(h^* \)) bounded by the fixed hyperplanes of the various reflections in \(S_a \). An alcove is an open simplex in \(P \otimes \mathbb{R} \) of the form \((A_0)w \), \(w \in \mathcal{W}_a \) (which is unique). Define a new (left) action of \(\mathcal{W}_a \) on the set of alcoves (denotes \(A \rightarrow \gamma A \)) by the rule \(\gamma (A_0)w = (A_0)\gamma w \). For each \(\lambda \in P \), we denote \(A_\lambda = (A_0)p_\lambda \), \(A_\lambda' = (A_0)p_\lambda \). Let \(\leq \) be the standard partial order on the Coxeter group \(\mathcal{W}_a \). It is generated by the relations \(s_i s_j ... s_n \leq s_i s_j ... s_n \) for any reduced expression \(s_i ... s_n \) \((s_i \in S_a) \), \(1 \leq i \leq n \). We extend it to a partial order \(\leq \) on \(\mathcal{W}_a \) by \(\gamma \gamma' \leq \gamma' \Rightarrow \gamma = \gamma' \) and \(w \leq w' \) \((\gamma, \gamma' \in \Omega, w, w' \in \mathcal{W}_a) \). Let \(\leq \) be the partial order on \(P \) defined by

209
\(\lambda \leq \lambda' \iff \lambda' - \lambda \) is a linear combination of positive roots, with \(\geq 0 \) integral coefficients. If \(\lambda, \lambda' \in \mathfrak{h}^+ \), we have \(\lambda \leq \lambda' \) if and only if \(n_{\lambda} \leq n_{\lambda'} \) (in \(\mathcal{W} \)).

For \(\lambda \in \mathfrak{h}^* \), \(M_\lambda \) denotes the Verma module for \(g \) with highest weight \(\lambda \) (with respect to \(\mathfrak{h} \)) and \(L_\lambda \) denotes the unique irreducible quotient \(g \)-module of \(M_\lambda \).

3. We will restrict our attention to the Verma modules \(M_{-\rho w} \) \((w \in W) \). In the Grothendieck group of \(g \)-modules, \(L_{-\rho w} \) is a linear combination with integral coefficients of the \(g \)-modules \(M_{-\rho y} \) \((y \leq w) \). The \(g \)-module \(M_{-\rho w} \) appears with coefficient 1, but the other coefficients were rather mysterious. A study of representations of Hecke algebras has led Kazhdan and the author [7] to give a (conjectural) algorithm for these coefficients and to interpret them in terms of singularities of Schubert varieties. Let us define the Schubert varieties. Consider the adjoint group \(G \) of \(g \), and let \(B \) be the Borel subgroup corresponding to \(\mathfrak{h} \), \(G_w \) the \(B-B \) double coset of \(C \) containing a representative of \(w \in W \), \(\mathcal{O}_w = G_w^B \subset G/B \). The Zariski closure \(\overline{\mathcal{O}_w} \) of \(\mathcal{O}_w \) in \(G/B \) is said to be a Schubert variety.

It is the union of the various \(\mathcal{O}_y \) for \(y \leq w \).

The following result was conjectured by D. Kazhdan and the author [7,8] and was proved by J.L. Brylinski and M. Kashiwara [3] and independently by A.A. Beilinson and J.N. Bernstein [1], using the theory of holonomic systems.

Theorem 3.1. In the Grothendieck group of \(g \)-modules, we have, for any \(w \in W \):

\[
L_{-\rho w} = \sum_{y \leq w} (-1)^i \omega_i \dim H^i_{\mathcal{O}_y}(\overline{\mathcal{O}_w})(\mathbb{C} \mathfrak{g}) M_{-\rho y}
\]

where \(\dim H^i_{\mathcal{O}_y}(\overline{\mathcal{O}_w}) \) is the dimension of the stalk of \(H^i_{\mathcal{O}_y}(\overline{\mathcal{O}_w}) \) at a point in \(\mathcal{O}_y \).

4. We shall now describe the integers \(\dim H^i_{\mathcal{O}_y}(\overline{\mathcal{O}_w}) \) following [7,8]. Let us recall the definition of the Hecke algebra \(H \) associated to \((W, S) \). It consists of all formal linear combinations \(\sum a_w T_w \) with \(a_w \in \mathbb{Z}[q^{1/2}, q^{-1/2}] \) with multiplication defined by the rules \(T_w T_{w'} = T_{ww'} \) if \(T(w) = T(w') \) and \((T_s^2 - 1)((1 - q) s) = 0 \) if \(s \in S \); here \(q^{1/2} \) is an indeterminate. There is a unique ring involution \(\overline{h} < h \) of \(H \) which takes \(q^{1/2} \) to \(q^{-1/2} \) and \(T_w \) to \(T_{w^{-1}}(\omega \in W) \).
It is semilinear with respect to the ring involution $q^{1/2} \rightarrow q^{-1/2}$ of $\mathbb{Z}[q^{1/2}, q^{-1/2}]$.

According to [7,1.1], for each $w \in W$, there is a unique element $C_w' \in H$ of the form $C_w' = q^{-\ell(w)/2} \sum_{y \leq w} P_{y,w}^T y$, where $P_{y,w}$ are polynomials in q satisfying $P_{y,w} = 1$ and $\deg P_{y,w} \leq 1/2(\ell(w) - \ell(y) - 1)$ for $y \leq w$, and such that $C_w' = C_w'$. The uniqueness of C_w' holds also if $P_{y,w}$ for $y < w$ is only assumed to be a polynomial in q and q^{-1} in which only powers q^i with $i \leq 1/2(\ell(w) - \ell(y) - 1)$ are allowed to occur. It follows automatically that the $P_{y,w}$ are polynomials in q.

The proof in [7] applies without change. (The discussion so far in this section, applies to an arbitrary Coxeter group and in particular to (W_A, S_A).) It also applies word by word to (\tilde{W}_A, S_A) which although is not a Coxeter group, possesses the length function and the partial order \leq which give a sense to the previous definitions and results.)

We can now state

Theorem 4.1. Let $y < w$ be two elements in the Weyl group W. Then

$$\dim H^i_y(O_w) = 0 \text{ if } i \text{ is odd}$$

$$\sum_i \dim H^i_y(O_w) q^i = P_{y,w}$$

Besides the original proof in [8], there is another proof in [12] which has the advantage that it also applies in the case where O_w is replaced by the closure of a K-orbit on G/B, where K is the centralizer of an involution in G. (This plays a role in a character formula for real semisimple Lie groups.) Both proofs make use of reduction to characteristic > 1 and of a form of Weil's conjectures.

Combining Theorems 3.1, 4.1, we can rewrite (3.2) in the form

$$L_{\rho \omega}^{-\rho} = \sum_{y \leq w} \left(-q^{\ell(w) - \ell(y)} \cdot P_{y,w}(1) M_{\rho y^{-\rho}} \right)$$

where $P_{y,w}(1)$ is the value of $P_{y,w}$ at $q = 1$. Using the inversion formula [7, 3.1] for the matrix $(P_{y,w})$, this can be also written as

$$M_{\rho w^{-\rho}} = \sum_{w \leq y} P_{w,y}(1) L_{\rho y^{-\rho}}$$
5. Remarks. (a) In the case where \(y, w \in W_\lambda \), the polynomials \(P_{y, w} \) have been interpreted in [7] in terms analogous to (4.3), as intersection cohomology of certain generalized Schubert varieties. (In particular, they have \(\geq 0 \) coefficients).

(b) There is a (conjectural) formula analogous to (3.2) for the characters of irreducible rational representations of a semisimple group over an algebraically closed field of characteristic \(\geq 1 \). It involves the polynomials \(P_{y, w} \) for \(y, w \) in an affine Weyl group. (See [9] for a precise statement).

6. If \(\lambda \in P^{++} \), the \(\mathfrak{g} \)-module \(L_\lambda \) is finite dimensional. With respect to the action of \(h \), it decomposes into direct sum of weight spaces parametrized by elements \(\mu \in P \). For \(\mu \in P^{++} \), we denote \(d_\mu (L_\lambda) \) the dimension of the \(\mu \)-weight space in \(L_\lambda \). It is well known that \(d_\mu (L_\lambda) = 0 \) unless \(\mu \leq \lambda \). The remainder of this paper is mainly concerned with the proof of the following result.

Theorem 6.1. If \(\mu, \lambda \in P^{++} \), \(\mu \leq \lambda \), then \(d_\mu (L_\lambda) = P_{\mu, \lambda} (1) \).

Here, \(P_{\mu, \lambda} \) is defined in terms of the Hecke algebra of \(\mathfrak{g} \), see section 4.

(This Hecke algebra will be denoted \(\mathcal{H} \); from now on, we shall reserve the letter \(H \) to denote the Hecke algebra of \(W_\lambda \). It is a subalgebra of \(\mathcal{H} \).) Note that

\[
\begin{align*}
P_{y, w} = P_{y, w} (y \in W, y, w \in W_\lambda) & \quad \text{so that the polynomials } P_{y', w'} , \text{ for } y', w' \in W_\lambda, \\
& \text{have } \geq 0 \text{ coefficients. For type } A, \text{ Theorem 6.1 follows from the results of [11],}
\end{align*}
\]

where \(P_{\mu, \lambda} \) are interpreted as Green-Foulkes polynomials. In general, 6.1 would be a consequence of the conjecture 5(b) together with the Steinberg tensor product theorem. The integers \(d_\mu (L_\lambda) \) are given by Weyl's character formula. To state the formula, we consider the elements

\[
(6.2) \quad k_\lambda = \frac{1}{|W|} \sum_{w \in W_\lambda} (\lambda \in P^{++}), \quad j_\lambda = \frac{1}{|W|} \sum_{w \in W} (\lambda \in P^{++}), \quad \gamma_\lambda = (\lambda \in P^{++}, \gamma_\lambda = (\lambda \in P^{++}, \gamma_\lambda = (\lambda \in P^{++},
\]

of the group algebra \(q[W_\lambda] \). Then \(k_\lambda, j_\lambda \) form a \(\mathbb{Z} \)-basis for the subgroup \(K^1 \) and \(j_\lambda \) form a \(\mathbb{Z} \)-basis for the subgroup \(J^1 \).

It follows that, with \(\chi \) a right \(K^{1-\alpha} \) isomorphism of Prop. 2(iii). Theorem 2.3.

(6.3) For \(\lambda \in P^{++} \), the element in \(K^{1-\alpha} \)

This is equivalent as a quotient of the elements

(6.4)

and therefore

(6.5)

Then \(K_\lambda (\lambda \in P^{++}) \) and \(J_\lambda (\lambda \in P^{++}) \)

Note that \(K \) is a \(K \)-module.

In the st for arbitrary

(6.6)

\(J_\lambda = (-1)^\delta (\alpha_\lambda) J_\lambda \).
SINGULARITIES, CHARACTER FORMULAS, WEIGHT MULTIPlicITIES

It follows that K^1 is a subring of $\mathbb{Q}(\mathbb{W})$ with unit element $\frac{1}{[W]} \Sigma \omega$ and that, with respect to the product in $\mathbb{Q}(\mathbb{W})$, we have $J^1 \cdot K^1 \subseteq J^1$, i.e. J^1 is a right K^1-module. Moreover, the map $\kappa^1 : J^1 \to k$ is an isomorphism of right K^1-modules. (This is a reformulation of [2, Ch. VI, 3.3, Prop. 2(iii)].) We can now state Weyl's character formula as follows.

(6.3) For $\lambda \in P^{++}$, let $c_{\lambda}^1 = \sum_{\mu \in P^{++}} d_{\mu}(l_\lambda) k_\mu \in K^1$. Then c_{λ}^1 is the unique element in K^1 such that $j^{1+}_{\lambda} c_{\lambda}^1 = j^{1+}_{\lambda}$.

(This is equivalent to the usual formulation in which the character of L_λ appears as a quotient of two alternating expressions.)

We wish to consider a q-analog of the multiplicity $d_{\mu}(l_\lambda)$. The q-analog of the elements (6.2) are the following elements of the Hecke algebra \tilde{H}:

(6.4) $K^{1} = \frac{1}{p} \sum_{w \in W \cap \mathbb{P}} \Sigma T_w = \Sigma_{w \in W \cap \mathbb{P}} (\Sigma T_w) P_{\lambda} \omega \in \mathbb{W}$

(6.5) $J^{1} = \Sigma_{w \in W \cap \mathbb{P}} (-q)^{\ell(w)} T_w^{-1} \omega^{1-q(p_\lambda)}/p^{1-q(p_\lambda)} \in \mathbb{W}$

and therefore $J^{1} = \frac{q^{1/2}}{2} (\Sigma_{w \in W \cap \mathbb{P}} (-q)^{\ell(w)} T_w^{-1} \omega^{1-q(p_\lambda)}/p^{1-q(p_\lambda)} \in \mathbb{W}$ for $\lambda \in P^{++}$.

Then $K^{1}(\lambda \in P^{++})$ form a $\mathbb{Z}[q^{1/2}, q^{-1/2}]$-basis for

$K = \{ x \in \tilde{H} : (\Sigma T_w) x = x (\Sigma T_w) = P \cdot x \} \subset \mathbb{W} \otimes \mathbb{Q}(q^{1/2})$

and $J^{1}(\lambda \in P^{++})$ form a $\mathbb{Z}[q^{1/2}, q^{-1/2}]$-basis for

$J = \{ y \in \tilde{H} : (\Sigma (-q)^{\ell(w)} T_w^{-1} y = y (\Sigma T_w) = P \cdot y \} \subset \mathbb{W} \otimes \mathbb{Q}(q^{1/2})$.

Note that K is a subring of $\mathbb{W} \otimes \mathbb{Q}(q^{1/2})$ with unit element $\frac{1}{[W]} \Sigma T_w$ and that, with respect to the product in $\mathbb{W} \otimes \mathbb{Q}(q^{1/2})$, we have $J \cdot K \subseteq J$, i.e. J is a right K-module.

In the statement of the following theorem, we shall give a meaning to $J_\lambda \in J$ for arbitrary $\lambda \in P$ if $(\lambda) \omega \neq \lambda$ for all $w \in W$, $w \neq e$, we set

$J_\lambda = (-1)^{\ell(w)} j_{(\lambda)w}$ where w is the unique element of W such that $(\lambda)w \in P^{++}$.
For the remaining \(\lambda \in P \), we set \(J_\lambda = 0 \).

Theorem 6.6. For any \(\lambda \in P^{++} \), we have

\[
(6.7) \quad J_\lambda \cdot (-q(p_\lambda)^{-1} K_\lambda) = \frac{1}{P_\lambda} \sum \prod (-q)^{-|I|} J_{\lambda + \rho - \alpha_I}
\]

(sum over all subsets \(I \) of the set of positive roots); here \(\alpha_I \) denotes the sum of the roots in \(I \).

The proof will be given in Section 7.

If \(I \) is as in the previous sum and if \(\nu \in W \) is such that \(\nu \cdot \alpha_I = (\nu \cdot \beta) \nu \cdot \lambda' \in P^{++} \), then \(\lambda - \lambda' = \lambda - (\nu \cdot \beta) \nu^{-1} (\nu \cdot \rho) \nu^{-1} + (\nu \cdot \alpha_I) \nu^{-1} = \lambda - (\nu \cdot \beta) \nu^{-1} + \alpha_I \) where \(J \) is the set of positive roots \(\beta \) such that \((\nu \cdot \beta) \nu \in I \) or such that \(- (\nu \cdot \beta) \nu \) is positive, \(\nu \in I \). Since \(\lambda \geq (\nu \cdot \beta) \nu^{-1} (\nu \cdot \rho) \nu^{-1} \) and \(\alpha_I \geq 0 \), it follows that \(\lambda \geq \lambda' \).

Thus, the right hand side of (6.7) is a linear combination of elements \(J_{\lambda + \rho} \) \((\lambda' \leq \lambda) \) with formal power series in \(q^{-1} \) without terms of form \(q^i \) \((i > 0) \) as coefficients; moreover for \(\lambda' < \lambda \), the coefficient doesn't have a constant term. On the other hand, since the left hand side of (6.7) is in \(J \), the coefficients must be polynomials in \(q^{1/2} \), \(q^{-1/2} \). It follows that they are polynomials in \(q^{-1} \) (without constant term if \(\lambda' < \lambda \)). The coefficient of \(J_{\lambda + \rho} \) is equal to \(1 \); this follows from the identity

\[
(6.10) \quad \frac{1}{P_\lambda} \sum \prod (-q)^{-|I|} = 1.
\]

Since a triangular matrix with 1's on diagonal has an inverse of the same form, we see that for any \(\lambda \in P^{++} \), the element \(J_{\lambda + \rho} \) is a linear combination of elements \(J_{\rho} (q^{-\frac{1}{2}(p_{\lambda'})^2 k_{\lambda'}}), \lambda' \leq \lambda, \) with coefficients polynomials in \(q^{-1} \) (without constant term, if \(\lambda' < \lambda \) and \(\rho = I \), if \(\lambda' = \lambda \)). Hence we have

Corollary 6.8. For any \(\lambda \in P^{++} \), there is a unique element \(C_\lambda^i \in K \) such that

\[
(6.9) \quad J_{\rho} \cdot C_\lambda^i = J_{\lambda + \rho}.
\]

It is of the form

\[
(6.11) \quad d_{\mu}(L_{\lambda} \; \sigma)\mu \in \sigma
\]

	over, the powers

\[
(6.12) \quad d_{\lambda}(L_{\lambda} \; \sigma) = \text{right} \; K\text{-modules}
\]

Note that known [5] that, (6.13)

\[
\text{Hence} \quad \frac{1}{2}(L_{\lambda} \; \sigma) = \mu \in \mu
\]

We shall coefficients.

We have

Theorem 6.12. we have

\[
(6.14) \quad \text{for the proof of}
\]

\[
(6.15) \quad \text{Lemma 6.14. If}
\]

\[
(6.16) \quad \text{in the case which is proved in the}
\]

The defir tended to a ring

\[
(6.17) \quad \text{From (6.9) it th}
\]

\[
(6.18) \quad C_\lambda^i - C_\lambda^j \in K, \; \text{we}
\]

\[
(6.19) \quad \text{The element}
\]
SINGULARITIES, CHARACTER FORMULAS, WEIGHT MULTIPLICITIES

\[(6.10) \quad C'_\lambda = q^{-\frac{1}{2}c(p_\lambda)/2} \sum_{\mu \subseteq \lambda} d_\mu (L_\lambda \mid q^2) K_\mu \]

where \(d_\mu (L_\lambda \mid q) \) are polynomials in \(q \) and \(q^{-1} \) with integer coefficients; moreover, the powers \(q^\frac{1}{2} \) appearing in \(d_\mu (L_\lambda \mid q) \) satisfy \(\frac{1}{2} (\varepsilon(p_\lambda) - \varepsilon(p_\mu)) \) if \(\mu \subseteq \lambda \)

and \(d_\mu (L_\lambda \mid q) = 1 \). In particular, the map \(h \mapsto J_h \) defines an isomorphism of right \(K \)-modules of \(K \) onto \(J \).

Note that, if \(\mu \subseteq \lambda \), then \(\frac{1}{2} (\varepsilon(p_\lambda) - \varepsilon(p_\mu)) \) is an integer. Indeed, it is known [5] that, for \(\lambda \in P^+ \),

\[(6.11) \quad \varepsilon(p_\lambda) = \langle \lambda, 2\beta \rangle. \]

Hence \(\frac{1}{2} (\varepsilon(p_\lambda) - \varepsilon(p_\mu)) = \frac{1}{2} \langle \lambda, 2\beta \rangle - \langle \mu, 2\beta \rangle = \langle \lambda - \mu, \beta \rangle \) and this is an integer since \(\lambda - \mu \in Q \).

We shall now show that \(d_\mu (L_\lambda \mid q) \) are actually polynomials in \(q \) with \(\geq 0 \) coefficients.

We have

Theorem 6.12. \(C'_\lambda = q^{\nu/2} p^{-1} C'_{\eta_\lambda} \text{ (} \lambda \in P^+ \text{).} \) In particular, for \(\mu \subseteq \lambda \text{ in } P^+ \), we have

\[(6.13) \quad d_\mu (L_\lambda \mid q) = p_{\mu, \eta_\lambda} \]

hence \(d_\mu (L_\lambda \mid q) \) is a polynomial in \(q \) with \(\geq 0 \) coefficients.

For the proof of 6.12, we need the following result.

Lemma 6.14. If \(\lambda \in P^+ \), then \(J_{\lambda^+, \rho} = J_{\lambda^+, \rho} \).

In the case where \(\lambda \in Q \cap P^+ \), this is just Lemma 11.7 of [10]. The general case is proved in the same way.

The definition of \(K \) shows that \(K \) is stable under \(h \mapsto \overline{h} \) (which is extended to a ring involution of \(\mathbb{H} \otimes \mathfrak{g}(q^{1/2}) \)). (Note that \(\overline{p^\tau \sum T_v} = p^{-1} \sum \overline{T_v} \).

From (6.9) it then follows that \(J_{\rho^+, \lambda} = J_{\rho^+, \lambda} \). Thus \(J_{\rho} (C'_{\lambda^+} - C'_{\lambda^+}) = 0 \) and, since \(C'_{\lambda^+} - C'_{\lambda^+} \in K \), we have \(C'_{\lambda^+} = C'_{\lambda^+} \), by the last sentence in Corollary 6.8.

The element \(q^{\nu/2} p_{\lambda} \) is also fixed by \(h \mapsto \overline{h} \), since \(\overline{q^{\nu/2}} p_{\lambda} = q^{-\nu/2} p_{\lambda} \). This ele-
moment is equal to
\[q^{-\frac{1}{2}\lambda_\nu} \sum_{y \in \mathfrak{C}_\nu} \mathfrak{d}_\nu(y) (L_\nu | q)_T y \]
where \(\mathfrak{d}_\nu(y) \in \mathfrak{P}^+ \) is defined by \(y \in \mathfrak{W} \mathfrak{P}_\nu(y) \).

We now use the bounds on the powers of \(q \) appearing in \(d_\nu(L_\nu | q) \) given in Corollary 6.8. If follows that \(q^{-\frac{1}{2} \mathfrak{C}_\nu} \) satisfies the defining property of \(\mathfrak{C}_\nu \), hence it is equal to it. Thus Theorem 6.12 follows from Theorem 6.6. On the other hand, it implies Theorem 6.1. Indeed, under the specialization \(Z(q^{1/2}, q^{-1/2}) = \mathbb{Z} \), given by \(q^{1/2} = 1 \), \(\mathfrak{N} \) becomes the group ring \(\mathbb{Z}[\mathfrak{C}_\nu] \), \(k_\lambda \) becomes \(k_\lambda(L \in \mathfrak{P}^+) \), \(J_\lambda \) becomes \(j_\lambda \), \(\lambda \in \mathfrak{P}^+ \) and (6.9) becomes (6.3). It follows that for \(\nu, \lambda \in \mathfrak{P}^+, \nu < \lambda \), \(d_\nu(L_\lambda) \) is the value of \(d_\nu(L_\lambda | q) \), at \(q = 1 \) and theorem 6.1 follows.

7. For the proof of Theorem 6.6 we shall need several preliminary steps. We shall begin with a definition (due to J. Bernstein) of a large commutative subalgebra of \(\mathfrak{N} \), which is a \(q \)-analogue of the subring \(\mathbb{Z}[\mathfrak{P}] \) of \(\mathbb{Z}[\mathfrak{A}] \). To each \(\lambda \in \mathfrak{P} \), Bernstein associates an element \(\mathfrak{T}_\lambda \in \mathfrak{N} \) defined by \(\mathfrak{T}_\lambda = (q^{1/2} \mathfrak{T}_\lambda)^{1/2} \mathfrak{T}_\lambda^{-1} \) where \(\lambda_1, \lambda_2 \) are elements of \(\mathfrak{P}^+ \) such that \(\lambda = \lambda_1 - \lambda_2 \). This is independent of the choice of \(\lambda_1, \lambda_2 \), since for \(\lambda', \lambda'' \in \mathfrak{P}^+ \) we have the identity \(\mathfrak{T}_{\lambda'} \mathfrak{T}_{\lambda''} = \mathfrak{T}_{\lambda'} \mathfrak{T}_{\lambda''} \mathfrak{T}_{\lambda'} \mathfrak{T}_{\lambda''} \mathfrak{T}_{\lambda'} \mathfrak{T}_{\lambda''} \). (Indeed, we have \(\mathfrak{T}_{\lambda'} \mathfrak{T}_{\lambda''} = \mathfrak{T}_{\lambda'} \mathfrak{T}_{\lambda''} \mathfrak{T}_{\lambda'} \mathfrak{T}_{\lambda''} \mathfrak{T}_{\lambda'} \mathfrak{T}_{\lambda''} \).)

Lemma 7.1. (J. Bernstein) Let \(\lambda \in \mathfrak{P} \) and let \(s \in \mathfrak{S} \). We have
\[\mathfrak{T}_s \mathfrak{T}_\lambda \mathfrak{T}_s = (\mathfrak{T}_s \mathfrak{T}_\lambda \mathfrak{T}_s) \mathfrak{T}_s. \]

Proof: We may clearly assume that \(\nu, \nu_\lambda \geq 0 \). Assume first that \(\nu, \nu_\lambda = 0 \).
We can write \(\nu = \nu_1 - \nu_2 \), with \(\nu_1, \nu_2 \in \mathfrak{P}^+ \), \(\nu_1, \nu_2 = 0 \). To prove the identity \(\mathfrak{T}_s \mathfrak{T}_\lambda \mathfrak{T}_s = \mathfrak{T}_s \mathfrak{T}_\lambda \mathfrak{T}_s \), we are thus reduced to the case where \(\lambda \in \mathfrak{P}^+ \), \(\nu_1, \nu_2 = 0 \). But then \(\mathfrak{T}(s_\lambda) = \mathfrak{T}(s_\lambda) \mathfrak{T}(s_\lambda) \), hence \(\mathfrak{T}_s \mathfrak{T}_\lambda \mathfrak{T}_s = \mathfrak{T}_s \mathfrak{T}_\lambda \mathfrak{T}_s \), as required.
Next, we consider the case where \(\langle \lambda, \alpha_s^\vee \rangle = 1 \), i.e. \((\lambda)_s = \lambda - \alpha_s \). In this case, the result follows from Lemma 4.4(b) in (C. Lusztig, Some examples of square integrable representations of semisimple \(p \)-adic groups, preprint IHES, 1982).

Next, we assume that \(\langle \lambda, \alpha_s^\vee \rangle = d \geq 2 \) and that the result is already known when \(d \) is replaced by \(d' \), \(0 \leq d' < d \). We can write \(\lambda = \lambda_1 + \lambda_2 \) where \(\langle \lambda_1, \alpha_s^\vee \rangle = d - 1 \), \(\langle \lambda_2, \alpha_s^\vee \rangle = 1 \). Then \(\langle \lambda_1 + \lambda_2, \alpha_s^\vee \rangle = d - 2 \). The induction hypothesis is applicable to \(\lambda_1, \lambda_2 \) and to \(\lambda_1 + \lambda_2 \). Hence \(T_{\alpha} \) commutes with \(A = \prod_{\lambda_1}^{\gamma} \prod_{\lambda_2} \gamma \), \(B = \prod_{\lambda_1}^{\gamma} \prod_{\lambda_2} \gamma \), \(C = \prod_{\lambda_1}^{\gamma} \prod_{\lambda_2} \gamma \) for \(\alpha \in \mathbb{P}^+ \), \(\gamma \in \mathbb{P}^+ \). The lemma is proved.

We now define, for any \(\lambda \in \mathbb{P} \), an element \(\tilde{J}_\lambda \in J \) by the formula

\[
\tilde{J}_\lambda = q^{-1/2} \gamma \prod_{\alpha} \psi \theta
\]

where \(\theta = \sum_{\omega} T_{\omega} \), \(\gamma = \sum_{\omega} (-q)^{\omega} T_{\omega}^{-1} \). When \(\lambda \in \mathbb{P}^++_p \), we have clearly \(\tilde{J}_\lambda = J_\lambda \). In general, we have

Lemma 7.3. \(\tilde{J}_{\lambda} \in J \) for any \(\lambda \in \mathbb{P} \), \(\omega \in \mathbb{W} \); hence, \(\tilde{J}_\lambda = J_\lambda \) for all \(\lambda \in \mathbb{P} \).

Proof: We may assume that \(\omega = s \in S \). Note that \(T_{\alpha} T_{\lambda} = T_{\lambda} T_{\omega} \), \(T_{\omega}^{-1} = T_{\omega}^{-1} \), hence

\[
\tilde{J}_{\lambda} \circ T_{\alpha} = q^{-1/2} \gamma \prod_{\alpha} \psi \theta \tilde{J}_{\lambda} T_{\alpha} \theta
\]

\[
= q^{-1/2} \gamma \prod_{\alpha} \psi \theta (\tilde{J}_{\lambda} \circ T_{\alpha} \tilde{J}_{\lambda}) T_{\alpha} \theta
\]

\[
= -q \cdot q^{-1/2} \gamma \prod_{\alpha} \psi \theta (\tilde{J}_{\lambda} \circ T_{\alpha} \tilde{J}_{\lambda}) T_{\alpha} \theta
\]

by lemma (7.1)

\[
= -q \tilde{J}_{\lambda} \circ T_{\alpha} \tilde{J}_{\lambda} T_{\alpha} \theta
\]

Thus, \(\tilde{J}_{\lambda} \circ T_{\alpha} \tilde{J}_{\lambda} = 0 \), as required.

Lemma 7.4. There is a unique function \(f : \mathbb{P}^+ \rightarrow \mathbb{Z}[q, q^{-1}] \) with finite support satisfying properties (i), (ii), (iii) below:

(i) \(f(0) = q^0 \)

(ii) \(f(\lambda) \neq 0 \Rightarrow \lambda \leq \rho \)

(iii) \(f(\lambda + \alpha) = q^{-\langle \alpha, \alpha \rangle} f(\lambda) \)

for \(\alpha \in \mathbb{P}^+ \), \(\lambda \in \mathbb{P}^+ \).
(iii) Let $X \subset Q^+p$ be an a-string: $X = \{x \in \mathbb{Q}^+p, n \in \mathbb{Z}\}$, where x is any fixed element of Q^+p and a is any fixed simple root. Let $a > 0$ be an integer such that $<\lambda, \tilde{\alpha}_b> = a \pmod{2}$ for all $\lambda \in X$. Then

$$\frac{1}{\mathcal{X}} \sum_{\lambda \in \mathcal{X}} f(\lambda) = -q^{-(a-1)} \sum_{\lambda \in \mathcal{X}} f(\lambda) \quad \frac{1}{\mathcal{X}} \sum_{\lambda \in \mathcal{X}} <\lambda, \tilde{\alpha}_b> = a$$

This function is given by the formula

$$(7.5) \quad f(\lambda) = (-1)^v \sum_{I \subseteq \mathcal{X}} (-q)^{|I|} q^{-<\lambda, \tilde{\alpha}_b>}$$

where I runs through the subsets of the set of positive roots, and α_I is defined as in 6.6.

Proof: The function f defined by (7.5) clearly satisfies (i) and (ii). We now verify that it satisfies (iii). We shall set $a = \alpha, \tilde{\alpha}_b = \tilde{\alpha}$. We have, with the notations of (iii):

$$(7.6) \quad \mathcal{X} \sum_{\lambda \in \mathcal{X}} f(\lambda) = (-1)^v \mathcal{X} \sum_{\lambda \in \mathcal{X}} (-q)^{|I|} q^{-<\lambda, \tilde{\alpha}_b>}$$

where

$$(7.7) \quad \sum_{\lambda \in \mathcal{X}} (-q)^{|I|} q^{-<\lambda, \tilde{\alpha}_b>} = (1) (7.8) \quad \sum_{\lambda \in \mathcal{X}} (-q)^{|I|+1} q^{-<\lambda, \tilde{\alpha}_b>} =$$

Comparing \mathcal{X} with finite \mathfrak{g}, with finite \mathfrak{sl}_2.

To g with finite \mathfrak{g}, with finite \mathfrak{sl}_2.

An element invariant through X.

Let a be a
SINGULARITIES, CHARACTER FORMULAS, WEIGHT MULTIPLICITIES

Hence

\[(7.6) \quad \sum_{\lambda \in \mathfrak{X}} f(\lambda) = (-1)^{\nu} \sum_{\lambda \in \mathfrak{X}} (-q)^{\left| \mathfrak{I}_{q} \right|-\langle \lambda \rangle_{p, \delta}} \cdot \]

A similar computation shows that

\[\sum_{\lambda \in \mathfrak{X}} f(\lambda) = (-1)^{\nu} \sum_{\lambda \in \mathfrak{X}} (-q)^{\left| \mathfrak{I}_{q} \right|-\langle \lambda \rangle_{p, \delta}} \cdot \]

Now the simple reflections maps the set of positive roots +\(a\) onto itself. Hence the last sum is equal to

\[\sum_{\lambda \in \mathfrak{X}} (-q)^{\left| \mathfrak{I}_{q} \right|-\langle \lambda \rangle_{p, \delta}} \cdot \]

Comparing with the right hand side of (7.6), we conclude that \(f\) satisfies (iii).

To prove the converse it is enough to show that if a function \(g: Q_{+} \to \mathbb{Z}_{[q, q^{-1}]}\) with finite support satisfies \(g(\rho) = 0\), \(g(\lambda) \neq 0 \Rightarrow \lambda \leq \rho\) and the identity (iii) with \(f\) replaced by \(g\), then \(g = 0\). Assume that \(g \neq 0\), and let \(x \in Q_{+}\) be an element of maximal possible length (with respect to some positive definite, \(W\)-invariant scalar product on \(P \otimes \mathbb{R}\) such that \(g(x) \neq 0\). Let \(X\) be the string through \(x\) corresponding to the simple root \(a_{\alpha}\). Then \(x' = (x)s\) is also in \(X\). Let \(a\) be the absolute value of \(\langle x, a_{\alpha} \rangle = -\langle x', a_{\alpha} \rangle\). If \(y \in X\) satisfies...
\[\langle y, \delta_a \rangle > a \] then clearly the length of \(y \) is strictly bigger than that of \(x \)
hence \(g(y) = 0 \). Hence the identity (iii) for \(g \), and \(X \), \(a \), as above, reduces
to \(g(x) = -q^{k+1}g(x') \). It follows that \(g(x') \neq 0 \). Note also that \(x, x' \) have the
same length. Iterating this, we see that \(g(wx) \neq 0 \) for all \(w \in W \); moreover,
\((x)w \) has the same length as \(x \). For suitable \(w \in W \), we have \(\langle (x)w, \delta_a \rangle > 0 \) for
all simple roots \(\alpha \). Replacing \(y \) by \((x)w \), we may thus assume that \(\langle x, \delta_a \rangle > 0 \)
for all simple roots \(\alpha \). If we had \(\langle x-\rho, \delta_a \rangle > 0 \) for all simple roots \(\alpha \), then
it would follow that \(\langle x, \delta_a \rangle > 0 \); since \(g(x) \neq 0 \), we would have \(\rho - x \geq 0 \), hence
\(\rho - x = \sum a_\alpha \delta_\alpha \) (\(a_\alpha \) simple, \(a_\alpha \geq 0 \) integers), hence \(\langle -\sum a_\alpha \delta_\alpha, \rho \rangle > 0 \). Thus
\(\sum a_\alpha = 0 \), hence \(a_\alpha = 0 \) for all simple roots \(\alpha \), hence \(\rho = \delta_\alpha \). But \(g(\rho) = 0 \)
and this is a contradiction with \(g(x) \neq 0 \). Thus, there exists a simple root \(\alpha \) such that
\(\langle x, \delta_\alpha \rangle < 0 \); since \(\langle x, \delta_\alpha \rangle > 0 \), it follows that \(\langle x, \delta_\alpha \rangle = 0 \).
Consider the string \(X \) through \(x \) corresponding to the simple root \(\alpha \). The equality
\(\langle x, \delta_\alpha \rangle = 0 \) shows that among the elements of \(X \), the element \(x \) has minimal length.
It follows that \(g(y) = 0 \) for all \(y \in X \), \(y \neq x \). Let us now write the identity
(iii) for \(g \), this \(X \), and \(a = 0 \). We get \(g(x) = -q^{k}g(x) \) hence \(g(x) = 0 \).
This contradiction shows that \(g = 0 \) and the Lemma is proved.

We shall now introduce as in [10] an \(H \)-module \(M \) as follows. \(M \) is the
free \(\mathbb{Z}[q^{1/2}, q^{-1/2}] \) module with basis \((A) \) where \(A \) are the various alcoves in
\(P \otimes \mathbb{R} \). For each \(s \in S_a \), we define an endomorphism \(T_s \) of this \(\mathbb{Z}[q^{1/2}, q^{-1/2}] \)-
module by

\[
T_s (A) = \begin{cases}
q^aA, & \text{if there exists a root } \alpha \text{ with } \langle x, \delta_\alpha \rangle > n \\
q^aA, & \text{for } x \in sA, \langle x, \delta_\alpha \rangle < n \\
q^aA, & \text{for } x \in A
\end{cases}
\]

These endomorphisms make \(M \) into an \(H \)-module.

Let \(W' \) be the subgroup of \(W \) that is generated by those \(s \in S_a \) for which
\(s(A \delta_\alpha) \) contains \(a \) in its closure. (This is a parabolic subgroup of \(W \) conjugate
to \(W \) under an element in \(\Omega \).)
Lemma 7.7. Let $y \in W_a$. We define a function $f : Q^+ \rightarrow \mathbb{Z} [q^{1/2}, q^{-1/2}]$ as follows:

$$f(\lambda) \text{ is the coefficient with which } A_\lambda^{-} \text{ appears in}$$

$$\left(\sum_{w \in W} (-q)^{l(w)}\mu_{T_w}^{-1} \right)_{T_w} (\sum_{w \in W} \mu_{T_w}) A_o^{-} \in M.$$

Then

(i) If $y(\Lambda_\alpha^+) = A_\alpha^{-}$, $\alpha \in \Pi^+$, $\lambda \in Q^+$, then $f(\lambda) = q^\lambda$; moreover $\lambda' \in Q^+$ implies $\lambda' \leq \lambda$.

(ii) In general, let $X = Q^+$ be an a_s-string $(a_s$ a simple root) and let $a \geq 0$ be an integer such that $<\lambda, \alpha_s^{-}> = a (\text{mod } 2)$ for all $\lambda \in X$. Then

$$\sum_{\lambda \in X} f(\lambda) = q^{-a-1} \sum_{\lambda \in X} f(\lambda).$$

Proof: (i) Follows from [10, 4.2 (a)] and (ii) is a consequence of [10, 9.2] applied to the element $\sum_{w \in W} \mu_{T_w}^{-1} A_o^{-}$.

Corollary 7.8. If y in the previous lemma is such that $y(\Lambda_\alpha^+) = A_\alpha^{-}$, then

$$(7.9) \quad \left(\sum_{w \in W} (-q)^{l(w)}\mu_{T_w}^{-1} \right)_{T_w} (\sum_{w \in W} \mu_{T_w}) A_o^{-} = q^{-\alpha} \left(\sum_{w \in W} (-q)^{l(w)}\mu_{T_w}^{-1} \right)_{T_w} f(\lambda) h_{\lambda} A_o^{-},$$

where, for $\lambda \in Q^+$, $f(\lambda)$ is given by (7.5), and h_{λ} is an element of H such that

$$h_{\lambda} A_o^{-} = A_{\lambda}^{-}.$$

Proof: In our case, the function f of Lemma 7.7 satisfies the conditions (i), (ii), (iii) of Lemma 7.4, hence is given by (7.5). It follows that for any $\lambda \in Q^+$, A_{λ}^{-} appears with the same coefficient in the two sides of (7.9) and the corollary follows.

Since the H-module M is faithful, we can erase A_o^{-} from the two sides of (7.9) and we obtain an identity in H. We can rewrite this identity as follows. Let $y \in \Pi$ be such that $y \gamma \gamma^{-1} = \gamma$. We multiply both sides of this identity on the left by T_{γ}^{-}. Note that $T_{\gamma}^{-} T_{\gamma} = T_{\gamma}^{-} T_{\gamma} = T_{\gamma}$. Moreover $T_{\gamma} h_{\lambda} = q^{l(\lambda)}/2q^\gamma$. Thus, we have
\[
\theta^T \theta = (\sum_{\mu}q^{\ell}(\omega)_{T_{\mu}}^{-1})T_{\mu} T = \sum_{\mu}q^{\ell}(\omega)_{T_{\mu}}^{-1} \sum_{\mu}q^{\ell}(\omega)_{T_{\mu}}^{-1} \sum_{\mu}f(\lambda)q^\ell(p_\lambda)/Z_{\mu}T_{\lambda}.
\]

We can now compute for \(\lambda \in P^{++} \):

\[
J_\theta(q^{-\ell}(p_\lambda)/Z_{\lambda}) = q^{-\ell}(m_\lambda)/Z_{\mu} \sum_{\mu}q^{-\ell}(p_\lambda)/Z_{\mu}T_{\mu} T_{\lambda} = \sum_{\mu}q^{-\ell}(m_\lambda)/Z_{\mu}q^{-\ell}(p_\lambda)/Z_{\mu}T_{\mu} T_{\lambda}.
\]

(8.2)

It is clear that

(8.3)

where the \(\geq \) of \(g \)-modules

(8.4)

By Weyl's char.

It follows that

(8.5)

The following result describes the centre \(Z \) of \(\tilde{\mathfrak{h}} \).

8. The following result describes the centre \(Z \) of \(\tilde{\mathfrak{h}} \).

Theorem 8.1. (J. Bernstein). Let \(\lambda \in P^{++} \) and let \((\lambda)W \) be its \(W \)-orbit in \(P \). Then \(z_\lambda = \sum_{\lambda' \in (\lambda)W} q_{\lambda'} \) is in \(Z \). Moreover, \(Z \) is the free \(\mathbb{Z}[q^{1/2}, q^{-1/2}] \)-module with basis \(z_\lambda \) \((\lambda \in P^{++}) \).

Proof: Let \(s \in S \). Then \(T_s z_\lambda = z_{\lambda s} \) by 7.1. It follows that \(T_w z_\lambda = z_{\lambda w} \) for all \(w \in W \). It is obvious that, for any \(\mu \in P^{++} \), \(T_{\mu} \) commutes with \(z_\lambda \). But the elements \(T_w \) \((w \in W) \) and \(T_{\mu} \) \((\mu \in P^{++}) \) generate \(H \) as an algebra. Hence \(z_\lambda \in Z \).

Let \(z^1_\lambda \) be the specializations of \(z_\lambda \) under the homomorphism \(H \to \mathbb{Z} [\tilde{\mathfrak{h}}] \) given by \(q^{1/2} \to 1 \). Then clearly \(z^1_\lambda \) form a set of \(\mathbb{Z} \)-generators for the centre of \(\mathbb{Z} [\tilde{\mathfrak{h}}] \) : the elements of \(P \) are the only elements of \(\tilde{\mathfrak{h}} \) whose conjugacy class is finite. Using a version of Nakayama's lemma it follows that any element \(z \) of \(Z \)
SINGULARITIES, CHARACTER FORMULAS, WEIGHT MULTIPLICITIES

is a linear combination of the elements z_λ with coefficients being allowed to be in the localization of $\mathbb{Z}[q^{1/2}, q^{-1/2}]$ at the ideal generated by $q^{1/2} - 1$. Since $z \in H$, these coefficients must automatically be in $\mathbb{Z}[q^{1/2}, q^{-1/2}]$. The fact that the elements z_λ are linearly independent is obvious. The Theorem is proved.

Let us now define, for $\lambda \in P^{**}$, an element

$$S_\lambda = \sum_{\mu \in P^{**}} d_{\mu} (L_\mu) z_\mu \in \mathbb{Z}$$

It is clear that for $\lambda, \lambda' \in P^{**}$, we have

$$S_\lambda S_{\lambda'} = \sum_{\mu \in P^{**}} m(\lambda, \lambda'; \mu) S_{\mu}$$

where the ≥ 0 integers $m(\lambda, \lambda'; \mu)$ are the multiplicities in the tensor product of g-modules:

$$L_\lambda \otimes L_{\lambda'} = \sum_{\mu \in P^{**}} m(\lambda, \lambda'; \mu) L_\mu$$

By Weyl's character formula (6.3) we have

$$\sum_{\omega \in W} (-1)^{\ell(\omega)} \tau(\omega)_{(\lambda', \lambda)} S_\lambda = \sum_{\omega \in W} (-1)^{\ell(\omega)} \tau(\omega)_{(\lambda, \lambda')} S_{\lambda'}$$

It follows that

$$J_\rho S_\lambda = |W|^{-1} \sum_{\omega \in W} (-1)^{\ell(\omega)} \tau(\omega)_{(\rho, \lambda)} S_\lambda$$

$$= |W|^{-1} \sum_{\omega \in W} q^{-\nu/2} (-1)^{\ell(\omega)} \tau(\omega)_{(\rho, \lambda)}$$

$$= |W|^{-1} \sum_{\omega \in W} q^{-\nu/2} (-1)^{\ell(\omega)} \tau(\omega)_{(\rho, \lambda)}$$

$$= |W|^{-1} \sum_{\omega \in W} (-1)^{\ell(\omega)} \tau(\omega)_{(\lambda', \lambda)} S_{\lambda'}$$

$$= J_{\lambda', \lambda}$$

The identity

$$J_\rho S_\lambda = J_{\lambda', \lambda} \quad (\lambda' \in P^{**})$$

223
shows that the map $Z \to J$ given by $x \to J_\rho^x z$ is an isomorphism of $Z[q^{1/2}, q^{-1/2}]$-modules. From this we shall deduce

Proposition 8.6: The map $Z \to K$ given by $z \to (\frac{1}{p} \sum_{\mu \in W} z) = p^{-1/2}z$ is an isomorphism of $Z[q^{1/2}, q^{-1/2}]$-algebras preserving the unit element. Under this isomorphism $S_\lambda \in Z$ correspond to $C_\lambda' \in K$, i.e., $C_\lambda' = p^{-1/2}S_\lambda$.

Indeed, we have a commutative diagram

\[\begin{array}{ccc}
Z & \xrightarrow{F} & J \\
\downarrow{p^{-1}J_0} & & \downarrow{J_0} \\
K & & K
\end{array}\]

(since $p^{-1}J_0 = J_0$) and the maps $Z \to J, K \to J$ given by multiplication by J_0 are known to be isomorphisms (see 6.8). Our map $Z \to K$ preserves multiplication: $p^{-1}g_z p^{-1}g_z' = p^{-2}g_z g_z' = p^{-1}g_z g_z'$. Finally $S_\lambda \in Z$ corresponds to $C_\lambda' \in K$, since both correspond to $J_{\lambda', \rho} \in J$ (see (6.9), (8.5)). The isomorphism $Z \to K$ is a version of the Satake isomorphism. It shows in particular that K is a commutative algebra.

Corollary 8.7. If $\lambda, \lambda' \in P^{++}$, we have

$$C_\lambda' \cdot C_{\lambda''} = \sum_{\lambda'''} m(\lambda, \lambda'; \lambda'') C_{\lambda'''}$$

where $m(\lambda, \lambda'; \lambda'')$ are defined by (8.4).

(The remarkable fact in (8.7) is that the coefficients with which $C_{\lambda''}$ appears in the decomposition of $C_\lambda' \cdot C_{\lambda''}$ are independent of q.)

Corollary 8.8. For any $\lambda \in P^{++}$, we have $\overline{z}_\lambda = z_\lambda$.

Indeed, the isomorphism given in 8.6 is compatible with $h \to h$ (since $p^{-1}h = p^{-1}b$).

Since $C_\lambda' = C_{\lambda''}$, it follows that $\overline{S}_\lambda = S_\lambda$. But z_λ is a \mathbb{Z}-linear combination of element $S_{\lambda'}$ ($\lambda' \leq \lambda$) hence $\overline{z}_\lambda = z_\lambda$.

Corollary 8.9. If $\lambda \in P^{++}$, we have

(8.10)

\[\text{(product over)}\]

Proof: The le \[x : \overline{h} \to Z_i \forall_{\lambda} \in \overline{W}_a\] Note

and this is kn Weyl's charact

9. Let $\mu \leq \overline{\gamma, \lambda} \Rightarrow 0$ for the polynomial only depends on well defined f

such that for

(9.1)

for any $\tau \in P$

Proposition 9.:
of $\mathbb{Z}[q^{1/2}, q^{-1/2}]$.

$P^{-1}b_0$ is

Under this

multiplication

tives mistaken
supposes to
he isomor-

cular that

appears in

$P^{-1}b_0 = P^{-1}b_0 = P^{-1}b_0$

Combination

SINGULARITIES, CHARACTER FORMULAS, WEIGHT MULTIPlicITIES

(8.10) \[\sum_{\mu \in \mathcal{P}_+} \frac{q^{\mu} \langle \mu, \lambda \rangle \mu_\lambda (L; q)}{\prod_{\mu \leq \lambda} (q^{\langle \mu, \lambda \rangle} - 1)} = \frac{\prod_{\alpha > 0} (q^{<\alpha, a^\lambda> - 1})}{\prod_{\alpha > 0} (q^{<\alpha, a^\lambda> - 1})} \]

(product over all positive roots α)

Proof: The left hand side of (8.10) is $\chi(q^{\langle \rho, \lambda \rangle} / C^\lambda)$ (see 6.10) where $\chi : \mathcal{H} \rightarrow \mathbb{Z}[q^{1/2}, q^{-1/2}]$ is the algebra homomorphism defined by $\chi(T_\mu) = q^{\langle \mu, \lambda \rangle}$, $\forall \mu \in \mathcal{H}$. Note that $\chi(T_{\mu \mu}) = q^{<\mu, \lambda>}$ for any $\mu \in \mathcal{P}_+$, (see (6.11)). We have

$\chi(q^{\langle \rho, \lambda \rangle} / C^\lambda) = \chi(q^{\langle \rho, \lambda \rangle} / 2p^{1/2} \delta^1 \lambda)$

\[= q^{\langle \rho, \lambda \rangle} / \chi(S^1 \lambda) \]

\[= q^{<\rho, \lambda>} \sum_{\mu \in \mathcal{P}_+} \mu_\lambda (L; q) \sum_{\mu \leq \lambda} q^{<\mu, \lambda>} \]

and this is known to be equal to the right hand side of (8.10). (See the proof of Weyl's character formula in [6]).

9. Let $\mu \leq \lambda$ be two elements of \mathcal{P}. According to [10] if $\tau \in \mathcal{P}$ is such that $<\tau, s_\lambda> = 0$ for all $s \in S$ (so that, in particular, $\mu \tau \in \mathcal{P}^+$, $L \lambda \tau \in \mathcal{P}^+$), the polynomial $P_{\mu \tau \lambda \tau}$ is independent of the choice of τ. In particular, it only depends on the difference $\lambda - \mu$. Using now (6.13), we see that there exists a well defined function

$\hat{\rho} : \{\kappa \in \mathcal{Q} \mid \kappa < 0\} \rightarrow \mathbb{Z}[q^{-1}]$ such that for any $\mu \leq \lambda$ in \mathcal{P}, with $\lambda - \mu = \kappa$, we have

(9.1) \[q^{-<\kappa, \rho> \mu_\tau (L; q)} = \hat{\rho}(\kappa) \]

for any $\tau \in \mathcal{P}$ such that $<\tau, s_\lambda> > 0$ for all $s \in S$.

Proposition 9.2.

(9.3) \[\hat{\rho}(\kappa) = \sum_{n_1, \ldots, n_\lambda \geq 0} q^{-(n_1 + \ldots + n_\lambda)} \]

\[\sum_{n_1, \ldots, n_\lambda \geq 0} q^{n_1 + \ldots + n_\lambda} = \kappa \]

225
Here a_1, \ldots, a_r is the list of all positive roots and n_1, \ldots, n_r are required to be integers. In particular for $q = 1$, $\hat{P}(\kappa)$ reduces to the Kostant partition function.

Proof: The formulas (8.7), (8.9), (8.10) show that $\hat{P}(\kappa)$ satisfies the recurrence relation

$$\sum_{I} (-q)^{|I|} \hat{P}(\kappa-a_1) = \begin{cases} 1 & \text{if } \kappa = 0 \\ 0 & \text{if } \kappa > 0 \end{cases}$$

(sum over all subsets I of the set of positive roots), with the convention that $\hat{P}(\kappa) = 0$ if $\kappa \neq 0$. From this, the required formula for $\hat{P}(\kappa)$ follows immediately.

It may be conjectured that, for any $\mu \leq \lambda$ in P^{++}, we have

$$q^{-\lambda-\mu} \hat{P}(\lambda; q) = \sum_{w \in W} (-1)^{L(w)} \hat{P}(\lambda+\mu-w-(\mu+\mu))$$

(9.4)

For $q = 1$ this reduces to a well known formula of Kostant.

(Note added May 1982: Conjecture (9.4) has been recently proved by S. Kato, to appear in Inventiones Math.)

For type A, formula (9.4) follows from a statement in [13, p. 131]; indeed, in that case, the left hand side of (9.4) is a Green-Foulkes polynomial (cf. [11]).

The right hand side of (9.4), in the special case $\mu = 0$, appears also in the work of D. Peterson, in connection with the g-module structure of the (graded) coordinate ring of the nilpotent variety of g.

10. If λ is the highest root, we have $d_{\mu}(L_{\lambda}; q) = 1$ for any $\mu \leq \lambda$. Indeed, the multiplicity $d_{\mu}(L_{\lambda})$ is 1 in this case (it is a dimension of a root space in the adjoint representation of g). Since $d_{\mu}(L_{\lambda}; q)$ has 0 coefficients and constant term 1, it must be identically 1. If we write the formula (8.10) for λ, the only unknown term is, therefore, $d_{\mu}(L_{\lambda}; q)$. We can compute it from (8.10) and we find $d_{0}(L_{\lambda}; q) = \sum q^{e_i-1}$ where e_i (i = 1, ..., rk(g)) are the exponents of g.

11. We shall prove the following
 a) $\bar{\delta}_{\lambda}$ is a
 b) If $\mu, \lambda \in P^{++}$, the stalks
 c) Let $x \in$

Letting λ be an element of g' with we denote by each $\lambda \in P^{++}$ a vector t^{λ} submodule of under the Li
 a) symmetric
 any lattice
 y \in L. It
 follows that
 T
 vertex of th
 correspondin
 of roots of
 (whose Coxet
 hence L is
 Lie algebra
 X of all se
 is known tha
 joint and co
11. We shall now describe the (generalized) Schubert varieties \(\overline{\mathcal{O}}_\lambda \) \((\lambda \in \mathfrak{p}^{++})\) with the following properties:

a) \(\overline{\mathcal{O}}_\lambda \) is an irreducible, projective complex variety of dimension \(<\lambda, 2\gamma > \).

b) If \(\mu, \lambda \in \mathfrak{p}^{++} \), are such that \(\mu \leq \lambda \) then \(\overline{\mathcal{O}}_\mu \leq \overline{\mathcal{O}}_\lambda \).

c) Let \(x \in \overline{\mathcal{O}}_\lambda \) be such that \(x \in \overline{\mathcal{O}}_\mu \) (\(\mu \leq \lambda \)) but \(x \notin \overline{\mathcal{O}}_\nu \), for any \(\nu \neq \mu \). Then the stalks \(H^i_x(\overline{\mathcal{O}}_\lambda) \) are zero if \(i \) is odd and \(\dim H^i_x(\overline{\mathcal{O}}_\lambda) = d_i(\lambda; q) \).

Let \(\mathfrak{g}' \) be a simple complex Lie algebra which is dual to \(\mathfrak{g} \) in the following sense. There is a Cartan subalgebra \(\mathfrak{h}' \subset \mathfrak{g}' \) with a given isomorphism onto \(\mathfrak{h}^* \) which carries the set of coroots of \(\mathfrak{g}' \) with respect to \(\mathfrak{h}' \) onto the set of roots of \(\mathfrak{g}' \) with respect to \(\mathfrak{h} \). Let \(\mathfrak{g}' = \mathfrak{g}' \otimes \mathfrak{c}(\{t\}) \). For each coroot \(\alpha \in \mathfrak{h}^* \) of \(\mathfrak{g} \) we denote by \(X_\alpha \) a non-zero vector in the corresponding root space of \(\mathfrak{g}' \). For each \(\lambda \in \mathfrak{p}^{++} \), we denote by \(l^\lambda \) the \(\mathfrak{c}(\{t\}) \)-submodule of \(\mathfrak{g}' \) generated by the vectors \(t^{\langle \alpha, l^\lambda \rangle} X_\alpha \) and by \(\mathfrak{h} \otimes \mathfrak{c}(\{t\}) \). This is a lattice in \(\mathfrak{g}' \) (i.e., a \(\mathfrak{c}(\{t\}) \)-submodule of maximal rank.) It is moreover an order in \(\mathfrak{g}' \) (i.e., a lattice closed under the Lie bracket). Let \((\cdot, \cdot) \) be the Killing form on \(\mathfrak{g}' \); we extend it to a symmetric bilinear form on \(\mathfrak{g}' \) with values in \(\mathfrak{c}(\{t\}) \). Then \(l^\lambda = l^\lambda \) where for any lattice \(L \) we denote by \(L^\vee \) the dual lattice \(\{x \in \mathfrak{g}'^* | (x, y) \in \mathfrak{c}(\{t\}) \} \) for all \(y \in L \). It is easy to check that if \(L \) is any order in \(\mathfrak{g}' \), then \(L \subset L^\vee \). It follows that any self-dual order is a maximal order, hence, by a theorem of Bruhat-Tits, it is a "maximal parahoric" order. It moreover, must correspond to a special vertex of the extended diagram of \(\mathfrak{g}' \). Indeed, if \(L \) is a maximal parahoric order corresponding to a non-special vertex \(v \), then \(\dim(L^\vee/L) \) is equal to the number of roots of \(\mathfrak{g}' \) minus the number of roots in a proper semisimple subalgebra of \(\mathfrak{g}' \) (whose Coxeter diagram is obtained by removing \(v \) from the extended diagram of \(\mathfrak{g}' \)); hence \(L \) is not self-dual. It follows that the group \(G' \) of automorphisms of the Lie algebra \(\mathfrak{g}' \) inducing identity on the Weyl group, acts transitively on the set \(X \) of all self-dual orders in \(\mathfrak{g}' \). Let \(G'_0 = G'_0 \) be the stabilizer of \(\lambda \) in \(G' \). It is known that the sets \(\mathcal{O}_\lambda \) (\(\mathcal{O}_\lambda = G'_0 \)-orbit of \(l^\lambda \) in \(X \)) \((\lambda \in \mathfrak{p}^{++})\) are disjoint and cover the whole of \(X \). For any integer \(n \geq 0 \), we consider the subset.
$X_n \subset X$ defined by $X_n = \{ L \in X \mid t^nL_0 \subset L \subset t^{-n}L_0 \}$. Then $X_0 \subset X_1 \subset X_2 \subset \ldots$ and their union is X; indeed for any lattice L we can find $n > 0$ such that $t^nL_0 \subset L$ and we then have by duality $L' \subset t^{-n}L_0$.

We will show that X_n is in a natural way a projective algebraic variety. To give a self-dual lattice L, $t^nL_0 \subset L \subset t^{-n}L_0$, is the same as to give a subspace \mathfrak{L} of $t^{-n}L_0/t^nL_0$ which is t-stable and is maximal isotropic for the symmetric \mathbb{F}-bilinear form on $t^{-n}L_0/t^nL_0$ defined by $\text{Res}(x,y)$. Moreover, L gives rise to a subspace $\mathfrak{L} \subset t^{-n}L_0/t^{2n}L_0$ of codimension $= \dim L_0/t^nL_0$. Now $t^{-n}L_0/t^{2n}L_0$ carries a canonical alternating 3-form with values in \mathbb{F}, defined by $\text{Res}([x,y],z)$. The condition that L is an order (if we assume that L is already known to be a self-dual lattice) is that this 3-form is identically zero on \mathfrak{L}.

Thus, we have a 1-1 correspondence $L \leftrightarrow \mathfrak{L}$ between X_n and the set of maximal isotropic subspaces of $t^{-n}L_0/t^nL_0$, stable under the nilpotent endomorphism t, and whose inverse image in $t^{-n}L_0/t^{2n}L_0$ is such that the canonical alternating 3-form vanishes identically on it.

This is a subset of a Grassmannian, defined by algebraic equations, hence is a projective algebraic variety. Thus X can be regarded as an increasing union of projective varieties. If $\lambda \in \mathfrak{p}^{++}$ satisfies $<\lambda,\vartheta > \leq n$ for all roots then $\overline{G}_\lambda' \subset X_n$. It is then a locally closed subset of X_n, since it can be regarded as an orbit of the algebraic group $G_\lambda'/([g' \in G_0' \mid g' = 1)$ on L_0/t^nL_0 acting on X_n.

We then define \overline{G}_λ to be the Zariski closure of \overline{G}_λ in X_n. One could define similarly the varieties \overline{G}_λ over a finite field \mathbb{F}_p (instead of over \mathbb{F}).

The number of rational points (over \mathbb{F}_p) of \overline{G}_λ (in the sense of intersection cohomology) i.e., with each rational point x counted with a multiplicity equal to the trace of the Frobenius map on $\mathbb{Z}(1)^{iH^l_x(\overline{G}_\lambda)}$ is the left hand side of (8.10), hence it is given by the right hand side of (8.10), with q replaced by p^s.

In particular, the Euler characteristic of \overline{G}_λ (in the sense of intersection cohomology) is equal to $\dim(L_\lambda')$.
SINGULARITIES, CHARACTER FORMULAS, WEIGHT MULTIPlicITIES

REFERENCES

