LIE ALGEBRAS

CONSTRUCTION OF A LIE ALGEBRA ATTACHED TO A ROOT SYSTEM.

We fix a root system (F,(,), R) and a set II = {a;};c; of simple roots. Let
2(a,a5)
(O‘JFO‘J'J) ’

Let F' be the free Lie algebra on generators {e;, f;, h;|i € I'}. Let K be the ideal
of F' generated by the elements

[hi, bl leq, f3] = 0ijha, [has €5] — ajiej, [ha, f3] 4 ajif;.
Let F' = F/K. The images of e;, f;, h; in Fy are denoted by the same letters.

Let T be the tensor algebra on a vector space with basis {v;;i € I'}. We write
Vi, Vi, - - - U, instead of v;, ®v;, ®...®wv;, . (These form a basis of T'.) Define linear
maps hj,ej, fj : T — T by:

CLZ'j =

hj(vilviz . Uis) = —(ailj —+ aisj)fuilfuiQ I VT

fj (Uil Vig « - - Uz‘5> = VjVjy Vi, - - - Uy

€j (Uh Vig « -+ Uis) == 22:1 6j7ik (a’ik+1j +oo aisj)vh Uiy - - @Zk - Vg
Lemma. [hl,h]] = 0, [ei,fj] = (51-]-@1-, [hi,ej] = Qji€y, [hz,f]] = —ajifj as maps

T — T. Hence hj, f;,e; define an F-module structure on T

The relation [h;, h;] = 0 is obvious. We have

(eifj - fjei>(vilvi2 . 'Uis>

S
= y .« e s B s . o . .« e s
ez(vjvilv¢2 U, ) + + E 0; ix (aikHi +---+a, i)vjvilviz Vi V;
k=1

S
= —(513' (aili 4+ -4 aisi)vilvi2 co Vi, — E 6i,ik (aik+1¢ 4+ -4 aisi)vjvilvi2 e Vg Vg
k=1

s
+ E Oiyig, @iy oy QL) V0L Uiy Dy o,

k=1
= _5ij (CLZ'”' —+ - aisi)vilviZ Ui, = 5ijhi(vi1vi2 . Uis)'
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Thus, [e;, f;] = 0i;h; holds. We have

(hiej — ejhi)(vilviz Ce Uis)

= Z 0j,ir (aik+1j +--t aisj)hi<vi1vi2 Dy ;)
k=1

S
— (@it F @) Y G (i g+ A Q)0 Vs D,
k=1

S
= Zdj,ik(aik-s-lj +oodai ) (@i o Gy @) (Vi Uiy - D4y V)
k=1

S

— (@it F i) Y G (i + o 4 Q)0 Vs D,
k=1

S
= Zéj’ik (aik+1j R aisj) — aiki(vilvi2 e Vg e -Uis)
k=1

S
= i ) 8 (ipsnj + o F @) (03 Vi iy 0) = i (03,05 03,
k=1

Thus, [hi,e;] = a;;e; holds. We have

(hzf] — fjhi)(vilv¢2 .. .Ui5>
= hi(vjvi, Vi, - vi,) + (@i + -+ aigi) [ (Vi viy - 05)
= —(aji + @iyi + -+ Qi) V0L Viy Vi, F (@ e @)UV Ve

= —Q;j;VjVij; Vi, ... Vi, = _ajifj (Uil Vig -+ Uis)~

s

Thus, [hi, f;] = —a;; f; holds. The lemma is proved.

Lemma. Let F* be the Lie subalgebra of F generated by {e;li € I}. Let F~
be the Lie subalgebra of I generated by {fi|i € I}. Let FO be the subspace of F
spanned by {h;|i € I}. Then F = F~ @& FO® F* and {h;|i € I} is a basis of F°.

By the previous lemma there is a unique Lie algebra homomorphism ¢ : F' —
End(T) which sends e;, f;, h; to the endomorphisms described above.

(a) The elements {h;|i € I} are linearly independent in F.

Assume that >, c¢;h; = 0 in F. Applying this to v; gives Y., c;ajv; = 0in T
hence ), cia;; = 0. As (a;;) is nonsingular, we have ¢; = 0.

(b) Let e(s) be an iterated bracket of s elements e;,,...,e;,. Then [h;,e(s)] =
(@iyj + - +ai )e(s) in F.

We argue by induction on s. For s = 1 this follows from the definition. As-
sume that s > 1. It is enough to show: if [hj,z] = ax and [h;,2'] = a’2’ then
[hj, [z, 2']] = (a + a')[z, 2] (use Jacobi).
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(c) Let f(s) be an iterated bracket of s elements f;,,..., fi.. Then [h;, f(s)] =
—(aqj+ - +ai;)f(s) in F.

As in (b).

(d) If s > s> 0 then [f(s),e(s)] is a linear combination of e(s’ — s).

Assume first that s = 1. We argue by induction on s’. For s’ = 2 we have

[f5: [eisex]) = [y, eils ewr] + e, [, erl] = [=0ijhis exr] — e, i jhj] € keir + ke
Hence the result holds in this case. Assume now that s’ > 2. Then e(s’) =
le(s”),e(8")] where s" 48" = s, s" < §',§" =5. If s > 1,5" > 1 the result follows
from the induction hypothesis using Jacobi. If s” = 1 we have e(s") = [ex, e(s’'—1)]
hence

[f5: [ex, e(s" = D] = [[£5, ex], e(s” = D] + [ex, [f5, e(s" = D]] = const[h, e(s" —
1)] + [e, lin.combe(s’ — 2)] = lin.combe(s’ — 1).

We now assume that s is fixed and use induction on s.

(e) If s > s' > 0 then [f(s),e(s")] is a linear combination of f(s —s').

Same proof as (d).

(f) For s > 1, [f(s),e(s)] € >, kh,.

Induction on s. If s = 1 this is clear. Assume that s > 2. Then f(s) =
[f(s"), f(s—s")] where 0 < s’ < s. Then

[£(s), e(s)] = [[f(s"),e(s)], f (s = )] + [F ("), [f (s = 5"), e(s)] = lin.comb.[e(s —
s"), f(s— )]+ lin.comb.[f(s),e(s")] = lin.comb.h;.

(g) F~ + F° + F* is a Lie subalgebra of F hence it is F.

Follows from the previous points.

(h) The sum F~ 4+ F° 4+ F* is direct.

For A € I let

Fy={z € F;h;,x] = ?C(j‘ glisz eI}
We have e(s) € Fu, +..ta;,, f(8) € Fea, —.—a,,, hj € Fy. It remains to observe
that aj; +---+ay, #0if s > 0.

Lemma. Leti# jinI. Let k € I. We have (adey)(adf;) =%+ (f;) =0 in F.

Assume first that & # i. Then ek, fi] = 0 hence adeg, adf; commute and
(ader)(adf) = 1(f;) = (adf)~* (adey) (£;) = (adfi) =+ [ey, fi]. 1 k # j
this is 0 since [ex, f;] = 0. If k = j this is (adf;) "% h; = (adf;) % a;; fi. If
a;; > 0 this is 0 since [f;, f;] = 0. If a;; = 0 this is also 0.

Assume next that k& = i. Let m = —aj;; > 0. One shows by induction on
t > 1 that (ade;)(adfi)!(f;) = t(m —t + 1)(adf;)' = (f;). Taking t = m + 1 gives
(ade.)(adf)!(f;) = 0.

For i # j let X;; = (ade;) ™% (e;),Ysj = (adf;) % (f;) (in F).

Let J* be the ideal of F'* generated by the X;;. Let J~ be the ideal of F'~
generated by the Y;;. Let J be the ideal of F'~ generated by the X;;,Y;;. Let
L~ =F)J ,LT=F*/J" L°=;kh;,L=F/J.

Jt,J~ are ideals of F.
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We prove this for J~. It suffices to show that [hx, J"| C J—, [fr,J ] C J,
lex,J7] € J~. The first two inclusions are easy. The third follows from the
previous lemma.

We have J = J~ + J7.

Clearly, J= +J+ C J. We have seen that J~ +J¥ is an ideal of F'. It contains
Xij,Y:; hence it contains J.

The obvious map L~ ® L° @ LT — L is an isomorphism of vector spaces.

Wehave L=F/J=(F-®F° o F")/(J - +J)=F"/J- @ F°a FT/J".

For any N € E let Ly ={x € L; [h;, x] = 20004) 0t € I}y, Then

(ai,a)

L™ = @)\;)\:—ail—~~~—o¢in,n>0L)\7 Lt = @)\;)\:ail+~~~+ain,n>0L)\; L0 = L.
Also each Ly is finite dimensional.

For any i, ade; and adf; are locally nilpotent endomorphisms of L.

Let M = {x € L;(ade;)"x = 0 for some n > 1}. Then M is a Lie subalgebra of
L. It contains ey, (since X;; =0 in L) and fj. Hence M = L.

Let 7, = exp(ade;) exp(ad(—f;)) exp(ade;) : L — L. This is a Lie algebra
automorphism of L.

Let A\, € E and let w e W (Weyl group) such that w(A) = p. Then dim Ly =
dim L,,.

We may assume that w = r; (simple reflection). Then y = X + na; for some
n. Consider V = @,,czLtna,- Then V is an sls submodule of L (where sl acts
through e;, f;, h;). By an earlier result, in this sls module 7; : V' — V interchanges
Ly,L,.

For any i we have e; # 0, f; # 0 in L.

We already know that h; # 0 in L. Now {e;, fi, h;} span a Lie subalgebra of
L isomorphic to a quotient of sl which is simple. Since h; # 0 in L, the three
elements e;, f;, h; are linearly independent in L.

For any i, dim L., = 1; Lia, = 0 for any integer k ¢ {1,0, —1}.

Follows from the previous claim.

If « € R then dim L, = 1; Lo = 0 for any integer k ¢ {1,0,—1}.

Follows from the previous claim since o = w(ay;) for some i, w.

Assume p € E satisfies (i, ) # 0 for all « € R. Then there exists w € W such
that (w(w), ;) >0 for all i.

We pick any linear order on P, = {e € E|(e, u) = 0}, say P, = P, UPFU{0}.
We define a linear order on E by E = E- UET U{0} where ET = {e € E|(e,u) >
0}UPF, E- ={ec E|(e,n) <0} UP,. Then RN E" is a set of positive roots
for R. Tt is {« € R; (c, u) > 0}. For some w € W we have {« € R; (a, ) > 0} =
w™(RT). Thus, for any o € R we have (w™!(a), ) > 0 that is (w(u), ) > 0.

Assume that A = ), kija; where k; € Z are all > 0 or all < 0. Assume that
A # 0 and X is not a multiple of a root. Then there exists w € W such that
w(A) =Y, kioy where k) € Z and some k; >0, some k] < 0.

For each e € Elet P, = {e’ € F;(e/,e) =0}. Now P is not contained in Uy, P,.
Pick p € Py —U,P,. Since u ¢ U, P, we can find w € W such that (w(u), ;) >0
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for all i. Then 0 = (A, 1) = (w(A),w(w)) = >, ki(os, w(p)). Hence some k; > 0,
some k; < 0.

If Ly # 0 then either A € R or A =0.

We may assume that A # 0. Then £\ = oy, + -+ a;,, n > 0. Assume that
A is not a multiple of a root. Let w be as in the previous claim. We must have
Lyn) = 0. Hence Ly = 0.

We have dim L = §(I) + #(R).

L is semisimple.

Let A be an abelian ideal of L. Since A is stable under adh; we have A =
(ANLY) + 3, cr(ANLy). Assume that L, C A for some a. If i € I we have
7i(A) C A hence L, C A. It follows that L) C A for any w € W. Hence
L., C A for some i hence e; € A. Since [f;,e;] = h; we have h; € A. Now
[hi, e;] = 2e; # 0 contradicting the fact that [A, A] = 0. Thus we have ANL, =0
for any . Hence A = AN LY. Then [L,,,A] C Lo, N L% = 0 for all i. Let
a =7y .ch; € A For any j we have [) . c;h;,e;] =0 hence ). c;a;; = 0. By the
non-singularity of (a;;) we have ¢; = 0 for all . Thus a = 0. We see that A =0
hence L is semisimple.

L° is a maximal toral subalgebra of L.

Clearly adx : L — L is semisimple for any z € L° hence L is toral. Assume
that L' is a toral subalgebra of L containing strictly LY. Since L’ contains LY, it is
a sum of L? and some L,. Thus L’ contains L, for some . Now any element of
L,, is nilpotent. (We can reduce this to the case where av = «; using a succession
of 7;.) Since any element of L’ is semisimple we see that L, = 0, contradiction.

Theorem. L is a semisimple Lie algebra whose root system with respect to L is
the given one.



