LIE ALGEBRAS

MIT-Fall 2005

Construction of a Lie Algebra attached to a root system.

We fix a root system (E, (,), R) and a set $\Pi = \{\alpha_i\}_{i \in I}$ of simple roots. Let $a_{ij} = \frac{2(\alpha_i, \alpha_j)}{(\alpha_j, \alpha_j)}$.

Let F be the free Lie algebra on generators $\{e_i, f_i, h_i | i \in I\}$. Let K be the ideal of F generated by the elements

 $[h_i, h_j], [e_i, f_j] - \delta_{ij}h_i, [h_i, e_j] - a_{ji}e_j, [h_i, f_j] + a_{ji}f_j.$ Let $\overline{F} = F/K$. The images of e_i, f_i, h_i in F_0 are denoted by the same letters.

Let T be the tensor algebra on a vector space with basis $\{v_i; i \in I\}$. We write $v_{i_1}v_{i_2}\ldots v_{i_s}$ instead of $v_{i_1} \otimes v_{i_2} \otimes \ldots \otimes v_{i_s}$. (These form a basis of T.) Define linear maps $h_j, e_j, f_j: T \to T$ by:

$$\begin{split} h_j(v_{i_1}v_{i_2}\dots v_{i_s}) &= -(a_{i_1j}+\dots+a_{i_sj})v_{i_1}v_{i_2}\dots v_{i_s};\\ f_j(v_{i_1}v_{i_2}\dots v_{i_s}) &= v_jv_{i_1}v_{i_2}\dots v_{i_s}\\ e_j(v_{i_1}v_{i_2}\dots v_{i_s}) &= -\sum_{k=1}^s \delta_{j,i_k}(a_{i_{k+1}j}+\dots+a_{i_sj})v_{i_1}v_{i_2}\dots \hat{v}_{i_k}\dots v_{i_s}. \end{split}$$

Lemma. $[h_i, h_j] = 0, [e_i, f_j] = \delta_{ij}h_i, [h_i, e_j] = a_{ji}e_j, [h_i, f_j] = -a_{ji}f_j$ as maps $T \to T$. Hence h_j, f_j, e_j define an \overline{F} -module structure on T.

The relation $[h_i, h_j] = 0$ is obvious. We have

$$\begin{aligned} &(e_i f_j - f_j e_i)(v_{i_1} v_{i_2} \dots v_{i_s}) \\ &= e_i(v_j v_{i_1} v_{i_2} \dots v_{i_s}) + + \sum_{k=1}^s \delta_{i,i_k}(a_{i_{k+1}i} + \dots + a_{i_si})v_j v_{i_1} v_{i_2} \dots \hat{v}_{i_k} \dots v_{i_s} \\ &= -\delta_{ij}(a_{i_1i} + \dots + a_{i_si})v_{i_1} v_{i_2} \dots v_{i_s} - \sum_{k=1}^s \delta_{i,i_k}(a_{i_{k+1}i} + \dots + a_{i_si})v_j v_{i_1} v_{i_2} \dots \hat{v}_{i_k} \dots v_{i_s} \\ &+ \sum_{k=1}^s \delta_{i,i_k}(a_{i_{k+1}i} + \dots + a_{i_si})v_j v_{i_1} v_{i_2} \dots \hat{v}_{i_k} \dots v_{i_s} \\ &= -\delta_{ij}(a_{i_1i} + \dots + a_{i_si})v_{i_1} v_{i_2} \dots v_{i_s} = \delta_{ij}h_i(v_{i_1} v_{i_2} \dots v_{i_s}). \end{aligned}$$

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

Thus, $[e_i, f_j] = \delta_{ij} h_i$ holds. We have

$$\begin{split} &(h_{i}e_{j}-e_{j}h_{i})(v_{i_{1}}v_{i_{2}}\ldots v_{i_{s}}) \\ &=-\sum_{k=1}^{s}\delta_{j,i_{k}}(a_{i_{k+1}j}+\cdots +a_{i_{s}j})h_{i}(v_{i_{1}}v_{i_{2}}\ldots \hat{v}_{i_{k}}\ldots v_{i_{s}}) \\ &-(a_{i_{1}i}+\cdots +a_{i_{s}i})\sum_{k=1}^{s}\delta_{j,i_{k}}(a_{i_{k+1}j}+\cdots +a_{i_{s}j})v_{i_{1}}v_{i_{2}}\ldots \hat{v}_{i_{k}}\ldots v_{i_{s}} \\ &=\sum_{k=1}^{s}\delta_{j,i_{k}}(a_{i_{k+1}j}+\cdots +a_{i_{s}j})(a_{i_{1}i}+\cdots +\hat{a}_{i_{k}i}+\cdots +a_{i_{s}i})(v_{i_{1}}v_{i_{2}}\ldots \hat{v}_{i_{k}}\ldots v_{i_{s}}) \\ &-(a_{i_{1}i}+\cdots +a_{i_{s}i})\sum_{k=1}^{s}\delta_{j,i_{k}}(a_{i_{k+1}j}+\cdots +a_{i_{s}j})v_{i_{1}}v_{i_{2}}\ldots \hat{v}_{i_{k}}\ldots v_{i_{s}}) \\ &=\sum_{k=1}^{s}\delta_{j,i_{k}}(a_{i_{k+1}j}+\cdots +a_{i_{s}j})-a_{i_{k}i}(v_{i_{1}}v_{i_{2}}\ldots \hat{v}_{i_{k}}\ldots v_{i_{s}}) \\ &=-a_{ji}\sum_{k=1}^{s}\delta_{j,i_{k}}(a_{i_{k+1}j}+\cdots +a_{i_{s}j})(v_{i_{1}}v_{i_{2}}\ldots \hat{v}_{i_{k}}\ldots v_{i_{s}}) \\ &=a_{ji}e_{j}(v_{i_{1}}v_{i_{2}}\ldots v_{i_{s}}). \end{split}$$

Thus, $[h_i, e_j] = a_{ji}e_j$ holds. We have

$$\begin{aligned} (h_i f_j - f_j h_i) (v_{i_1} v_{i_2} \dots v_{i_s}) \\ &= h_i (v_j v_{i_1} v_{i_2} \dots v_{i_s}) + (a_{i_1 i} + \dots + a_{i_s i}) f_j (v_{i_1} v_{i_2} \dots v_{i_s}) \\ &= -(a_{ji} + a_{i_1 i} + \dots + a_{i_s i}) v_j v_{i_1} v_{i_2} \dots v_{i_s} + (a_{i_1 i} + \dots + a_{i_s i}) c_j v_{i_1} v_{i_2} \dots v_{i_s} \\ &= -a_{ji} v_j v_{i_1} v_{i_2} \dots v_{i_s} = -a_{ji} f_j (v_{i_1} v_{i_2} \dots v_{i_s}). \end{aligned}$$

Thus, $[h_i, f_j] = -a_{ji}f_j$ holds. The lemma is proved.

Lemma. Let \bar{F}^+ be the Lie subalgebra of \bar{F} generated by $\{e_i | i \in I\}$. Let $\bar{F}^$ be the Lie subalgebra of \bar{F} generated by $\{f_i | i \in I\}$. Let \bar{F}^0 be the subspace of \bar{F} spanned by $\{h_i | i \in I\}$. Then $\bar{F} = \bar{F}^- \oplus \bar{F}^0 \oplus \bar{F}^+$ and $\{h_i | i \in I\}$ is a basis of \bar{F}^0 .

By the previous lemma there is a unique Lie algebra homomorphism $\phi: \overline{F} \to End(T)$ which sends e_i, f_i, h_i to the endomorphisms described above.

(a) The elements $\{h_i | i \in I\}$ are linearly independent in F.

Assume that $\sum_i c_i h_i = 0$ in \overline{F} . Applying this to v_j gives $\sum_i c_i a_{ji} v_j = 0$ in T hence $\sum_i c_i a_{ij} = 0$. As (a_{ij}) is nonsingular, we have $c_j = 0$.

(b) Let e(s) be an iterated bracket of s elements e_{i_1}, \ldots, e_{i_s} . Then $[h_j, e(s)] = (a_{i_1j} + \cdots + a_{i_sj})e(s)$ in \overline{F} .

We argue by induction on s. For s = 1 this follows from the definition. Assume that $s \ge 1$. It is enough to show: if $[h_j, x] = ax$ and $[h_j, x'] = a'x'$ then $[h_j, [x, x']] = (a + a')[x, x']$ (use Jacobi).

(c) Let f(s) be an iterated bracket of s elements f_{i_1}, \ldots, f_{i_s} . Then $[h_j, f(s)] = -(a_{i_1j} + \cdots + a_{i_sj})f(s)$ in \overline{F} .

As in (b).

(d) If s' > s > 0 then [f(s), e(s')] is a linear combination of e(s' - s).

Assume first that s = 1. We argue by induction on s'. For s' = 2 we have

 $[f_j, [e_i, e_{i'}]] = [[f_j, e_i], e_{i'}] + [e_i, [f_j, e_{i'}]] = [-\delta_{ij}h_i, e_{i'}] - [e_i, \delta_{i',j}h_j] \in \mathbf{k}e_{i'} + \mathbf{k}e_i.$ Hence the result holds in this case. Assume now that s' > 2. Then $e(s') = [e(s''), e(\tilde{s}'')]$ where $s'' + \tilde{s}'' = s', s'' < s', \tilde{s}'' = s'$. If $s'' > 1, \tilde{s}'' > 1$ the result follows from the induction hypothesis using Jacobi. If s'' = 1 we have $e(s') = [e_k, e(s'-1)]$ hence

 $[f_j, [e_k, e(s'-1)]] = [[f_j, e_k], e(s'-1)] + [e_k, [f_j, e(s'-1)]] = const[h_k, e(s'-1)] + [e_k, lin.combe(s'-2)] = lin.combe(s'-1).$

We now assume that s' is fixed and use induction on s.

(e) If s > s' > 0 then [f(s), e(s')] is a linear combination of f(s - s'). Same proof as (d).

(f) For $s \ge 1$, $[f(s), e(s)] \in \sum_i \mathbf{k} h_i$.

Induction on s. If s = 1 this is clear. Assume that $s \ge 2$. Then f(s) = [f(s'), f(s-s')] where 0 < s' < s. Then

 $[f(s), e(s)] = [[f(s'), e(s)], f(s - s')] + [f(s'), [f(s - s'), e(s)] = \text{lin.comb.}[e(s - s'), f(s - s')] + \text{lin.comb.}[f(s'), e(s')] = \text{lin.comb.}h_i.$

(g) $\bar{F}^- + \bar{F}^0 + \bar{F}^+$ is a Lie subalgebra of \bar{F} hence it is \bar{F} .

Follows from the previous points.

(h) The sum $\overline{F}^- + \overline{F}^0 + \overline{F}^+$ is direct.

For $\lambda \in E$ let

 $\bar{F}_{\lambda} = \{ x \in \bar{F}; [h_i, x] = \frac{2(\lambda, \alpha_i)}{(\alpha_i, \alpha_i)} x \forall i \in I \}.$

We have $e(s) \in \bar{F}_{\alpha_{i_1}+\cdots+\alpha_{i_s}}$, $f(s) \in \bar{F}_{-\alpha_{i_1}-\cdots-\alpha_{i_s}}$, $h_j \in \bar{F}_0$. It remains to observe that $\alpha_{i_1} + \cdots + \alpha_{i_s} \neq 0$ if s > 0.

Lemma. Let $i \neq j$ in I. Let $k \in I$. We have $(ade_k)(adf_i)^{-a_{ji}+1}(f_j) = 0$ in \overline{F} .

Assume first that $k \neq i$. Then $[e_k, f_i] = 0$ hence ade_k, adf_i commute and $(ade_k)(adf_i)^{-a_{ji}+1}(f_j) = (adf_i)^{-a_{ji}+1}(ade_k)(f_j) = (adf_i)^{-a_{ji}+1}[e_k, f_j]$. If $k \neq j$ this is 0 since $[e_k, f_j] = 0$. If k = j this is $(adf_i)^{-a_{ji}+1}h_j = (adf_i)^{-a_{ji}}a_{ij}f_i$. If $a_{ji} > 0$ this is 0 since $[f_i, f_i] = 0$. If $a_{ji} = 0$ this is also 0.

Assume next that k = i. Let $m = -a_{ji} \ge 0$. One shows by induction on $t \ge 1$ that $(ade_i)(adf_i)^t(f_j) = t(m-t+1)(adf_i)^{t-1}(f_j)$. Taking t = m+1 gives $(ade_i)(adf_i)^t(f_j) = 0$.

For $i \neq j$ let $X_{ij} = (ade_i)^{-a_{ji}+1}(e_j), Y_{ij} = (adf_i)^{-a_{ji}+1}(f_j)$ (in \bar{F}).

Let J^+ be the ideal of \bar{F}^+ generated by the X_{ij} . Let J^- be the ideal of $\bar{F}^$ generated by the Y_{ij} . Let J be the ideal of \bar{F}^- generated by the X_{ij}, Y_{ij} . Let $L^- = \bar{F}^-/J^-, L^+ = \bar{F}^+/J^+, L^0 = \bigoplus_i \mathbf{k} h_i, L = \bar{F}/J$.

 J^+, J^- are ideals of \overline{F} .

LIE ALGEBRAS

We prove this for J^- . It suffices to show that $[h_k, J^-] \subset J^-$, $[f_k, J^-] \subset J^-$, $[e_k, J^-] \subset J^-$. The first two inclusions are easy. The third follows from the previous lemma.

We have $J = J^- + J^+$.

Clearly, $J^- + J^+ \subset J$. We have seen that $J^- + J^+$ is an ideal of \overline{F} . It contains X_{ij}, Y_{ij} hence it contains J.

The obvious map $L^- \oplus L^0 \oplus L^+ \to L$ is an isomorphism of vector spaces. We have $L = \bar{F}/J = (\bar{F}^- \oplus \bar{F}^0 \oplus \bar{F}^+)/(J^- + J^+) = \bar{F}^-/J^- \oplus \bar{F}^0 \oplus \bar{F}^+/J^+$. For any $\lambda \in E$ let $L_{\lambda} = \{x \in L; [h_i, x] = \frac{2(\lambda, \alpha_i)}{(\alpha_i, \alpha_i)} x \forall i \in I\}$. Then

 $L^{-} = \bigoplus_{\lambda;\lambda = -\alpha_{i_1} - \dots - \alpha_{i_n}, n > 0} L_{\lambda}, \ L^{+} = \bigoplus_{\lambda;\lambda = \alpha_{i_1} + \dots + \alpha_{i_n}, n > 0} L_{\lambda}, \ L^{0} = L_0.$ Also each L_{λ} is finite dimensional.

For any i, ade_i and adf_i are locally nilpotent endomorphisms of L.

Let $M = \{x \in L; (ade_i)^n x = 0 \text{ for some } n \ge 1\}$. Then M is a Lie subalgebra of L. It contains e_k (since $X_{ij} = 0$ in L) and f_k . Hence M = L.

Let $\tau_i = \exp(ade_i)\exp(ad(-f_i))\exp(ade_i) : L \to L$. This is a Lie algebra automorphism of L.

Let $\lambda, \mu \in E$ and let $w \in W$ (Weyl group) such that $w(\lambda) = \mu$. Then dim $L_{\lambda} = \dim L_{\mu}$.

We may assume that $w = r_i$ (simple reflection). Then $\mu = \lambda + n\alpha_i$ for some n. Consider $V = \bigoplus_{m \in \mathbb{Z}} L_{\lambda + n\alpha_i}$. Then V is an sl_2 submodule of L (where sl_2 acts through e_i, f_i, h_i). By an earlier result, in this sl_2 module $\tau_i : V \to V$ interchanges L_{λ}, L_{μ} .

For any i we have $e_i \neq 0, f_i \neq 0$ in L.

We already know that $h_i \neq 0$ in L. Now $\{e_i, f_i, h_i\}$ span a Lie subalgebra of L isomorphic to a quotient of sl_2 which is simple. Since $h_i \neq 0$ in L, the three elements e_i, f_i, h_i are linearly independent in L.

For any *i*, dim $L_{\alpha_i} = 1$; $L_{k\alpha_i} = 0$ for any integer $k \notin \{1, 0, -1\}$. Follows from the previous claim.

If $\alpha \in R$ then dim $L_{\alpha} = 1$; $L_{k\alpha} = 0$ for any integer $k \notin \{1, 0, -1\}$.

Follows from the previous claim since $\alpha = w(\alpha_i)$ for some i, w.

Assume $\mu \in E$ satisfies $(\mu, \alpha) \neq 0$ for all $\alpha \in R$. Then there exists $w \in W$ such that $(w(\mu), \alpha_i) > 0$ for all i.

We pick any linear order on $P_{\mu} = \{e \in E | (e, \mu) = 0\}$, say $P_{\mu} = P_{\mu}^{-} \cup P_{\mu}^{+} \cup \{0\}$. We define a linear order on E by $E = E^{-} \cup E^{+} \cup \{0\}$ where $E^{+} = \{e \in E | (e, \mu) > 0\} \cup P_{\mu}^{+}$, $E^{-} = \{e \in E | (e, \mu) < 0\} \cup P_{\mu}^{-}$. Then $R \cap E^{+}$ is a set of positive roots for R. It is $\{\alpha \in R; (\alpha, \mu) > 0\}$. For some $w \in W$ we have $\{\alpha \in R; (\alpha, \mu) > 0\} = w^{-1}(R^{+})$. Thus, for any $\alpha \in R^{+}$ we have $(w^{-1}(\alpha), \mu) > 0$ that is $(w(\mu), \alpha) > 0$.

Assume that $\lambda = \sum_{i} k_{i} \alpha_{i}$ where $k_{i} \in \mathbb{Z}$ are all ≥ 0 or all ≤ 0 . Assume that $\lambda \neq 0$ and λ is not a multiple of a root. Then there exists $w \in W$ such that $w(\lambda) = \sum_{i} k'_{i} \alpha_{i}$ where $k'_{i} \in \mathbb{Z}$ and some $k'_{i} > 0$, some $k'_{i} < 0$.

For each $e \in E$ let $P_e = \{e' \in E; (e', e) = 0\}$. Now P_{λ} is not contained in $\bigcup_{\alpha} P_{\alpha}$. Pick $\mu \in P_{\lambda} - \bigcup_{\alpha} P_{\alpha}$. Since $\mu \notin \bigcup_{\alpha} P_{\alpha}$ we can find $w \in W$ such that $(w(\mu), \alpha_i) > 0$ for all *i*. Then $0 = (\lambda, \mu) = (w(\lambda), w(\mu)) = \sum_i k'_i(\alpha_i, w(\mu))$. Hence some $k'_i > 0$, some $k'_i < 0$.

If $L_{\lambda} \neq 0$ then either $\lambda \in R$ or $\lambda = 0$.

We may assume that $\lambda \neq 0$. Then $\pm \lambda = \alpha_{i_1} + \cdots + \alpha_{i_n}$, n > 0. Assume that λ is not a multiple of a root. Let w be as in the previous claim. We must have $L_{w(\lambda)} = 0$. Hence $L_{\lambda} = 0$.

We have dim $L = \sharp(I) + \sharp(R)$.

L is semisimple.

Let A be an abelian ideal of L. Since A is stable under adh_i we have $A = (A \cap L^0) + \sum_{\alpha \in R} (A \cap L_\alpha)$. Assume that $L_\alpha \subset A$ for some α . If $i \in I$ we have $\tau_i(A) \subset A$ hence $L_{r_i\alpha} \subset A$. It follows that $L_{w(\alpha)} \subset A$ for any $w \in W$. Hence $L_{\alpha_i} \subset A$ for some *i* hence $e_i \in A$. Since $[f_i, e_i] = h_i$ we have $h_i \in A$. Now $[h_i, e_i] = 2e_i \neq 0$ contradicting the fact that [A, A] = 0. Thus we have $A \cap L_\alpha = 0$ for any α . Hence $A = A \cap L^0$. Then $[L_{\alpha_i}, A] \subset L_{\alpha_i} \cap L^0 = 0$ for all *i*. Let $a = \sum_i c_i h_i \in A$. For any *j* we have $[\sum_i c_i h_i, e_j] = 0$ hence $\sum_i c_i a_{ji} = 0$. By the non-singularity of (a_{ij}) we have $c_i = 0$ for all *i*. Thus a = 0. We see that A = 0 hence *L* is semisimple.

 L^0 is a maximal toral subalgebra of L.

Clearly $adx : L \to L$ is semisimple for any $x \in L^0$ hence L is toral. Assume that L' is a toral subalgebra of L containing strictly L^0 . Since L' contains L^0 , it is a sum of L^0 and some L_{α} . Thus L' contains L_{α} for some α . Now any element of L_{α} is nilpotent. (We can reduce this to the case where $\alpha = \alpha_i$ using a succession of τ_i .) Since any element of L' is semisimple we see that $L_{\alpha} = 0$, contradiction.

Theorem. L is a semisimple Lie algebra whose root system with respect to L^0 is the given one.