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Construction of a Lie algebra attached to a root system.

We fix a root system (E, (, ), R) and a set Π = {αi}i∈I of simple roots. Let

aij =
2(αi,αj)
(αj ,αj)

.

Let F be the free Lie algebra on generators {ei, fi, hi|i ∈ I}. Let K be the ideal
of F generated by the elements

[hi, hj], [ei, fj] − δijhi, [hi, ej] − ajiej , [hi, fj] + ajifj.
Let F̄ = F/K. The images of ei, fi, hi in F0 are denoted by the same letters.

Let T be the tensor algebra on a vector space with basis {vi; i ∈ I}. We write
vi1vi2 . . . vis

instead of vi1 ⊗vi2 ⊗ . . .⊗vis
. (These form a basis of T .) Define linear

maps hj , ej , fj : T −→ T by:

hj(vi1vi2 . . . vis
) = −(ai1j + · · ·+ aisj)vi1vi2 . . . vis

;

fj(vi1vi2 . . . vis
) = vjvi1vi2 . . . vis

ej(vi1vi2 . . . vis
) = −

∑s

k=1 δj,ik
(aik+1j + · · · + aisj)vi1vi2 . . . v̂ik

. . . vis
.

Lemma. [hi, hj ] = 0, [ei, fj] = δijhi, [hi, ej ] = ajiej, [hi, fj] = −ajifj as maps
T −→ T . Hence hj , fj, ej define an F̄ -module structure on T .

The relation [hi, hj ] = 0 is obvious. We have

(eifj − fjei)(vi1vi2 . . . vis
)

= ei(vjvi1vi2 . . . vis
) + +

s∑

k=1

δi,ik
(aik+1i + · · · + aisi)vjvi1vi2 . . . v̂ik

. . . vis

= −δij(ai1i + · · · + aisi)vi1vi2 . . . vis
−

s∑

k=1

δi,ik
(aik+1i + · · ·+ aisi)vjvi1vi2 . . . v̂ik

. . . vis

+

s∑

k=1

δi,ik
(aik+1i + · · · + aisi)vjvi1vi2 . . . v̂ik

. . . vis

= −δij(ai1i + · · · + aisi)vi1vi2 . . . vis
= δijhi(vi1vi2 . . . vis

).
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Thus, [ei, fj] = δijhi holds. We have

(hiej − ejhi)(vi1vi2 . . . vis
)

= −
s∑

k=1

δj,ik
(aik+1j + · · ·+ aisj)hi(vi1vi2 . . . v̂ik

. . . vis
)

− (ai1i + · · · + aisi)

s∑

k=1

δj,ik
(aik+1j + · · ·+ aisj)vi1vi2 . . . v̂ik

. . . vis

=

s∑

k=1

δj,ik
(aik+1j + · · ·+ aisj)(ai1i + · · ·+ âiki + · · · + aisi)(vi1vi2 . . . v̂ik

. . . vis
)

− (ai1i + · · · + aisi)

s∑

k=1

δj,ik
(aik+1j + · · ·+ aisj)vi1vi2 . . . v̂ik

. . . vis

=
s∑

k=1

δj,ik
(aik+1j + · · ·+ aisj) − aiki(vi1vi2 . . . v̂ik

. . . vis
)

= −aji

s∑

k=1

δj,ik
(aik+1j + · · ·+ aisj)(vi1vi2 . . . v̂ik

. . . vis
) = ajiej(vi1vi2 . . . vis

).

Thus, [hi, ej ] = ajiej holds. We have

(hifj − fjhi)(vi1vi2 . . . vis
)

= hi(vjvi1vi2 . . . vis
) + (ai1i + · · · + aisi)fj(vi1vi2 . . . vis

)

= −(aji + ai1i + · · · + aisi)vjvi1vi2 . . . vis
+ (ai1i + · · ·+ aisi)cjvi1vi2 . . . vis

= −ajivjvi1vi2 . . . vis
= −ajifj(vi1vi2 . . . vis

).

Thus, [hi, fj] = −ajifj holds. The lemma is proved.

Lemma. Let F̄+ be the Lie subalgebra of F̄ generated by {ei|i ∈ I}. Let F̄−

be the Lie subalgebra of F̄ generated by {fi|i ∈ I}. Let F̄ 0 be the subspace of F̄
spanned by {hi|i ∈ I}. Then F̄ = F̄− ⊕ F̄ 0 ⊕ F̄+ and {hi|i ∈ I} is a basis of F̄ 0.

By the previous lemma there is a unique Lie algebra homomorphism φ : F̄ −→
End(T ) which sends ei, fi, hi to the endomorphisms described above.

(a) The elements {hi|i ∈ I} are linearly independent in F̄ .
Assume that

∑
i cihi = 0 in F̄ . Applying this to vj gives

∑
i ciajivj = 0 in T

hence
∑

i ciaij = 0. As (aij) is nonsingular, we have cj = 0.
(b) Let e(s) be an iterated bracket of s elements ei1 , . . . , eis

. Then [hj , e(s)] =
(ai1j + · · · + aisj)e(s) in F̄ .

We argue by induction on s. For s = 1 this follows from the definition. As-
sume that s ≥ 1. It is enough to show: if [hj , x] = ax and [hj , x

′] = a′x′ then
[hj , [x, x′]] = (a + a′)[x, x′] (use Jacobi).
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(c) Let f(s) be an iterated bracket of s elements fi1 , . . . , fis
. Then [hj , f(s)] =

−(ai1j + · · ·+ aisj)f(s) in F̄ .

As in (b).

(d) If s′ > s > 0 then [f(s), e(s′)] is a linear combination of e(s′ − s).

Assume first that s = 1. We argue by induction on s′. For s′ = 2 we have

[fj, [ei, ei′ ]] = [[fj , ei], ei′ ] + [ei, [fj, ei′ ]] = [−δijhi, ei′ ]− [ei, δi′,jhj ] ∈ kei′ + kei.
Hence the result holds in this case. Assume now that s′ > 2. Then e(s′) =
[e(s′′), e(s̃′′)] where s′′+s̃′′ = s′, s′′ < s′, s̃′′ = s′. If s′′ > 1, s̃′′ > 1 the result follows
from the induction hypothesis using Jacobi. If s′′ = 1 we have e(s′) = [ek, e(s′−1)]
hence

[fj, [ek, e(s′ − 1)]] = [[fj, ek], e(s′ − 1)] + [ek, [fj, e(s
′ − 1)]] = const[hk, e(s′ −

1)] + [ek, lin.combe(s′ − 2)] = lin.combe(s′ − 1).

We now assume that s′ is fixed and use induction on s.

(e) If s > s′ > 0 then [f(s), e(s′)] is a linear combination of f(s − s′).

Same proof as (d).

(f) For s ≥ 1, [f(s), e(s)] ∈
∑

i khi.

Induction on s. If s = 1 this is clear. Assume that s ≥ 2. Then f(s) =
[f(s′), f(s− s′)] where 0 < s′ < s. Then

[f(s), e(s)] = [[f(s′), e(s)], f(s− s′)] + [f(s′), [f(s− s′), e(s)] = lin.comb.[e(s −
s′), f(s− s′)] + lin.comb.[f(s′), e(s′)] = lin.comb.hi.

(g) F̄− + F̄ 0 + F̄+ is a Lie subalgebra of F̄ hence it is F̄ .

Follows from the previous points.

(h) The sum F̄− + F̄ 0 + F̄+ is direct.

For λ ∈ E let

F̄λ = {x ∈ F̄ ; [hi, x] = 2(λ,αi)
(αi,αi)

x∀i ∈ I}.

We have e(s) ∈ F̄αi1
+···+αis

, f(s) ∈ F̄−αi1
−···−αis

, hj ∈ F̄0. It remains to observe
that αi1 + · · · + αis

6= 0 if s > 0.

Lemma. Let i 6= j in I. Let k ∈ I. We have (adek)(adfi)
−aji+1(fj) = 0 in F̄ .

Assume first that k 6= i. Then [ek, fi] = 0 hence adek, adfi commute and
(adek)(adfi)

−aji+1(fj) = (adfi)
−aji+1(adek)(fj) = (adfi)

−aji+1[ek, fj]. If k 6= j
this is 0 since [ek, fj] = 0. If k = j this is (adfi)

−aji+1hj = (adfi)
−ajiaijfi. If

aji > 0 this is 0 since [fi, fi] = 0. If aji = 0 this is also 0.

Assume next that k = i. Let m = −aji ≥ 0. One shows by induction on
t ≥ 1 that (adei)(adfi)

t(fj) = t(m − t + 1)(adfi)
t−1(fj). Taking t = m + 1 gives

(adei)(adfi)
t(fj) = 0.

For i 6= j let Xij = (adei)
−aji+1(ej), Yij = (adfi)

−aji+1(fj) (in F̄ ).

Let J+ be the ideal of F̄+ generated by the Xij. Let J− be the ideal of F̄−

generated by the Yij . Let J be the ideal of F̄− generated by the Xij , Yij. Let
L− = F̄−/J−, L+ = F̄+/J+, L0 = ⊕ikhi, L = F̄ /J .

J+, J− are ideals of F̄ .
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We prove this for J−. It suffices to show that [hk, J−] ⊂ J−, [fk, J−] ⊂ J−,
[ek, J−] ⊂ J−. The first two inclusions are easy. The third follows from the
previous lemma.

We have J = J− + J+.

Clearly, J− + J+ ⊂ J . We have seen that J− + J+ is an ideal of F̄ . It contains
Xij , Yij hence it contains J .

The obvious map L− ⊕ L0 ⊕ L+ −→ L is an isomorphism of vector spaces.

We have L = F̄ /J = (F̄− ⊕ F̄ 0 ⊕ F̄+)/(J− + J+) = F̄−/J− ⊕ F̄ 0 ⊕ F̄+/J+.

For any λ ∈ E let Lλ = {x ∈ L; [hi, x] = 2(λ,αi)
(αi,αi)

x∀i ∈ I}. Then

L− = ⊕λ;λ=−αi1
−···−αin ,n>0Lλ, L+ = ⊕λ;λ=αi1

+···+αin ,n>0Lλ, L0 = L0.
Also each Lλ is finite dimensional.

For any i, adei and adfi are locally nilpotent endomorphisms of L.

Let M = {x ∈ L; (adei)
nx = 0 for some n ≥ 1}. Then M is a Lie subalgebra of

L. It contains ek (since Xij = 0 in L) and fk. Hence M = L.

Let τi = exp(adei) exp(ad(−fi)) exp(adei) : L −→ L. This is a Lie algebra
automorphism of L.

Let λ, µ ∈ E and let w ∈ W (Weyl group) such that w(λ) = µ. Then dim Lλ =
dim Lµ.

We may assume that w = ri (simple reflection). Then µ = λ + nαi for some
n. Consider V = ⊕m∈ZLλ+nαi

. Then V is an sl2 submodule of L (where sl2 acts
through ei, fi, hi). By an earlier result, in this sl2 module τi : V −→ V interchanges
Lλ, Lµ.

For any i we have ei 6= 0, fi 6= 0 in L.

We already know that hi 6= 0 in L. Now {ei, fi, hi} span a Lie subalgebra of
L isomorphic to a quotient of sl2 which is simple. Since hi 6= 0 in L, the three
elements ei, fi, hi are linearly independent in L.

For any i, dim Lαi
= 1; Lkαi

= 0 for any integer k /∈ {1, 0,−1}.

Follows from the previous claim.

If α ∈ R then dimLα = 1; Lkα = 0 for any integer k /∈ {1, 0,−1}.

Follows from the previous claim since α = w(αi) for some i, w.

Assume µ ∈ E satisfies (µ, α) 6= 0 for all α ∈ R. Then there exists w ∈ W such
that (w(µ), αi) > 0 for all i.

We pick any linear order on Pµ = {e ∈ E|(e, µ) = 0}, say Pµ = P−

µ ∪P+
µ ∪ {0}.

We define a linear order on E by E = E− ∪E+ ∪{0} where E+ = {e ∈ E|(e, µ) >
0} ∪ P+

µ , E− = {e ∈ E|(e, µ) < 0} ∪ P−

µ . Then R ∩ E+ is a set of positive roots
for R. It is {α ∈ R; (α, µ) > 0}. For some w ∈ W we have {α ∈ R; (α, µ) > 0} =
w−1(R+). Thus, for any α ∈ R+ we have (w−1(α), µ) > 0 that is (w(µ), α) > 0.

Assume that λ =
∑

i kiαi where ki ∈ Z are all ≥ 0 or all ≤ 0. Assume that
λ 6= 0 and λ is not a multiple of a root. Then there exists w ∈ W such that
w(λ) =

∑
i k′

iαi where k′

i ∈ Z and some k′

i > 0, some k′

i < 0.

For each e ∈ E let Pe = {e′ ∈ E; (e′, e) = 0}. Now Pλ is not contained in ∪αPα.
Pick µ ∈ Pλ −∪αPα. Since µ /∈ ∪αPα we can find w ∈ W such that (w(µ), αi) > 0
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for all i. Then 0 = (λ, µ) = (w(λ), w(µ)) =
∑

i k′

i(αi, w(µ)). Hence some k′

i > 0,
some k′

i < 0.
If Lλ 6= 0 then either λ ∈ R or λ = 0.
We may assume that λ 6= 0. Then ±λ = αi1 + · · · + αin

, n > 0. Assume that
λ is not a multiple of a root. Let w be as in the previous claim. We must have
Lw(λ) = 0. Hence Lλ = 0.

We have dimL = ](I) + ](R).
L is semisimple.
Let A be an abelian ideal of L. Since A is stable under adhi we have A =

(A ∩ L0) +
∑

α∈R(A ∩ Lα). Assume that Lα ⊂ A for some α. If i ∈ I we have
τi(A) ⊂ A hence Lriα ⊂ A. It follows that Lw(α) ⊂ A for any w ∈ W . Hence
Lαi

⊂ A for some i hence ei ∈ A. Since [fi, ei] = hi we have hi ∈ A. Now
[hi, ei] = 2ei 6= 0 contradicting the fact that [A, A] = 0. Thus we have A∩Lα = 0
for any α. Hence A = A ∩ L0. Then [Lαi

, A] ⊂ Lαi
∩ L0 = 0 for all i. Let

a =
∑

i cihi ∈ A. For any j we have [
∑

i cihi, ej ] = 0 hence
∑

i ciaji = 0. By the
non-singularity of (aij) we have ci = 0 for all i. Thus a = 0. We see that A = 0
hence L is semisimple.

L0 is a maximal toral subalgebra of L.
Clearly adx : L −→ L is semisimple for any x ∈ L0 hence L is toral. Assume

that L′ is a toral subalgebra of L containing strictly L0. Since L′ contains L0, it is
a sum of L0 and some Lα. Thus L′ contains Lα for some α. Now any element of
Lα is nilpotent. (We can reduce this to the case where α = αi using a succession
of τj .) Since any element of L′ is semisimple we see that Lα = 0, contradiction.

Theorem. L is a semisimple Lie algebra whose root system with respect to L0 is
the given one.


