LIE ALGEBRAS,3

sly(k)-MODULES

Let L = sla(k). A basis is given by

We have [e, f] = h, [h,e] = 2e, [h, f] = —2f. Thus, h is semisimple. Since L is
simple, it is semisimple. Let V' be an L-module, dimV < co. Then h: V — V is
semisimple. Thus V' = @®)¢r V) where V) = {v € V|hv = \v}.

If v € V) then ev € V19, fo € Vy_s.

Assume now that V is irreducible. We can find vy € V' — {0} such that vy € V),
evg =0. Set v_1 =0,v, = %vo, n € N. We have

(a) hv, = (A = 2n)v, for n > —1

(b) fo, = (n+ 1)v,4q forn > —1

(c) evp, = (A —n+1)v,_1 for n > 0.
(c) is shown by induction on n. For n = 0 it is clear. Assuming n > 1,

evy, =n tefvp_1 =n thu,_1 +n" " fev,_1
=n ' A=2n4+ v +n (N =1+ 2)v,_s
=n T A=2n+2v, 1 +n T A =n+2)(n—Dv,_1 = (A —n+1)v,_1.

By (a), the non-zero v,, are linearly independent. Since dimV < oo, there exists
m > 0 such that vg, vy, ..., v, are # 0 and v;,+1 = 0. Then v, 49 = Vg3 =+ =
0. Now vg, v1, ..., v, form a basis of an L-submodule which must be the whole of
V. Now (c) with n =m + 1 gives 0 = (A — m)v,, hence A = n. Thus the action of
e, f, h in the basis vg, v1, ..., v, is

hv, = (m — 2n)v, for n € [0,m]

fon = (n+ 1)vy4q for n € [0,m]

ev, = (m —n+ 1)v,_1 for n € [0, m]
with the convention v_; = 0, v,,41 = 0.

Conversely, given m > 0 we can define an L-module structure on an m + 1
dimensional vector space with basis vg, v1, ..., v, by the formulas above. Thus we
have a 1-1 correspondence between the set of isomorphism classes of irreducible
L-modules and the set N.

Now let V' be any finite dimensional L-module. Then:
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(a) the eigenvalues of h : V' — V are integers; the multiplicity of the eigenvalue
a equals that of —a.

(b) If A : V' — V has an eigenvalue in 2Z then it has an eigenvalue 0.

(¢c) If h: V — V has an eigenvalue in 2Z + 1 then it has an eigenvalue 1.
Indeed, by Weyl, we are reduced to the case where V is irreducible; in that case
we use the explicit description of L given above.

RooTs

Let L be a semisimple Lie algebra # 0. A subalgebra T of L is said to be toral
if any element of T' is semisimple in L.

Lemma. IfT is toral then T is abelian.

Let z € T. Assume that ad(z) : T — T has some eigenvalue a # 0. Thus
[z,y] = ay for some y € T — {0}. Now ad(y) : L — L is semisimple hence
ad(y) : T — T is semisimple hence x = ) ;uj where u; € T are eigenvectors of
ad(y) : T — T with corresponding eigenvalue ;. Hence ad(y)r = Zj»\ﬂéo Aju;.
But ad(y)x = —ay. But y is in the 0-eigenspace of ad(y) and Zj»\ﬂéo Ajuj = —ay
is a contradiction. Thus, all eigenvalues of ad(x) : T — T are 0. Now ad(z) : L —
L is semisimple hence ad(z) : T'— T is semisimple hence ad(z) : T'— T is 0. The
lemma follows.

Let H be a maximal toral subalgebra of L. Now {ad(h) : L — L|h € H} is
a family of commuting semisimple endomorphisms of L. Hence L = &, L, where
a runs over the dual space H* of H and L, = {z € L|[h,z] = a(h)zVh € H}.
Now Lg = {x € L|[h,z] = OVh € H}. and H C Ly by the lemma. We say that
a€ H*isarootor a € Rif a # 0 and L, # 0. We have L = Ly ® ®pecrLla (root
decomposition or Cartan decomposition).

Lemma. (a) For any o, € H* we have [Ly, Lg] C Lotp.
(b) If x € Lo, # 0 then ad(x) is nilpotent.
(c) Ifo,B € H*,a+ 3 # 0 then k(Ly, Lg) = 0.

(a) Let z € L,y € Lg. For h € H we have

(7, [, yl] = [[h, 2], y]+ [, [hy y]] = a(b) [z, y] + B(h) [, y] = (a+B)(h)]x, y] hence
[z, y] € La+p-

(b) For any § € H* we have na+ 3 ¢ R for large n hence using (a), ad(z)"Lg =
0. Now (b) follows.

(¢) We can find h € H with (o + B)(h) # 0. Let = € Lo, y € Lg. We
have k(|h,z],y) = k([y,h],z) hence a(h)k(z,y) = —B(h)k(z,y). Thus (o +
B)(h)k(x,y) =0 and k(z,y) = 0.

Lemma. The restriction of k to Lo is non-singular.
Proposition. Ly = H.
We show:
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(a) If x € Lo and x = s+n is a Jordan decomposition in L then s € Lo,n € Lg.

We have ad(x)H C {0} hence ad(x),H C {0},ad(z),H C {0}, hence ad(s)H C
{0},ad(n)H C {0}, hence s € Ly, n € L.

(b) If x € Ly is semisimple in L then x € H.

From the assumption, H + kx is a toral algebra hence it is H by the maximality
of H. Hence z € H.

(¢) The restriction of k to H is non-singular.

Assume that h € H and k(h,H) = 0. Let x = s+ n € Ly be as in (a).
Then s € Lo,n € Ly. By (b) we have s € H hence k(h,s) = 0. Now ad(n) :
L — L is nilpotent and ad(n), ad(h) commute hence ad(h)ad(n) is nilpotent hence
tr(ad(h)ad(n), L) = 0. Thus k(h,n) = 0. Hence x(h,x) = 0. Thus k(h, Ly) = 0.
Since k|, is non-singular, we have h = 0.

(d) Lg is nilpotent.

By Engel it is enough to show that, if x € Ly then ad(x) : Ly — Lg is nilpotent.
Write x = s +n as in (a). Now ad(s) : Lo — Lg is 0 since s € H (by (b)). Also
ad(n) : L — L is nilpotent hence ad(x) = ad(n) : Ly — Lg is nilpotent.

(e) [L(), Lo] NH=0.

Let € [Lo,Lo] N H. Write x = ), [x;,y;] where 2;,y; € Lo. If h € H we
have k(h,x) = >, k(h, (x5, vi]) = >, k(xs, [yi, h]) = 0 since [y;,h] = 0. Thus
k(H,z) = 0. Since z € H we see from (c) that z = 0.

(f) [Lo, Lo] = 0.

Otherwise, we have [Lg, Lg] # 0. Since L is nilpotent and [Lg, Lo is a non-
zero ideal, we then have [Lg, Lo| N centre(Ly) # 0 (by a corollary of Engel). Let
x € [Lo, Lo] N centre(Ly),x # 0. Write z = s +n as in (a). Since ad(x)(Lo) C 0
we have ad(x),(Lo) C 0 hence ad(n)(Lg) C 0 hence n € centre(Lp). Hence
for any 2’ € Lo, ad(z'),ad(n) : L — L commute and ad(n) is nilpotent hence
ad(x')ad(n) : L — L is nilpotent hence tr(ad(z")ad(n), L) = 0 hence k(z',n) = 0.
Thus x(Lg,n) = 0. Since k|r, is non-singular we have n = 0. Thus x = s € H
(see (b)). Hence x € [Lg, Lo] N H which is 0 by (e). Hence z = 0 a contradiction.

(g) If x € Lg is nilpotent then z = 0.

For all y € Ly, ad(z), ad(y) commute and ad(x) is nilpotent hence ad(x)ad(y) :
L — L is nilpotent hence tr(ad(z)ad(y),L) = 0. Hence x(z,y) = 0. Hence
k(z, Lo) = 0. Since k|r, is non-singular we have x = 0.

We can now prove the proposition. Let x € Ly. Write z = s+n as in (a). Then
s € Lo,n € Ly. By (g) we have n = 0. By (b) we have s € H. Hence z € H. The
proposition is proved.

Properties of roots.

Let £ € H*. Since k|py is non-singular there exists a unique element te € H
such that £(h) = k(te, h) for all h € H. Now & — t¢ is an isomorphism H* — H.

(a) R spans the vector space H*.

If not, we can find h € H, h # 0 so that a(h) = 0 for all @« € R. Then [h, L,] =0
for all & € R. Also [h, Ly] = 0 since Ly = H is abelian. Hence [h, L] = 0 so that
h € Z(L). But Z(L) = 0 since L is semisimple. Thus hA = 0, contradiction.
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(b) If « € R then —«a € R.

Assume that —a ¢ R. Then L_, = 0. Hence k(L,,Lg) = 0 for any g € H*
hence k(Lq, L) = 0. Since & is non-singular we have L, = 0, absurd.

(¢c) Ifa € Ryx € Lo,y € L_,, then [z,y] = k(z,y)tq.

Let h € H. We have k(h,[z,y]) = k(y, [h,z]) = a(h)c(y,x) = K(ta, h)k(z,y)
hence k(h, [z,y] — k(x,y)ts) = 0. Thus x([z,y] — k(z,y)ta, H) = 0. Since [z,y] —
k(z,y)te € H and kg is non-singular, we have [z,y] — x(x,y)t, = 0.

(d) Let « € R and let x € L, — {0} # 0. There exists y € L_,, such that
K(z,y) # 0.

Assume that k(z, L_,) = 0. Then x(x, Lg) = 0 for any 5 € H* hence k(x, L) =
0 hence x = 0 absurd.

(e) Let « € R. We have a(t,) = k(ta,ta) # 0.

The equality comes from the definition of ¢,. Assume that «(t,) = 0. Then
[tas La) = 0, [ta, L_o] = 0. Let z,y be as in (d). We can assume that x(z,y) = 1.
Then [z,y] = to. Let S = kx + ky + kt,, a Lie subalgebra of L. We have
[S,S] = kta, [kta, kto] = 0 hence S is solvable. By Lie’s theorem for ad : S —
End(L) we see that ad(z’) : L — L is nilpotent for any z’ € [S,S]. In particular
ad(ty) : L — L is nilpotent. Since t, € H and all elements of H are semisimple,
we see that ad(t,) : L — L is also semisimple hence is 0. Thus ¢, € Z(L) = 0.
This contradicts t, # 0.

(f) Let « € R. Let © € Lo,z # 0. We can find y € L_,, such that, setting
h = [z,y] € H we have [h,z] = 2z, [h,y] = —2y.

By (d),(e) we can find y € L_, such that x(x,y) = 2/a(t,). Then h =
2t /a(ty). Hence

[h, 2] = (2/a(ta))[ta, 2] = (2/a(ta))a(ta)r = 22,

[h,y] = (2/a(ta))lta, y] = (2/alta))(—alta)y) = —2y.

(g) Let o € R. Let z,y,h be as in (f). Then S = kx+ky+kh is a Lie subalgebra
of L and e — x, f — y,h — h is an isomorphism of Lie algebras slo(k) — S.

This is clear.

(h) Let a« € R. Let hy = 2ty /a(ts) (see (f)). We have ho = —h_,.

It suffices to show that ¢, = —t_,. Since k|g is non-singular it suffices to show
that, for any h € H we have k(h,t,) = —k(h,t_,) or that a(h) = —(—a(h)). This
is clear.

(i) Let « € R. Then 2a ¢ R.

Let z,y,h,S be as in (g). Let M = @.ckLeq is an S-module under ad and h
acts on L., as multiplication by ca(h) = ca(2t,)/a(ts) = 2¢. By representation
theory of sly(k) (see below) the eigenvalues of h : M — M are integers. Hence
M = ®ce1/2)zLlca- Now S+ H is an S-submodule of M. By Weyl, there exists
an S-submodule M’ of M such that M = (S + H) & M’. Now the 0-eigenspace
of h: M — M is Ly = H hence it is contained in S + H. Thus the 0-eigenspace
of h: M" — M’ is 0. Hence h : M’ — M’ does not have eigenvalues in 2Z. The
eigenvalues of h : S+ H — S+ H are 0,2, —2. We see that 4 is not an eigenvalue
of h: M — M.
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If we had 2a € R then a non-zero-vector in Ly, would be an eigenvector of
h: M — M with eigenvalue 4, contradiction.

(j) Let « € R. Then o/2 ¢ R.

If we had a/2 € R then applying (i) to «/2 we would deduce that o ¢ R,
contradiction.

(k) In (i) we have M' = 0.

From (j) we see that L,/ = 0 hence the 1-eigenspace of b : M — M is 0. Thus
h: M' — M’ has no eigenvalue 1 (nor 0, see (i)). Hence h : M’ — M’ has no odd
or even eigenvalues. Hence M’ = 0.

(1) Let « € R. We have dim L, = 1. Moreover ca € R,c € k implies ¢ €
{1,-1}.

Let x,y, h, S be as in (g). By (k) we have @.crx Lo = S+ H. The result follows.

(m) Let a, 8 € R, 0 # ta. Let hy = 2ty /a(ty). Then B(hy) € Z and {n €
Z|3 + na € R} is of the form {—r,—r+1,...,0,...,q—1,q} where —r <0 < gq.

Let z,y,h, S be as in (g). Then h = h,. Let K = @,czLg4nq C L. This is an
S = sly(k)-module under ad such that any eigenvalue of h on Lg,q is B(ha)+2n.
For n = 0 the eigenvalue is (3(h,,) and it has multiplicity > 0 hence (h,) € Z. We
see that all eigenvalues have multiplicity one and they all have the same parity. It
follows that the S-module K is simple. (See below.) The result follows.

(n) Let a, B € R, B # ta. Let hy = 2t,/a(ts). We have § — B(ha)a € R.

By (m), we have B(hy) —2r = —(8(ha) +2q) that is f(hs) = r — ¢ and we must
show that —r < —f3(hs) < ¢ that is —r < —r 4+ ¢ < ¢. This is clear.

(o) If o, B,ac+ B € R then [Ly, Lg] = Lo+s-

Since 2a ¢ R we have  # ta. Consider the irreducible S = sly(k)-module K
in (m). With notations in (m) we have Lg = (r — ¢)-eigenspace of h : K — K and
Loip = (r —q+2)-eigenspace of h : K — K. It is enough to show that e € sly(k)
maps the j-eigenspace of h : K — K onto the (j 4 2)-eigenspace (if both these
eigenspaces are 1-dimensional). This follows from the explicit description of simple
sly(k)-modules (see below).

(p) The smallest Lie subalgebra L' of L that contains L, for all « € R is L
itself.

It suffices to show that L’ contains H. From (a) it follows that {t,|a € R}
spans H as a vector space. Hence it is enough to show that for a € R we have
to € L'. But by (c),(d) we have t, € [Ly, L_q].

Rationality.

Define (,) : H* x H* — k to be the symmetric bilinear form (&,¢’) = k(te, te) =
Y acr te)afte). This form is non-singular. For a € R we have (§,a) =
Klte,ta) = a(te). Hence (€,€) = Xcplé ) (€ a).

For a € R we have (o, a) = k(tq,ta) # 0. For a, § € R we have

2(a, B)/ (o, ) = K(2to /K (tas ta), t3) = K(ha, tg) = B(ha) € Z.

Now from (3, 8) = 3, c (0, @)? we deduce 4(3, )~ = > (2(8,a)/(8,5))? €]}
Z. Thus (0, 5) € Q hence (o, 3) € Q for any a, 5 € R.
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Let E be the Q-subspace of H* spanned by R. Let a,...,a, be a k-basis of
H* contained in R. We show that aq,...,q, is a Q-basis of E. Let a« € R. We
have o = Z?Zl c;a; with ¢; € k. It suffices to show that ¢; € Q for all 7. For any
Jj € [1,n] we have

20, a5)/ (0, 05) = D25y ci2(e, o) (e, ).

This is a linear system of n equations with n unknowns ¢; with non-zero determi-
nant and integer coefficients. Hence ¢; € Q for all i. Hence F coincides with the
Q-subspace of H* spanned by aq,...,a,.

Let £ € BE,§ # 0. We have (§,€) = >, cr(§, @) This is a rational number
> 0. If it 0 then ({,a) = 0 for all @ € R hence £ = 0. Thus (,)|g has rational
values and is positive definite.

We may summarize the properties of R C E and (, )|g as follows:

R spans E as a Q-vector space, 0 ¢ R. If € R then —a € R but ca ¢ R if
ceQ—{1,-1}. If a, 8 € R then 26:9) ¢ 7 and ﬁ—2(ﬁ’o‘)a € R.

(av,0) (av,0)




