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sl2(k)-modules

Let L = sl2(k). A basis is given by

e = 0 1

0 0
, f = 0 0

1 0
, g =

1 0

0 −1
.

We have [e, f ] = h, [h, e] = 2e, [h, f ] = −2f . Thus, h is semisimple. Since L is
simple, it is semisimple. Let V be an L-module, dimV < ∞. Then h : V −→ V is
semisimple. Thus V = ⊕λ∈kVλ where Vλ = {v ∈ V |hv = λv}.

If v ∈ Vλ then ev ∈ Vλ+2, fv ∈ Vλ−2.
Assume now that V is irreducible. We can find v0 ∈ V −{0} such that v0 ∈ Vλ,

ev0 = 0. Set v−1 = 0, vn = fn

n! v0, n ∈ N. We have
(a) hvn = (λ − 2n)vn for n ≥ −1
(b) fvn = (n + 1)vn+1 for n ≥ −1
(c) evn = (λ − n + 1)vn−1 for n ≥ 0.

(c) is shown by induction on n. For n = 0 it is clear. Assuming n ≥ 1,

evn = n−1efvn−1 = n−1hvn−1 + n−1fevn−1

= n−1(λ − 2n + 2)vn−1 + n−1f(λ − n + 2)vn−2

= n−1(λ − 2n + 2)vn−1 + n−1(λ − n + 2)(n − 1)vn−1 = (λ − n + 1)vn−1.

By (a), the non-zero vn are linearly independent. Since dimV < ∞, there exists
m ≥ 0 such that v0, v1, . . . , vm are 6= 0 and vm+1 = 0. Then vm+2 = vm+3 = · · · =
0. Now v0, v1, . . . , vm form a basis of an L-submodule which must be the whole of
V . Now (c) with n = m + 1 gives 0 = (λ −m)vn hence λ = n. Thus the action of
e, f, h in the basis v0, v1, . . . , vm is

hvn = (m − 2n)vn for n ∈ [0, m]
fvn = (n + 1)vn+1 for n ∈ [0, m]
evn = (m − n + 1)vn−1 for n ∈ [0, m]

with the convention v−1 = 0, vm+1 = 0.
Conversely, given m ≥ 0 we can define an L-module structure on an m + 1

dimensional vector space with basis v0, v1, . . . , vm by the formulas above. Thus we
have a 1-1 correspondence between the set of isomorphism classes of irreducible
L-modules and the set N.

Now let V be any finite dimensional L-module. Then:
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(a) the eigenvalues of h : V −→ V are integers; the multiplicity of the eigenvalue
a equals that of −a.

(b) If h : V −→ V has an eigenvalue in 2Z then it has an eigenvalue 0.
(c) If h : V −→ V has an eigenvalue in 2Z + 1 then it has an eigenvalue 1.

Indeed, by Weyl, we are reduced to the case where V is irreducible; in that case
we use the explicit description of L given above.

Roots

Let L be a semisimple Lie algebra 6= 0. A subalgebra T of L is said to be toral
if any element of T is semisimple in L.

Lemma. If T is toral then T is abelian.

Let x ∈ T . Assume that ad(x) : T −→ T has some eigenvalue a 6= 0. Thus
[x, y] = ay for some y ∈ T − {0}. Now ad(y) : L −→ L is semisimple hence
ad(y) : T −→ T is semisimple hence x =

∑
j uj where uj ∈ T are eigenvectors of

ad(y) : T −→ T with corresponding eigenvalue λj . Hence ad(y)x =
∑

j;λj 6=0 λjuj .

But ad(y)x = −ay. But y is in the 0-eigenspace of ad(y) and
∑

j;λj 6=0 λjuj = −ay

is a contradiction. Thus, all eigenvalues of ad(x) : T −→ T are 0. Now ad(x) : L −→
L is semisimple hence ad(x) : T −→ T is semisimple hence ad(x) : T −→ T is 0. The
lemma follows.

Let H be a maximal toral subalgebra of L. Now {ad(h) : L −→ L|h ∈ H} is
a family of commuting semisimple endomorphisms of L. Hence L = ⊕αLα where
α runs over the dual space H∗ of H and Lα = {x ∈ L|[h, x] = α(h)x∀h ∈ H}.
Now L0 = {x ∈ L|[h, x] = 0∀h ∈ H}. and H ⊂ L0 by the lemma. We say that
α ∈ H∗ is a root or α ∈ R if α 6= 0 and Lα 6= 0. We have L = L0 ⊕⊕α∈RLα (root
decomposition or Cartan decomposition).

Lemma. (a) For any α, β ∈ H∗ we have [Lα, Lβ] ⊂ Lα+β.
(b) If x ∈ Lα, α 6= 0 then ad(x) is nilpotent.
(c) If α, β ∈ H∗, α + β 6= 0 then κ(Lα, Lβ) = 0.

(a) Let x ∈ Lα, y ∈ Lβ . For h ∈ H we have
[h, [x, y]] = [[h, x], y]+[x, [h, y]] = α(h)[x, y]+β(h)[x, y] = (α+β)(h)[x, y] hence

[x, y] ∈ Lα+β.
(b) For any β ∈ H∗ we have nα+β /∈ R for large n hence using (a), ad(x)nLβ =

0. Now (b) follows.
(c) We can find h ∈ H with (α + β)(h) 6= 0. Let x ∈ Lα, y ∈ Lβ. We

have κ([h, x], y) = κ([y, h], x) hence α(h)κ(x, y) = −β(h)κ(x, y). Thus (α +
β)(h)κ(x, y) = 0 and κ(x, y) = 0.

Lemma. The restriction of κ to L0 is non-singular.

Proposition. L0 = H.

We show:
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(a) If x ∈ L0 and x = s+n is a Jordan decomposition in L then s ∈ L0, n ∈ L0.
We have ad(x)H ⊂ {0} hence ad(x)sH ⊂ {0},ad(x)nH ⊂ {0}, hence ad(s)H ⊂

{0},ad(n)H ⊂ {0}, hence s ∈ L0, n ∈ L0.
(b) If x ∈ L0 is semisimple in L then x ∈ H.
From the assumption, H +kx is a toral algebra hence it is H by the maximality

of H. Hence x ∈ H.
(c) The restriction of κ to H is non-singular.
Assume that h ∈ H and κ(h, H) = 0. Let x = s + n ∈ L0 be as in (a).

Then s ∈ L0, n ∈ L0. By (b) we have s ∈ H hence κ(h, s) = 0. Now ad(n) :
L → L is nilpotent and ad(n), ad(h) commute hence ad(h)ad(n) is nilpotent hence
tr(ad(h)ad(n), L) = 0. Thus κ(h, n) = 0. Hence κ(h, x) = 0. Thus κ(h, L0) = 0.
Since κ|L0

is non-singular, we have h = 0.
(d) L0 is nilpotent.
By Engel it is enough to show that, if x ∈ L0 then ad(x) : L0 → L0 is nilpotent.

Write x = s + n as in (a). Now ad(s) : L0 −→ L0 is 0 since s ∈ H (by (b)). Also
ad(n) : L → L is nilpotent hence ad(x) = ad(n) : L0 → L0 is nilpotent.

(e) [L0, L0] ∩ H = 0.
Let x ∈ [L0, L0] ∩ H. Write x =

∑
i[xi, yi] where xi, yi ∈ L0. If h ∈ H we

have κ(h, x) =
∑

i κ(h, [xi, yi]) =
∑

i κ(xi, [yi, h]) = 0 since [yi, h] = 0. Thus
κ(H, x) = 0. Since x ∈ H we see from (c) that x = 0.

(f) [L0, L0] = 0.
Otherwise, we have [L0, L0] 6= 0. Since L0 is nilpotent and [L0, L0] is a non-

zero ideal, we then have [L0, L0] ∩ centre(L0) 6= 0 (by a corollary of Engel). Let
x ∈ [L0, L0] ∩ centre(L0), x 6= 0. Write x = s + n as in (a). Since ad(x)(L0) ⊂ 0
we have ad(x)n(L0) ⊂ 0 hence ad(n)(L0) ⊂ 0 hence n ∈ centre(L0). Hence
for any x′ ∈ L0, ad(x′), ad(n) : L → L commute and ad(n) is nilpotent hence
ad(x′)ad(n) : L → L is nilpotent hence tr(ad(x′)ad(n), L) = 0 hence κ(x′, n) = 0.
Thus κ(L0, n) = 0. Since κ|L0

is non-singular we have n = 0. Thus x = s ∈ H
(see (b)). Hence x ∈ [L0, L0] ∩ H which is 0 by (e). Hence x = 0 a contradiction.

(g) If x ∈ L0 is nilpotent then x = 0.
For all y ∈ L0, ad(x), ad(y) commute and ad(x) is nilpotent hence ad(x)ad(y) :

L → L is nilpotent hence tr(ad(x)ad(y), L) = 0. Hence κ(x, y) = 0. Hence
κ(x, L0) = 0. Since κ|L0

is non-singular we have x = 0.
We can now prove the proposition. Let x ∈ L0. Write x = s+n as in (a). Then

s ∈ L0, n ∈ L0. By (g) we have n = 0. By (b) we have s ∈ H. Hence x ∈ H. The
proposition is proved.

Properties of roots.
Let ξ ∈ H∗. Since κ|H is non-singular there exists a unique element tξ ∈ H

such that ξ(h) = κ(tξ, h) for all h ∈ H. Now ξ 7→ tξ is an isomorphism H∗ ∼
−→ H.

(a) R spans the vector space H∗.
If not, we can find h ∈ H, h 6= 0 so that α(h) = 0 for all α ∈ R. Then [h, Lα] = 0

for all α ∈ R. Also [h, L0] = 0 since L0 = H is abelian. Hence [h, L] = 0 so that
h ∈ Z(L). But Z(L) = 0 since L is semisimple. Thus h = 0, contradiction.
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(b) If α ∈ R then −α ∈ R.
Assume that −α /∈ R. Then L−α = 0. Hence κ(Lα, Lβ) = 0 for any β ∈ H∗

hence κ(Lα, L) = 0. Since κ is non-singular we have Lα = 0, absurd.
(c) If α ∈ R, x ∈ Lα, y ∈ L−α then [x, y] = κ(x, y)tα.
Let h ∈ H. We have κ(h, [x, y]) = κ(y, [h, x]) = α(h)κ(y, x) = κ(tα, h)κ(x, y)

hence κ(h, [x, y]− κ(x, y)tα) = 0. Thus κ([x, y] − κ(x, y)tα, H) = 0. Since [x, y]−
κ(x, y)tα ∈ H and κH is non-singular, we have [x, y]− κ(x, y)tα = 0.

(d) Let α ∈ R and let x ∈ Lα − {0} 6= 0. There exists y ∈ L−α such that
κ(x, y) 6= 0.

Assume that κ(x, L−α) = 0. Then κ(x, Lβ) = 0 for any β ∈ H∗ hence κ(x, L) =
0 hence x = 0 absurd.

(e) Let α ∈ R. We have α(tα) = κ(tα, tα) 6= 0.
The equality comes from the definition of tα. Assume that α(tα) = 0. Then

[tα, Lα] = 0, [tα, L−α] = 0. Let x, y be as in (d). We can assume that κ(x, y) = 1.
Then [x, y] = tα. Let S = kx + ky + ktα, a Lie subalgebra of L. We have
[S, S] = ktα, [ktα, ktα] = 0 hence S is solvable. By Lie’s theorem for ad : S →
End(L) we see that ad(x′) : L → L is nilpotent for any x′ ∈ [S, S]. In particular
ad(tα) : L → L is nilpotent. Since tα ∈ H and all elements of H are semisimple,
we see that ad(tα) : L → L is also semisimple hence is 0. Thus tα ∈ Z(L) = 0.
This contradicts tα 6= 0.

(f) Let α ∈ R. Let x ∈ Lα, x 6= 0. We can find y ∈ L−α such that, setting
h = [x, y] ∈ H we have [h, x] = 2x, [h, y] = −2y.

By (d),(e) we can find y ∈ L−α such that κ(x, y) = 2/α(tα). Then h =
2tα/α(tα). Hence

[h, x] = (2/α(tα))[tα, x] = (2/α(tα))α(tα)x = 2x,
[h, y] = (2/α(tα))[tα, y] = (2/α(tα))(−α(tα)y) = −2y.
(g) Let α ∈ R. Let x, y, h be as in (f). Then S = kx+ky+kh is a Lie subalgebra

of L and e → x, f → y, h → h is an isomorphism of Lie algebras sl2(k)
∼
−→ S.

This is clear.
(h) Let α ∈ R. Let hα = 2tα/α(tα) (see (f)). We have hα = −h−α.
It suffices to show that tα = −t−α. Since κ|H is non-singular it suffices to show

that, for any h ∈ H we have κ(h, tα) = −κ(h, t−α) or that α(h) = −(−α(h)). This
is clear.

(i) Let α ∈ R. Then 2α /∈ R.
Let x, y, h, S be as in (g). Let M = ⊕c∈kLcα is an S-module under ad and h

acts on Lcα as multiplication by cα(h) = cα(2tα)/α(tα) = 2c. By representation
theory of sl2(k) (see below) the eigenvalues of h : M −→ M are integers. Hence
M = ⊕c∈(1/2)ZLcα. Now S + H is an S-submodule of M . By Weyl, there exists
an S-submodule M ′ of M such that M = (S + H) ⊕ M ′. Now the 0-eigenspace
of h : M → M is L0 = H hence it is contained in S + H. Thus the 0-eigenspace
of h : M ′ → M ′ is 0. Hence h : M ′ → M ′ does not have eigenvalues in 2Z. The
eigenvalues of h : S + H → S + H are 0, 2,−2. We see that 4 is not an eigenvalue
of h : M → M .
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If we had 2α ∈ R then a non-zero-vector in L2α would be an eigenvector of
h : M → M with eigenvalue 4, contradiction.

(j) Let α ∈ R. Then α/2 /∈ R.

If we had α/2 ∈ R then applying (i) to α/2 we would deduce that α /∈ R,
contradiction.

(k) In (i) we have M ′ = 0.

From (j) we see that Lα/2 = 0 hence the 1-eigenspace of h : M → M is 0. Thus
h : M ′ → M ′ has no eigenvalue 1 (nor 0, see (i)). Hence h : M ′ → M ′ has no odd
or even eigenvalues. Hence M ′ = 0.

(l) Let α ∈ R. We have dim Lα = 1. Moreover cα ∈ R, c ∈ k implies c ∈
{1,−1}.

Let x, y, h, S be as in (g). By (k) we have ⊕c∈kLcα = S +H. The result follows.

(m) Let α, β ∈ R, β 6= ±α. Let hα = 2tα/α(tα). Then β(hα) ∈ Z and {n ∈
Z|β + nα ∈ R} is of the form {−r,−r + 1, . . . , 0, . . . , q − 1, q} where −r ≤ 0 ≤ q.

Let x, y, h, S be as in (g). Then h = hα. Let K = ⊕n∈ZLβ+nα ⊂ L. This is an
S = sl2(k)-module under ad such that any eigenvalue of h on Lβ+nα is β(hα)+2n.
For n = 0 the eigenvalue is β(hα) and it has multiplicity > 0 hence β(hα) ∈ Z. We
see that all eigenvalues have multiplicity one and they all have the same parity. It
follows that the S-module K is simple. (See below.) The result follows.

(n) Let α, β ∈ R, β 6= ±α. Let hα = 2tα/α(tα). We have β − β(hα)α ∈ R.

By (m), we have β(hα)−2r = −(β(hα)+2q) that is β(hα) = r−q and we must
show that −r ≤ −β(hα) ≤ q that is −r ≤ −r + q ≤ q. This is clear.

(o) If α, β, α + β ∈ R then [Lα, Lβ] = Lα+β.

Since 2α /∈ R we have β 6= ±α. Consider the irreducible S = sl2(k)-module K
in (m). With notations in (m) we have Lβ = (r− q)-eigenspace of h : K −→ K and
Lα+β = (r− q + 2)-eigenspace of h : K −→ K. It is enough to show that e ∈ sl2(k)
maps the j-eigenspace of h : K −→ K onto the (j + 2)-eigenspace (if both these
eigenspaces are 1-dimensional). This follows from the explicit description of simple
sl2(k)-modules (see below).

(p) The smallest Lie subalgebra L′ of L that contains Lα for all α ∈ R is L
itself.

It suffices to show that L′ contains H. From (a) it follows that {tα|α ∈ R}
spans H as a vector space. Hence it is enough to show that for α ∈ R we have
tα ∈ L′. But by (c),(d) we have tα ∈ [Lα, L−α].

Rationality.

Define (, ) : H∗×H∗ → k to be the symmetric bilinear form (ξ, ξ′) = κ(tξ, tξ′) =∑
α∈R α(tξ)α(tξ′). This form is non-singular. For α ∈ R we have (ξ, α) =

κ(tξ, tα) = α(tξ). Hence (ξ, ξ′) =
∑

α∈R(ξ, α)(ξ′, α).

For α ∈ R we have (α, α) = κ(tα, tα) 6= 0. For α, β ∈ R we have

2(α, β)/(α, α) = κ(2tα/κ(tα, tα), tβ) = κ(hα, tβ) = β(hα) ∈ Z.

Now from (β, β) =
∑

α∈R(β, α)2 we deduce 4(β, β)−1 =
∑

α∈R(2(β, α)/(β, β))2 ∈
Z. Thus (β, β) ∈ Q hence (α, β) ∈ Q for any α, β ∈ R.
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Let E be the Q-subspace of H∗ spanned by R. Let α1, . . . , αn be a k-basis of
H∗ contained in R. We show that α1, . . . , αn is a Q-basis of E. Let α ∈ R. We
have α =

∑n
i=1 ciαi with ci ∈ k. It suffices to show that ci ∈ Q for all i. For any

j ∈ [1, n] we have
2(α, αj)/(αj, αj) =

∑n
i=1 ci2(αi, αj)/(αj, αj).

This is a linear system of n equations with n unknowns ci with non-zero determi-
nant and integer coefficients. Hence ci ∈ Q for all i. Hence E coincides with the
Q-subspace of H∗ spanned by α1, . . . , αn.

Let ξ ∈ E, ξ 6= 0. We have (ξ, ξ) =
∑

α∈R(ξ, α)2. This is a rational number
≥ 0. If it 0 then (ξ, α) = 0 for all α ∈ R hence ξ = 0. Thus (, )|E has rational
values and is positive definite.

We may summarize the properties of R ⊂ E and (, )|E as follows:
R spans E as a Q-vector space, 0 /∈ R. If α ∈ R then −α ∈ R but cα /∈ R if

c ∈ Q− {1,−1}. If α, β ∈ R then 2(β,α)
(α,α) ∈ Z and β − 2 (β,α)

(α,α)α ∈ R.


