LIE ALGEBRAS,3

$\mathfrak{sl}_2(k)$ -MODULES

Let $L = \mathfrak{sl}_2(k)$. A basis is given by

$$e = {0 \ 1 \ 0 \ 0}, f = {0 \ 0 \ 1 \ 0}, g = {1 \ 0 \ 0 \ -1}.$$

We have [e, f] = h, [h, e] = 2e, [h, f] = -2f. Thus, h is semisimple. Since L is simple, it is semisimple. Let V be an L-module, dim $V < \infty$. Then $h : V \to V$ is semisimple. Thus $V = \bigoplus_{\lambda \in k} V_{\lambda}$ where $V_{\lambda} = \{v \in V | hv = \lambda v\}$.

If $v \in V_{\lambda}$ then $ev \in V_{\lambda+2}$, $fv \in V_{\lambda-2}$.

Assume now that V is irreducible. We can find $v_0 \in V - \{0\}$ such that $v_0 \in V_\lambda$, $ev_0 = 0$. Set $v_{-1} = 0$, $v_n = \frac{f^n}{n!} v_0$, $n \in \mathbf{N}$. We have

(a) $hv_n = (\lambda - 2n)v_n$ for $n \ge -1$

(b) $fv_n = (n+1)v_{n+1}$ for $n \ge -1$

(c) $ev_n = (\lambda - n + 1)v_{n-1}$ for $n \ge 0$.

(c) is shown by induction on n. For n = 0 it is clear. Assuming $n \ge 1$,

$$ev_n = n^{-1}efv_{n-1} = n^{-1}hv_{n-1} + n^{-1}fev_{n-1}$$

= $n^{-1}(\lambda - 2n + 2)v_{n-1} + n^{-1}f(\lambda - n + 2)v_{n-2}$
= $n^{-1}(\lambda - 2n + 2)v_{n-1} + n^{-1}(\lambda - n + 2)(n - 1)v_{n-1} = (\lambda - n + 1)v_{n-1}.$

By (a), the non-zero v_n are linearly independent. Since dim $V < \infty$, there exists $m \ge 0$ such that v_0, v_1, \ldots, v_m are $\ne 0$ and $v_{m+1} = 0$. Then $v_{m+2} = v_{m+3} = \cdots = 0$. Now v_0, v_1, \ldots, v_m form a basis of an *L*-submodule which must be the whole of *V*. Now (c) with n = m + 1 gives $0 = (\lambda - m)v_n$ hence $\lambda = n$. Thus the action of e, f, h in the basis v_0, v_1, \ldots, v_m is

 $hv_n = (m-2n)v_n$ for $n \in [0,m]$

 $fv_n = (n+1)v_{n+1}$ for $n \in [0,m]$

 $ev_n = (m - n + 1)v_{n-1}$ for $n \in [0, m]$

with the convention $v_{-1} = 0, v_{m+1} = 0$.

Conversely, given $m \ge 0$ we can define an *L*-module structure on an m + 1 dimensional vector space with basis v_0, v_1, \ldots, v_m by the formulas above. Thus we have a 1-1 correspondence between the set of isomorphism classes of irreducible *L*-modules and the set **N**.

Now let V be any finite dimensional L-module. Then:

Typeset by \mathcal{AMS} -T_EX

LIE ALGEBRAS,3

(a) the eigenvalues of $h: V \to V$ are integers; the multiplicity of the eigenvalue a equals that of -a.

(b) If $h: V \to V$ has an eigenvalue in 2**Z** then it has an eigenvalue 0.

(c) If $h: V \to V$ has an eigenvalue in $2\mathbf{Z} + 1$ then it has an eigenvalue 1.

Indeed, by Weyl, we are reduced to the case where V is irreducible; in that case we use the explicit description of L given above.

ROOTS

Let L be a semisimple Lie algebra $\neq 0$. A subalgebra T of L is said to be *toral* if any element of T is semisimple in L.

Lemma. If T is total then T is abelian.

Let $x \in T$. Assume that $ad(x) : T \to T$ has some eigenvalue $a \neq 0$. Thus [x, y] = ay for some $y \in T - \{0\}$. Now $ad(y) : L \to L$ is semisimple hence $ad(y) : T \to T$ is semisimple hence $x = \sum_j u_j$ where $u_j \in T$ are eigenvectors of $ad(y) : T \to T$ with corresponding eigenvalue λ_j . Hence $ad(y)x = \sum_{j;\lambda_j \neq 0} \lambda_j u_j$. But ad(y)x = -ay. But y is in the 0-eigenspace of ad(y) and $\sum_{j;\lambda_j \neq 0} \lambda_j u_j = -ay$ is a contradiction. Thus, all eigenvalues of $ad(x) : T \to T$ are 0. Now $ad(x) : L \to L$ is semisimple hence $ad(x) : T \to T$ is 0. The lemma follows.

Let H be a maximal toral subalgebra of L. Now $\{ad(h) : L \to L | h \in H\}$ is a family of commuting semisimple endomorphisms of L. Hence $L = \bigoplus_{\alpha} L_{\alpha}$ where α runs over the dual space H^* of H and $L_{\alpha} = \{x \in L | [h, x] = \alpha(h)x \forall h \in H\}$. Now $L_0 = \{x \in L | [h, x] = 0 \forall h \in H\}$. and $H \subset L_0$ by the lemma. We say that $\alpha \in H^*$ is a root or $\alpha \in R$ if $\alpha \neq 0$ and $L_{\alpha} \neq 0$. We have $L = L_0 \oplus \bigoplus_{\alpha \in R} L_{\alpha}$ (root decomposition or Cartan decomposition).

Lemma. (a) For any $\alpha, \beta \in H^*$ we have $[L_{\alpha}, L_{\beta}] \subset L_{\alpha+\beta}$.

(b) If $x \in L_{\alpha}, \alpha \neq 0$ then ad(x) is nilpotent.

(c) If $\alpha, \beta \in H^*, \alpha + \beta \neq 0$ then $\kappa(L_{\alpha}, L_{\beta}) = 0$.

(a) Let $x \in L_{\alpha}, y \in L_{\beta}$. For $h \in H$ we have

 $[h, [x, y]] = [[h, x], y] + [x, [h, y]] = \alpha(h)[x, y] + \beta(h)[x, y] = (\alpha + \beta)(h)[x, y] \text{ hence } [x, y] \in L_{\alpha + \beta}.$

(b) For any $\beta \in H^*$ we have $n\alpha + \beta \notin R$ for large *n* hence using (a), $ad(x)^n L_\beta = 0$. Now (b) follows.

(c) We can find $h \in H$ with $(\alpha + \beta)(h) \neq 0$. Let $x \in L_{\alpha}, y \in L_{\beta}$. We have $\kappa([h, x], y) = \kappa([y, h], x)$ hence $\alpha(h)\kappa(x, y) = -\beta(h)\kappa(x, y)$. Thus $(\alpha + \beta)(h)\kappa(x, y) = 0$ and $\kappa(x, y) = 0$.

Lemma. The restriction of κ to L_0 is non-singular.

Proposition. $L_0 = H$.

We show:

(a) If $x \in L_0$ and x = s + n is a Jordan decomposition in L then $s \in L_0, n \in L_0$. We have $ad(x)H \subset \{0\}$ hence $ad(x)_sH \subset \{0\}, ad(x)_nH \subset \{0\}$, hence $ad(s)H \subset \{0\}, ad(n)H \subset \{0\}$, hence $s \in L_0, n \in L_0$.

(b) If $x \in L_0$ is semisimple in L then $x \in H$.

From the assumption, H + kx is a toral algebra hence it is H by the maximality of H. Hence $x \in H$.

(c) The restriction of κ to H is non-singular.

Assume that $h \in H$ and $\kappa(h, H) = 0$. Let $x = s + n \in L_0$ be as in (a). Then $s \in L_0, n \in L_0$. By (b) we have $s \in H$ hence $\kappa(h, s) = 0$. Now $ad(n) : L \to L$ is nilpotent and ad(n), ad(h) commute hence ad(h)ad(n) is nilpotent hence $\operatorname{tr}(ad(h)ad(n), L) = 0$. Thus $\kappa(h, n) = 0$. Hence $\kappa(h, x) = 0$. Thus $\kappa(h, L_0) = 0$. Since $\kappa|_{L_0}$ is non-singular, we have h = 0.

(d) L_0 is nilpotent.

By Engel it is enough to show that, if $x \in L_0$ then $ad(x) : L_0 \to L_0$ is nilpotent. Write x = s + n as in (a). Now $ad(s) : L_0 \to L_0$ is 0 since $s \in H$ (by (b)). Also $ad(n) : L \to L$ is nilpotent hence $ad(x) = ad(n) : L_0 \to L_0$ is nilpotent.

(e) $[L_0, L_0] \cap H = 0.$

Let $x \in [L_0, L_0] \cap H$. Write $x = \sum_i [x_i, y_i]$ where $x_i, y_i \in L_0$. If $h \in H$ we have $\kappa(h, x) = \sum_i \kappa(h, [x_i, y_i]) = \sum_i \kappa(x_i, [y_i, h]) = 0$ since $[y_i, h] = 0$. Thus $\kappa(H, x) = 0$. Since $x \in H$ we see from (c) that x = 0.

(f) $[L_0, L_0] = 0.$

Otherwise, we have $[L_0, L_0] \neq 0$. Since L_0 is nilpotent and $[L_0, L_0]$ is a nonzero ideal, we then have $[L_0, L_0] \cap centre(L_0) \neq 0$ (by a corollary of Engel). Let $x \in [L_0, L_0] \cap centre(L_0), x \neq 0$. Write x = s + n as in (a). Since $ad(x)(L_0) \subset 0$ we have $ad(x)_n(L_0) \subset 0$ hence $ad(n)(L_0) \subset 0$ hence $n \in centre(L_0)$. Hence for any $x' \in L_0$, $ad(x'), ad(n) : L \to L$ commute and ad(n) is nilpotent hence $ad(x')ad(n) : L \to L$ is nilpotent hence tr(ad(x')ad(n), L) = 0 hence $\kappa(x', n) = 0$. Thus $\kappa(L_0, n) = 0$. Since $\kappa|_{L_0}$ is non-singular we have n = 0. Thus $x = s \in H$ (see (b)). Hence $x \in [L_0, L_0] \cap H$ which is 0 by (e). Hence x = 0 a contradiction. (g) If $x \in L_0$ is nilpotent then x = 0.

For all $y \in L_0$, ad(x), ad(y) commute and ad(x) is nilpotent hence ad(x)ad(y): $L \to L$ is nilpotent hence tr(ad(x)ad(y), L) = 0. Hence $\kappa(x, y) = 0$. Hence $\kappa(x, L_0) = 0$. Since $\kappa|_{L_0}$ is non-singular we have x = 0.

We can now prove the proposition. Let $x \in L_0$. Write x = s + n as in (a). Then $s \in L_0, n \in L_0$. By (g) we have n = 0. By (b) we have $s \in H$. Hence $x \in H$. The proposition is proved.

Properties of roots.

Let $\xi \in H^*$. Since $\kappa|_H$ is non-singular there exists a unique element $t_{\xi} \in H$ such that $\xi(h) = \kappa(t_{\xi}, h)$ for all $h \in H$. Now $\xi \mapsto t_{\xi}$ is an isomorphism $H^* \xrightarrow{\sim} H$. (a) R spans the vector space H^* .

If not, we can find $h \in H$, $h \neq 0$ so that $\alpha(h) = 0$ for all $\alpha \in R$. Then $[h, L_{\alpha}] = 0$ for all $\alpha \in R$. Also $[h, L_0] = 0$ since $L_0 = H$ is abelian. Hence [h, L] = 0 so that $h \in Z(L)$. But Z(L) = 0 since L is semisimple. Thus h = 0, contradiction.

(b) If $\alpha \in R$ then $-\alpha \in R$.

Assume that $-\alpha \notin R$. Then $L_{-\alpha} = 0$. Hence $\kappa(L_{\alpha}, L_{\beta}) = 0$ for any $\beta \in H^*$ hence $\kappa(L_{\alpha}, L) = 0$. Since κ is non-singular we have $L_{\alpha} = 0$, absurd.

(c) If $\alpha \in R, x \in L_{\alpha}, y \in L_{-\alpha}$ then $[x, y] = \kappa(x, y)t_{\alpha}$.

Let $h \in H$. We have $\kappa(h, [x, y]) = \kappa(y, [h, x]) = \alpha(h)\kappa(y, x) = \kappa(t_{\alpha}, h)\kappa(x, y)$ hence $\kappa(h, [x, y] - \kappa(x, y)t_{\alpha}) = 0$. Thus $\kappa([x, y] - \kappa(x, y)t_{\alpha}, H) = 0$. Since $[x, y] - \kappa(x, y)t_{\alpha} \in H$ and κ_H is non-singular, we have $[x, y] - \kappa(x, y)t_{\alpha} = 0$.

(d) Let $\alpha \in R$ and let $x \in L_{\alpha} - \{0\} \neq 0$. There exists $y \in L_{-\alpha}$ such that $\kappa(x, y) \neq 0$.

Assume that $\kappa(x, L_{-\alpha}) = 0$. Then $\kappa(x, L_{\beta}) = 0$ for any $\beta \in H^*$ hence $\kappa(x, L) = 0$ hence x = 0 absurd.

(e) Let $\alpha \in R$. We have $\alpha(t_{\alpha}) = \kappa(t_{\alpha}, t_{\alpha}) \neq 0$.

The equality comes from the definition of t_{α} . Assume that $\alpha(t_{\alpha}) = 0$. Then $[t_{\alpha}, L_{\alpha}] = 0, [t_{\alpha}, L_{-\alpha}] = 0$. Let x, y be as in (d). We can assume that $\kappa(x, y) = 1$. Then $[x, y] = t_{\alpha}$. Let $S = kx + ky + kt_{\alpha}$, a Lie subalgebra of L. We have $[S, S] = kt_{\alpha}, [kt_{\alpha}, kt_{\alpha}] = 0$ hence S is solvable. By Lie's theorem for $ad : S \to End(L)$ we see that $ad(x') : L \to L$ is nilpotent for any $x' \in [S, S]$. In particular $ad(t_{\alpha}) : L \to L$ is nilpotent. Since $t_{\alpha} \in H$ and all elements of H are semisimple, we see that $ad(t_{\alpha}) : L \to L$ is also semisimple hence is 0. Thus $t_{\alpha} \in Z(L) = 0$. This contradicts $t_{\alpha} \neq 0$.

(f) Let $\alpha \in R$. Let $x \in L_{\alpha}, x \neq 0$. We can find $y \in L_{-\alpha}$ such that, setting $h = [x, y] \in H$ we have [h, x] = 2x, [h, y] = -2y.

By (d),(e) we can find $y \in L_{-\alpha}$ such that $\kappa(x,y) = 2/\alpha(t_{\alpha})$. Then $h = 2t_{\alpha}/\alpha(t_{\alpha})$. Hence

 $[h, x] = (2/\alpha(t_{\alpha}))[t_{\alpha}, x] = (2/\alpha(t_{\alpha}))\alpha(t_{\alpha})x = 2x,$

 $[h, y] = (2/\alpha(t_{\alpha}))[t_{\alpha}, y] = (2/\alpha(t_{\alpha}))(-\alpha(t_{\alpha})y) = -2y.$

(g) Let $\alpha \in R$. Let x, y, h be as in (f). Then S = kx + ky + kh is a Lie subalgebra of L and $e \to x, f \to y, h \to h$ is an isomorphism of Lie algebras $\mathfrak{sl}_2(k) \xrightarrow{\sim} S$.

This is clear.

(h) Let $\alpha \in R$. Let $h_{\alpha} = 2t_{\alpha}/\alpha(t_{\alpha})$ (see (f)). We have $h_{\alpha} = -h_{-\alpha}$.

It suffices to show that $t_{\alpha} = -t_{-\alpha}$. Since $\kappa|_{H}$ is non-singular it suffices to show that, for any $h \in H$ we have $\kappa(h, t_{\alpha}) = -\kappa(h, t_{-\alpha})$ or that $\alpha(h) = -(-\alpha(h))$. This is clear.

(i) Let $\alpha \in R$. Then $2\alpha \notin R$.

Let x, y, h, S be as in (g). Let $M = \bigoplus_{c \in k} L_{c\alpha}$ is an S-module under ad and hacts on $L_{c\alpha}$ as multiplication by $c\alpha(h) = c\alpha(2t_{\alpha})/\alpha(t_{\alpha}) = 2c$. By representation theory of $\mathfrak{sl}_2(k)$ (see below) the eigenvalues of $h: M \to M$ are integers. Hence $M = \bigoplus_{c \in (1/2)\mathbf{Z}} L_{c\alpha}$. Now S + H is an S-submodule of M. By Weyl, there exists an S-submodule M' of M such that $M = (S + H) \oplus M'$. Now the 0-eigenspace of $h: M \to M$ is $L_0 = H$ hence it is contained in S + H. Thus the 0-eigenspace of $h: M' \to M'$ is 0. Hence $h: M' \to M'$ does not have eigenvalues in $2\mathbf{Z}$. The eigenvalues of $h: S + H \to S + H$ are 0, 2, -2. We see that 4 is not an eigenvalue of $h: M \to M$. If we had $2\alpha \in R$ then a non-zero-vector in $L_{2\alpha}$ would be an eigenvector of $h: M \to M$ with eigenvalue 4, contradiction.

(j) Let $\alpha \in R$. Then $\alpha/2 \notin R$.

If we had $\alpha/2 \in R$ then applying (i) to $\alpha/2$ we would deduce that $\alpha \notin R$, contradiction.

(k) In (i) we have M' = 0.

From (j) we see that $L_{\alpha/2} = 0$ hence the 1-eigenspace of $h: M \to M$ is 0. Thus $h: M' \to M'$ has no eigenvalue 1 (nor 0, see (i)). Hence $h: M' \to M'$ has no odd or even eigenvalues. Hence M' = 0.

(l) Let $\alpha \in R$. We have dim $L_{\alpha} = 1$. Moreover $c\alpha \in R, c \in k$ implies $c \in \{1, -1\}$.

Let x, y, h, S be as in (g). By (k) we have $\bigoplus_{c \in k} L_{c\alpha} = S + H$. The result follows. (m) Let $\alpha, \beta \in R, \beta \neq \pm \alpha$. Let $h_{\alpha} = 2t_{\alpha}/\alpha(t_{\alpha})$. Then $\beta(h_{\alpha}) \in \mathbb{Z}$ and $\{n \in \mathbb{Z} \mid \beta + n\alpha \in R\}$ is of the form $\{-r, -r + 1, \dots, 0, \dots, q - 1, q\}$ where $-r \leq 0 \leq q$. Let x, y, h, S be as in (g). Then $h = h_{\alpha}$. Let $K = \bigoplus_{n \in \mathbb{Z}} L_{\beta + n\alpha} \subset L$. This is an $S = \mathfrak{sl}_2(k)$ -module under ad such that any eigenvalue of h on $L_{\beta + n\alpha}$ is $\beta(h_{\alpha}) + 2n$. For n = 0 the eigenvalue is $\beta(h_{\alpha})$ and it has multiplicity > 0 hence $\beta(h_{\alpha}) \in \mathbb{Z}$. We see that all eigenvalues have multiplicity one and they all have the same parity. It follows that the S-module K is simple. (See below.) The result follows.

(n) Let $\alpha, \beta \in R$, $\beta \neq \pm \alpha$. Let $h_{\alpha} = 2t_{\alpha}/\alpha(t_{\alpha})$. We have $\beta - \beta(h_{\alpha})\alpha \in R$.

By (m), we have $\beta(h_{\alpha}) - 2r = -(\beta(h_{\alpha}) + 2q)$ that is $\beta(h_{\alpha}) = r - q$ and we must show that $-r \leq -\beta(h_{\alpha}) \leq q$ that is $-r \leq -r + q \leq q$. This is clear.

(o) If $\alpha, \beta, \alpha + \beta \in R$ then $[L_{\alpha}, L_{\beta}] = L_{\alpha+\beta}$.

Since $2\alpha \notin R$ we have $\beta \neq \pm \alpha$. Consider the irreducible $S = \mathfrak{sl}_2(k)$ -module Kin (m). With notations in (m) we have $L_\beta = (r-q)$ -eigenspace of $h: K \to K$ and $L_{\alpha+\beta} = (r-q+2)$ -eigenspace of $h: K \to K$. It is enough to show that $e \in \mathfrak{sl}_2(k)$ maps the *j*-eigenspace of $h: K \to K$ onto the (j+2)-eigenspace (if both these eigenspaces are 1-dimensional). This follows from the explicit description of simple $\mathfrak{sl}_2(k)$ -modules (see below).

(p) The smallest Lie subalgebra L' of L that contains L_{α} for all $\alpha \in R$ is L itself.

It suffices to show that L' contains H. From (a) it follows that $\{t_{\alpha} | \alpha \in R\}$ spans H as a vector space. Hence it is enough to show that for $\alpha \in R$ we have $t_{\alpha} \in L'$. But by (c),(d) we have $t_{\alpha} \in [L_{\alpha}, L_{-\alpha}]$.

Rationality.

Define $(,): H^* \times H^* \to k$ to be the symmetric bilinear form $(\xi, \xi') = \kappa(t_{\xi}, t_{\xi'}) = \sum_{\alpha \in R} \alpha(t_{\xi}) \alpha(t_{\xi'})$. This form is non-singular. For $\alpha \in R$ we have $(\xi, \alpha) = \kappa(t_{\xi}, t_{\alpha}) = \alpha(t_{\xi})$. Hence $(\xi, \xi') = \sum_{\alpha \in R} (\xi, \alpha)(\xi', \alpha)$.

For $\alpha \in R$ we have $(\alpha, \alpha) = \kappa(t_{\alpha}, t_{\alpha}) \neq 0$. For $\alpha, \beta \in R$ we have $2(\alpha, \beta)/(\alpha, \alpha) = \kappa(2t_{\alpha}/\kappa(t_{\alpha}, t_{\alpha}), t_{\beta}) = \kappa(h_{\alpha}, t_{\beta}) = \beta(h_{\alpha}) \in \mathbf{Z}$. Now from $(\beta, \beta) = \sum_{\alpha \in R} (\beta, \alpha)^2$ we deduce $4(\beta, \beta)^{-1} = \sum_{\alpha \in R} (2(\beta, \alpha)/(\beta, \beta))^2 \in \mathbf{Z}$. Thus $(\beta, \beta) \in \mathbf{Q}$ hence $(\alpha, \beta) \in \mathbf{Q}$ for any $\alpha, \beta \in \mathbf{R}$.

Z. Thus $(\beta, \beta) \in \mathbf{Q}$ hence $(\alpha, \beta) \in \mathbf{Q}$ for any $\alpha, \beta \in R$.

LIE ALGEBRAS,3

Let *E* be the **Q**-subspace of H^* spanned by *R*. Let $\alpha_1, \ldots, \alpha_n$ be a *k*-basis of H^* contained in *R*. We show that $\alpha_1, \ldots, \alpha_n$ is a **Q**-basis of *E*. Let $\alpha \in R$. We have $\alpha = \sum_{i=1}^n c_i \alpha_i$ with $c_i \in k$. It suffices to show that $c_i \in \mathbf{Q}$ for all *i*. For any $j \in [1, n]$ we have

 $\frac{2(\alpha, \alpha_j)}{(\alpha_j, \alpha_j)} = \sum_{i=1}^n c_i 2(\alpha_i, \alpha_j) / (\alpha_j, \alpha_j).$

This is a linear system of n equations with n unknowns c_i with non-zero determinant and integer coefficients. Hence $c_i \in \mathbf{Q}$ for all i. Hence E coincides with the \mathbf{Q} -subspace of H^* spanned by $\alpha_1, \ldots, \alpha_n$.

Let $\xi \in E, \xi \neq 0$. We have $(\xi, \xi) = \sum_{\alpha \in R} (\xi, \alpha)^2$. This is a rational number ≥ 0 . If it 0 then $(\xi, \alpha) = 0$ for all $\alpha \in R$ hence $\xi = 0$. Thus $(,)|_E$ has rational values and is positive definite.

We may summarize the properties of $R \subset E$ and $(,)|_E$ as follows:

R spans *E* as a **Q**-vector space, $0 \notin R$. If $\alpha \in R$ then $-\alpha \in R$ but $c\alpha \notin R$ if $c \in \mathbf{Q} - \{1, -1\}$. If $\alpha, \beta \in R$ then $\frac{2(\beta, \alpha)}{(\alpha, \alpha)} \in \mathbf{Z}$ and $\beta - 2\frac{(\beta, \alpha)}{(\alpha, \alpha)}\alpha \in R$.