MIT-Fall 2005

Enveloping algebras

In this section the ground field k is arbitrary.

Let L be a Lie algebra. A pair (U, i) where U is an associative algebra and i is a Lie algebra homomorphism $L \to U$ is called a universal enveloping algebra of L if the following holds: if U' is any associative algebra and i' is a Lie algebra homomorphism $L \to U'$ then there exists a unique algebra homomorphism $f : U \to U'$ such that i' = fi.

Lemma. (a) Let $(U, i), (\tilde{U}, \tilde{i})$ be universal enveloping algebras of L. Then there exists a unique algebra isomorphism $j: U \xrightarrow{\sim} U'$ such that $i = \tilde{i}j$.

(b) U is generated as an algebra by i(L).

(c) Let L_1, L_2 be Lie algebras. Let $(U_1, i_1), (U_2, i_2)$ be universal enveloping algebras of L_1, L_2 . Let $f : L_1 \to L_2$ be a Lie algebra homomorphism. Then there exists a unique algebra homomorphism $\tilde{f} : U_1 \to U_2$ such that $i_2 f = \tilde{f}i_1$.

(d) Let I be an ideal of L and let I be the ideal of U generated by i(L). Then $i: L \to U$ induces a Lie algebra homomorphism $j: L/I \to U/\tilde{I}$ and $(U/\tilde{I}, j)$ is a universal enveloping algebras of L/I.

(e) There is a unique algebra anti-automorphism $\pi: U \to U$ such that $\pi i = -i$. We have $\pi^2 = 1$.

(f) There is a unique algebra homomorphism $\delta : U \to U \otimes U$ such that $\delta(i(a)) = i(a) \otimes 1 + 1 \otimes i(a)$ for all $a \in L$.

(g) If $D: L \to L$ is a derivation then there is a unique derivation $D': U \to U$ such that iD = D'i.

(a)-(f) are standard. We prove (g). Let U_2 be the algebra of 2×2 matrices with entries in U. Define a linear map $i' : L \to U_2$ by

$$a \mapsto \begin{array}{c} i(a) \ i(D(a)) \\ 0 \ i(a) \end{array}$$

This is a Lie algebra homomorphism:

$$\begin{split} i'([a,b]) &= \begin{array}{c} i(a)i(b)-i(b)i(a) & i(D(a))i(b)-i(b)i(D(a))+i(a)i(D(b))-i(D(b))i(a) \\ 0 & i(a)i(b)-i(b)i(a) \end{array} \\ i(a) & i(D(a)) & i(b) & i(D(b)) \\ 0 & i(a) & 0 & i(b) \end{array} - \begin{array}{c} i(b) & i(D(b)) & i(a) & i(D(a)) \\ 0 & i(b) & 0 & i(a) \end{array} = i'(a)i'(b) - i'(b)i'(a). \end{split}$$

Typeset by \mathcal{AMS} -TEX

Hence there is an algebra homomorphism $j: U \to U_2$ such that i' = ji. We have $j(x) = {x \ y \ 0 \ x}$ for all $x \in U$ where y is uniquely determined by x. Indeed this is true for $x \in i(L)$ and these generate U. We set y = D'(x) where $D': U \to U$. Then D' is a derivation of U such that iD = D'i.

Construction of a universal enveloping algebra. Let T be the tensor algebra of L. By definition, $T = T_0 \oplus T_1 \oplus T_2 \oplus \ldots$ where $T_0 = k_1, T_1 = L$ and $T_i = L \otimes L \otimes \ldots L$ (*i* times). The algebra structure is characterized by

$$(x_1 \otimes \ldots \otimes x_i)(y_1 \otimes \ldots \otimes y_j) = x_1 \otimes \ldots \otimes x_i \otimes y_1 \otimes \ldots \otimes y_j.$$

Let K be the ideal of T generated by the elements of form $[a, b] - a \otimes b - b \otimes a$ with $a, b \in L$. Let U = T/I. Let $i : L \to U$ be the composition of the canonical maps $L \to T \to U$. We have

 $i[a,b] - i(a)i(b) + i(b)i(a) = K - \text{coset of } [a,b] - a \otimes b + b \otimes a = K.$ Hence $i: L \to U$ is a Lie algebra homomorphism.

Proposition. (U, i) is a universal enveloping algebra of L.

Let $\{u_j | j \in J\}$ be a basis of the vector space L. The monomials $u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_n}$ (where $j_1, j_2, \ldots, j_n \in J$) form a basis of T_n . We assume that J is ordered. Define

 $index(u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_n}) = \sum_{i < k} \eta_{ik}$ where $\eta_{ik} = 0$ if $j_i \leq j_k$ and $\eta_{ik} = 1$ if $j_i > j_k$. We have $index(u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_n}) =$

where $\eta_{ik} = 0$ if $j_i \leq j_k$ and $\eta_{ik} = 1$ if $j_i > j_k$. We have $index(u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_n}) = 0$ if and only if $j_1 \leq j_2 \leq \ldots j_n$. In this case the monomial is said to be standard. We regard 1 as a standard monomial. Assume now that $j_k > j_{k+1}$; then

$$index(u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_n})$$

= 1 + index(u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_{k+1}} \otimes u_{j_k} \otimes \ldots \otimes u_{j_n}).

Lemma 1. Every element $x \in T$ is congruent modulo K to a linear combination of standard monomials.

We may assume that x is a monomial. We may assume that x has degree n > 0 and index p and that the result is true for monomials of degree < n or for monomials of degree n and index < p. Assume $x = u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_n}$ is not standard and suppose $j_k > j_{k+1}$. We have

 $u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_n}$ = $u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_{k+1}} \otimes u_{j_k} \otimes \ldots \otimes u_{j_n}$ + $u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes (u_{j_k} \otimes u_{j_{k+1}} - u_{j_{k+1}} \otimes u_{j_k}) \otimes \ldots \otimes u_{j_n}$ = $u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_{k+1}} \otimes u_{j_k} \otimes \ldots \otimes u_{j_n}$ + $u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes [u_{j_k}, u_{j_{k+1}}] \otimes \ldots \otimes u_{j_n} \mod K.$

The result follows from the induction hypothesis.

We now introduce the vector space P_n with basis $u_{i_1}u_{i_2}\ldots u_{i_n}$ indexed by the various $i_1 \leq i_2 \leq \ldots i_n$ in J. Let $P = P_0 \oplus P_1 \oplus P_2 \oplus \ldots$

Lemma 2. There exists a linear map $\sigma: T \to P$ such that

(a) $\sigma(u_{i_1} \otimes u_{i_2} \otimes \ldots \otimes u_{i_n}) = u_{i_1}u_{i_2} \ldots u_{i_n}$ if $i_1 \leq i_2 \leq \ldots i_n$,

 $(b) \ \sigma(u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_n} - u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_{k+1}} \otimes u_{j_k} \otimes \ldots \otimes u_{j_n}) = \sigma(u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes [u_{j_k}, u_{j_{k+1}}] \otimes \ldots \otimes u_{j_n})$

for any $j_1, j_2, \ldots, j_n \in J$ and any k.

Let $T_{n,j}$ be the subspace of T_n spanned by the monomials of degree n and index $\leq j$. Define $\sigma(1) = 1$. Assume that σ is already defined on $T_0 \oplus T_1 \oplus \ldots \oplus T_{n-1}$ and it satisfies (a),(b) for monomials of degree < n. We extend σ linearly to $T_0 \oplus T_1 \oplus \ldots \oplus T_{n-1} \oplus T_{n,0}$ by requiring that $\sigma(u_{i_1} \otimes u_{i_2} \otimes \ldots \otimes u_{i_n}) = u_{i_1}u_{i_2} \ldots u_{i_n}$ for a standard monomial of degree n. Now assume that $i \geq 1$ and that σ has already been defined on $T_0 \oplus T_1 \oplus \ldots \oplus T_{n-1} \oplus T_{n,i-1}$ so that (a),(b) is satisfied for monomials of degree of degree < n-1 or for monomials of degree n and index < i. Now let $u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_n}$ be of index i. Suppose that $j_k > j_{k+1}$. We set $(*) \sigma(u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_n}) = \sigma(u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_{k+1}} \otimes u_{j_k} \otimes \ldots \otimes u_{j_n} + \sigma(u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_n}).$

This makes sense. We show that (*) is independent of the choice of the pair $j_k > j_{k+1}$. Assume that we have another pair $j_l > j_{l+1}$. There are two cases: (1) l > k+1, (2) l = k+1.

Case (1). We set $u_{j_k} = u, u_{j_{k+1}} = v, u_{j_l} = w, u_{j_{l+1}} = t$. By the first definition

$$\begin{aligned} \sigma(\dots u \otimes v \otimes \dots \otimes w \otimes t \dots) \\ &= \sigma(\dots v \otimes u \otimes \dots \otimes w \otimes t \dots + \dots [u, v] \otimes \dots \otimes w \otimes t \dots) \\ &= \sigma(\dots v \otimes u \otimes \dots \otimes t \otimes w \dots + \dots v \otimes u \otimes \dots \otimes [w, t] \dots \\ &+ \dots [u, v] \otimes \dots \otimes t \otimes w \dots + \dots [u, v] \otimes \dots \otimes [w, t] \dots). \end{aligned}$$

The second definition leads to the same expression.

Case (2). We set $u_{j_k} = u, u_{j_{k+1}} = v = u_{j_l}, u_{j_{l+1}} = w$. By the first definition

$$\begin{aligned} \sigma(\dots u \otimes v \otimes w \dots) &= \sigma(\dots v \otimes u \otimes w \dots + \dots [u, v] \otimes w \dots) \\ &= \sigma(\dots v \otimes w \otimes u \dots + \dots v \otimes [u, w] \dots + \dots [u, v] \otimes w \dots) \\ &= \sigma(\dots w \otimes v \otimes u \dots + \dots [v, w] \otimes u \dots + \dots v \otimes [u, w] \dots + \dots [u, v] \otimes w \dots). \end{aligned}$$

By the second definition

$$\begin{aligned} \sigma(\dots u \otimes v \otimes w \dots) &= \sigma(\dots u \otimes w \otimes v \dots + \dots u \otimes [v, w] \dots) \\ &= \sigma(\dots w \otimes u \otimes v \dots + \dots [u, w] \otimes v \dots + \dots u \otimes [v, w] \dots) \\ &= \sigma(\dots w \otimes v \otimes u \dots + \dots w \otimes [u, v] \dots + \dots [u, w] \otimes v \dots + \dots u \otimes [v, w] \dots). \end{aligned}$$

Thus we are reduced to proving

 $\sigma(\dots[v,w] \otimes u \dots + \dots v \otimes [u,w] \dots + \dots [u,v] \otimes w \dots) = \sigma(\dots w \otimes [u,v] \dots + \dots [u,w] \otimes v \dots + \dots u \otimes [v,w] \dots)$

or equivalently $\sigma(\dots[[v,w],u]\dots+\dots[v,[u,w]]\dots+\dots[[u,v],w]\dots)=0$ which follows from [[v,w],u]+[v,[u,w]]+[[u,v],w]=0. The lemma is proved.

Theorem (Poincaré-Birkhoff-Witt. The standard monomials form a basis of U = T/K.

By lemma 1 the standard monomials span U. Now K is spanned by elements of the form

 $u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_n} - u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_{k+1}} \otimes u_{j_k} \otimes \ldots \otimes u_{j_n} - u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes [u_{j_k}, u_{j_{k+1}}] \otimes \ldots \otimes u_{j_n}$

hence $\sigma(K) = 0$ and σ induces a linear map $U \to P$. This linear map takes the standard monomials to linearly independent elements of P. Hence the standard monomials are linearly independent in U.

Corollary. The map $i: L \to U$ is injective.

Free Lie algebra. Let X be a set. The free Lie algebra generated by X is a pair (F, i) where F is a Lie algebra and $i: X \to F$ is a map such that, if $i': X \to F'$ is a map of X into a Lie algebra, there is a unique Lie algebra homomorphism $j: F \to F'$ such that i' = ji. We show the existence of (F, i). Let V be the vector space with basis X. Let T be the tensor algebra of V. Let F be the Lie subalgebra of T generated by X. Then i is the obvious imbedding $X \subset F$. Let $i': X \to F'$ be a map into a Lie algebra. This extends to a linear map $V \to F'$. Let $h: F' \to U'$ be the enveloping algebra of F'. The composition $V \to F' \xrightarrow{h} U'$ extends to an algebra homomorphism $T \to U'$ and this restricts to a Lie algebra homomorphism $a: F \to U'$. Now $a(X) \subset h(F')$. Since F is generated by X as a Lie algebra, and h(F') is a Lie subalgebra, we see that $a(F) \subset h(F')$. Since h is injective (by the PBW theorem) there exists a unique homomorphism of Lie algebras $j: F \to F'$ such that $F \xrightarrow{a} U'$ ie equal to $F \xrightarrow{j} F' \xrightarrow{h} U'$. This shows that (F, i) is the free Lie algebra generated by X.

$\mathfrak{sl}_2(k)$ -MODULES

Let $L = \mathfrak{sl}_2(k)$. A basis is given by

$$e = {0 \ 1 \ 0 \ 0}, f = {0 \ 0 \ 1 \ 0}, g = {1 \ 0 \ 0 \ -1}.$$

We have [e, f] = h, [h, e] = 2e, [h, f] = -2f. Thus, h is semisimple. Since L is simple, it is semisimple. Let V be an L-module, dim $V < \infty$. Then $h: V \to V$ is semisimple. Thus $V = \bigoplus_{\lambda \in k} V_{\lambda}$ where $V_{\lambda} = \{v \in V | hv = \lambda v\}$.

If $v \in V_{\lambda}$ then $ev \in V_{\lambda+2}, fv \in V_{\lambda-2}$.

Assume now that V is irreducible. We can find $v_0 \in V - \{0\}$ such that $v_0 \in V_\lambda$, $ev_0 = 0$. Set $v_{-1} = 0$, $v_n = \frac{f^n}{n!} v_0$, $n \in \mathbf{N}$. We have

- (a) $hv_n = (\lambda 2n)v_n$ for $n \ge -1$
- (b) $fv_n = (n+1)v_{n+1}$ for $n \ge -1$

(c) $ev_n = (\lambda - n + 1)v_{n-1}$ for $n \ge 0$. (c) is shown by induction on n. For n = 0 it is clear. Assuming $n \ge 1$,

$$ev_n = n^{-1}efv_{n-1} = n^{-1}hv_{n-1} + n^{-1}fev_{n-1}$$

= $n^{-1}(\lambda - 2n + 2)v_{n-1} + n^{-1}f(\lambda - n + 2)v_{n-2}$
= $n^{-1}(\lambda - 2n + 2)v_{n-1} + n^{-1}(\lambda - n + 2)(n - 1)v_{n-1} = (\lambda - n + 1)v_{n-1}.$

By (a), the non-zero v_n are linearly independent. Since dim $V < \infty$, there exists $m \ge 0$ such that v_0, v_1, \ldots, v_m are $\ne 0$ and $v_{m+1} = 0$. Then $v_{m+2} = v_{m+3} = \cdots = 0$. Now v_0, v_1, \ldots, v_m form a basis of an *L*-submodule which must be the whole of *V*. Now (c) with n = m + 1 gives $0 = (\lambda - m)v_n$ hence $\lambda = n$. Thus the action of e, f, h in the basis v_0, v_1, \ldots, v_m is

 $\begin{aligned} hv_n &= (m-2n)v_n \text{ for } n \in [0,m] \\ fv_n &= (n+1)v_{n+1} \text{ for } n \in [0,m] \\ ev_n &= (m-n+1)v_{n-1} \text{ for } n \in [0,m] \\ \text{with the convention } v_{-1} &= 0, v_{m+1} = 0. \end{aligned}$

Conversely, given $m \ge 0$ we can define an *L*-module structure on an m + 1 dimensional vector space with basis v_0, v_1, \ldots, v_m by the formulas above. Thus we have a 1-1 correspondence between the set of isomorphism classes of irreducible *L*-modules and the set **N**.

Now let V be any finite dimensional L-module. Then:

(a) the eigenvalues of $h: V \to V$ are integers; the multiplicity of the eigenvalue a equals that of -a.

(b) If $h: V \to V$ has an eigenvalue in 2**Z** then it has an eigenvalue 0.

(c) If $h: V \to V$ has an eigenvalue in $2\mathbf{Z} + 1$ then it has an eigenvalue 1.

Indeed, by Weyl, we are reduced to the case where V is irreducible; in that case we use the explicit description of L given above.

A property of \mathfrak{sl}_2 -modules

Let V be a \mathfrak{sl}_2 -module such that $e: V \to V, f: V \to V$ are locally nilpotent. Then $\exp(e): V \to V, \exp(-f): V \to V$ are well defined isomorphisms. Hence $\tau = \exp(e) \exp(-f) \exp(e): V \to V$ is a well defined isomorphism. For any integer n let $V_n = \{x \in V | hx = nx\}$. Assume that $V = \bigoplus_n V_n$

Lemma. $\tau(V_n) \subset V_{-n}$.

Step 1. Assume that V has a basis ξ, η where $e\xi = 0, e\eta = \xi, f\xi = \eta, f\eta = 0, h\xi = \xi, h\eta = -\eta$.

We have $V = V_1 \oplus V_{-1}$ and $\exp(e)\xi = \xi$, $\exp(e)\eta = \eta = \xi$, $\exp(-f)\xi = \xi - \eta$, $\exp(-f)\eta = \eta$. It follows that $\tau(\xi) = -\eta$, $\tau(\eta) = \xi$. hence the result follows in this case.

Step 2. Assume that the result holds for V and for V'. We show that it holds for $V \otimes V'$ where $x \in \mathfrak{sl}_2$ acts as $x \otimes 1 + 1 \otimes x$.

A simple computation shows that for $x \in \mathfrak{sl}_2$, locally nilpotent, $\exp(x)$ acts on $V \otimes V'$ as $\exp(x) \otimes \exp(x)$. Hence τ acts on $V \otimes V'$ as $\tau \otimes \tau$. The result follows easily.

Step 3. If the result holds for V then it holds for any direct summand of V (as a \mathfrak{sl}_2 -module).

(Obvious.)

Step 4. The result holds when V is the irreducible module of dimension n.

(Induction on *n*.) This is obvious for n = 1 and is true for n = 2 by Step 1. Assume now that $n \ge 3$. Then *V* is a direct summand of $V' \otimes V''$ where *V'* is an irreducible module of dimension n - 1 and V'' is an irreducible module of dimension 2. By the induction hypothesis, the result holds for V', V'' hence it holds for $V' \otimes V''$ by Step 2 and for *V* by Step 3.

Step 5. The result holds when dim $V < \infty$.

Follows from the complete reducibility of V and Step 4.

Step 6. The result holds in general.

Let $x \in V_n$. Let N, N' be such that $e^{N+1}x = 0, f^{N'+1}x = 0$. The subspace of V spanned by $f^i e^j x$ with $0 \le j \le N, 0 \le i \le N + N'$ is easily seen to be an \mathfrak{sl}_2 -submodule V'. We have dim $V' < \infty$. By Step 5 the result holds for V'. Hence $\tau(x) \in V_{-n}$.