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Enveloping algebras

In this section the ground field k is arbitrary.
Let L be a Lie algebra. A pair (U, i) where U is an associative algebra and i

is a Lie algebra homomorphism L −→ U is called a universal enveloping algebra
of L if the following holds: if U ′ is any associative algebra and i′ is a Lie algebra
homomorphism L −→ U ′ then there exists a unique algebra homomorphism f :
U −→ U ′ such that i′ = fi.

Lemma. (a) Let (U, i), (Ũ, ĩ) be universal enveloping algebras of L. Then there

exists a unique algebra isomorphism j : U
∼

−→ U ′ such that i = ĩj.
(b) U is generated as an algebra by i(L).
(c) Let L1, L2 be Lie algebras. Let (U1, i1), (U2, i2) be universal enveloping al-

gebras of L1, L2. Let f : L1 −→ L2 be a Lie algebra homomorphism. Then there
exists a unique algebra homomorphism f̃ : U1 −→ U2 such that i2f = f̃ i1.

(d) Let I be an ideal of L and let Ĩ be the ideal of U generated by i(L). Then

i : L −→ U induces a Lie algebra homomorphism j : L/I −→ U/Ĩ and (U/Ĩ, j) is a
universal enveloping algebras of L/I.

(e) There is a unique algebra anti-automorphism π : U −→ U such that πi = −i.
We have π2 = 1.

(f) There is a unique algebra homomorphism δ : U −→ U⊗U such that δ(i(a)) =
i(a) ⊗ 1 + 1 ⊗ i(a) for all a ∈ L.

(g) If D : L −→ L is a derivation then there is a unique derivation D′ : U −→ U
such that iD = D′i.

(a)-(f) are standard. We prove (g). Let U2 be the algebra of 2 × 2 matrices
with entries in U . Define a linear map i′ : L −→ U2 by

a 7→
i(a) i(D(a))

0 i(a)

This is a Lie algebra homomorphism:

i′([a, b]) = i(a)i(b)−i(b)i(a) i(D(a))i(b)−i(b)i(D(a))+i(a)i(D(b))−i(D(b))i(a)
0 i(a)i(b)−i(b)i(a)

i(a) i(D(a))
0 i(a)

i(b) i(D(b))
0 i(b) − i(b) i(D(b))

0 i(b)
i(a) i(D(a))
0 i(a) = i′(a)i′(b) − i′(b)i′(a).
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Hence there is an algebra homomorphism j : U −→ U2 such that i′ = ji. We have
j(x) =

x y

0 x
for all x ∈ U where y is uniquely determined by x. Indeed this is true

for x ∈ i(L) and these generate U . We set y = D′(x) where D′ : U −→ U . Then
D′ is a derivation of U such that iD = D′i.

Construction of a universal enveloping algebra. Let T be the tensor algebra of L.
By definition, T = T0⊕T1⊕T2⊕ . . . where T0 = k1, T1 = L and Ti = L⊗L⊗ . . .L
(i times). The algebra structure is characterized by

(x1 ⊗ . . .⊗ xi)(y1 ⊗ . . . ⊗ yj) = x1 ⊗ . . . ⊗ xi ⊗ y1 ⊗ . . . ⊗ yj .

Let K be the ideal of T generated by the elements of form [a, b] − a ⊗ b − b ⊗ a
with a, b ∈ L. Let U = T/I. Let i : L −→ U be the composition of the canonical
maps L −→ T −→ U . We have

i[a, b]− i(a)i(b) + i(b)i(a) = K − coset of [a, b]− a ⊗ b + b ⊗ a = K.
Hence i : L −→ U is a Lie algebra homomorphism.

Proposition. (U, i) is a universal enveloping algebra of L.

Let {uj |j ∈ J} be a basis of the vector space L. The monomials uj1 ⊗uj2 ⊗ . . .⊗
ujn

(where j1, j2, . . . , jn ∈ J) form a basis of Tn. We assume that J is ordered.
Define

index(uj1 ⊗ uj2 ⊗ . . .⊗ ujn
) =

∑
i<k ηik

where ηik = 0 if ji ≤ jk and ηik = 1 if ji > jk. We have index(uj1⊗uj2⊗. . .⊗ujn
) =

0 if and only if j1 ≤ j2 ≤ . . . jn. In this case the monomial is said to be standard.
We regard 1 as a standard monomial. Assume now that jk > jk+1; then

index(uj1 ⊗ uj2 ⊗ . . .⊗ ujn
)

= 1 + index(uj1 ⊗ uj2 ⊗ . . .⊗ ujk+1
⊗ ujk

⊗ . . . ⊗ ujn
).

Lemma 1. Every element x ∈ T is congruent modulo K to a linear combination
of standard monomials.

We may assume that x is a monomial. We may assume that x has degree
n > 0 and index p and that the result is true for monomials of degree < n or for
monomials of degree n and index < p. Assume x = uj1 ⊗ uj2 ⊗ . . . ⊗ ujn

is not
standard and suppose jk > jk+1. We have

uj1 ⊗ uj2 ⊗ . . .⊗ ujn

= uj1 ⊗ uj2 ⊗ . . .⊗ ujk+1
⊗ ujk

⊗ . . .⊗ ujn

+ uj1 ⊗ uj2 ⊗ . . .⊗ (ujk
⊗ ujk+1

− ujk+1
⊗ ujk

) ⊗ . . .⊗ ujn

= uj1 ⊗ uj2 ⊗ . . .⊗ ujk+1
⊗ ujk

⊗ . . .⊗ ujn

+ uj1 ⊗ uj2 ⊗ . . .⊗ [ujk
, ujk+1

] ⊗ . . . ⊗ ujn
mod K.

The result follows from the induction hypothesis.
We now introduce the vector space Pn with basis ui1ui2 . . . uin

indexed by the
various i1 ≤ i2 ≤ . . . in in J . Let P = P0 ⊕ P1 ⊕ P2 ⊕ . . . .
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Lemma 2. There exists a linear map σ : T −→ P such that
(a) σ(ui1 ⊗ ui2 ⊗ . . .⊗ uin

) = ui1ui2 . . . uin
if i1 ≤ i2 ≤ . . . in,

(b) σ(uj1 ⊗ uj2 ⊗ . . .⊗ ujn
− uj1 ⊗ uj2 ⊗ . . .⊗ ujk+1

⊗ ujk
⊗ . . .⊗ ujn

) = σ(uj1 ⊗
uj2 ⊗ . . .⊗ [ujk

, ujk+1
] ⊗ . . . ⊗ ujn

)
for any j1, j2, . . . , jn ∈ J and any k.

Let Tn,j be the subspace of Tn spanned by the monomials of degree n and index
≤ j. Define σ(1) = 1. Assume that σ is already defined on T0 ⊕ T1 ⊕ . . . ⊕ Tn−1

and it satisfies (a),(b) for monomials of degree < n. We extend σ linearly to
T0⊕T1⊕ . . .⊕Tn−1⊕Tn,0 by requiring that σ(ui1 ⊗ui2 ⊗ . . .⊗uin

) = ui1ui2 . . . uin

for a standard monomial of degree n. Now assume that i ≥ 1 and that σ has
already been defined on T0 ⊕ T1 ⊕ . . . ⊕ Tn−1 ⊕ Tn,i−1 so that (a),(b) is satisfied
for monomials of degree of degree < n− 1 or for monomials of degree n and index
< i. Now let uj1 ⊗ uj2 ⊗ . . .⊗ ujn

be of index i. Suppose that jk > jk+1. We set
(∗) σ(uj1 ⊗uj2 ⊗ . . .⊗ujn

) = σ(uj1 ⊗uj2 ⊗ . . .⊗ujk+1
⊗ujk

⊗ . . .⊗ujn
+σ(uj1 ⊗

uj2 ⊗ . . .⊗ [ujk
, ujk+1

] ⊗ . . . ⊗ ujn
).

This makes sense. We show that (∗) is independent of the choice of the pair
jk > jk+1. Assume that we have another pair jl > jl+1. There are two cases: (1)
l > k + 1, (2) l = k + 1.

Case (1). We set ujk
= u, ujk+1

= v, ujl
= w, ujl+1

= t. By the first definition

σ(. . . u ⊗ v ⊗ . . .⊗ w ⊗ t . . . )

= σ(. . . v ⊗ u ⊗ . . .⊗ w ⊗ t · · ·+ . . . [u, v]⊗ . . .⊗ w ⊗ t . . . )

= σ(. . . v ⊗ u ⊗ . . .⊗ t ⊗ w · · ·+ . . . v ⊗ u ⊗ . . . ⊗ [w, t] . . .

+ . . . [u, v] ⊗ . . . ⊗ t ⊗ w · · ·+ . . . [u, v] ⊗ . . .⊗ [w, t] . . . ).

The second definition leads to the same expression.
Case (2). We set ujk

= u, ujk+1
= v = ujl

, ujl+1
= w. By the first definition

σ(. . . u ⊗ v ⊗ w . . . ) = σ(. . . v ⊗ u ⊗ w · · ·+ . . . [u, v] ⊗ w . . . )

= σ(. . . v ⊗ w ⊗ u · · ·+ . . . v ⊗ [u, w] · · ·+ . . . [u, v] ⊗ w . . . )

= σ(. . .w ⊗ v ⊗ u · · ·+ . . . [v, w] ⊗ u · · ·+ . . . v ⊗ [u, w] · · ·+ . . . [u, v]⊗ w . . . ).

By the second definition

σ(. . . u ⊗ v ⊗ w . . . ) = σ(. . . u ⊗ w ⊗ v · · ·+ . . . u ⊗ [v, w] . . . )

= σ(. . .w ⊗ u ⊗ v · · · + . . . [u, w] ⊗ v · · · + . . . u ⊗ [v, w] . . . )

= σ(. . .w ⊗ v ⊗ u · · ·+ . . . w ⊗ [u, v] · · ·+ . . . [u, w] ⊗ v · · ·+ . . . u ⊗ [v, w] . . . ).

Thus we are reduced to proving
σ(. . . [v, w] ⊗ u · · · + . . . v ⊗ [u, w] · · ·+ . . . [u, v] ⊗ w . . . ) = σ(. . .w ⊗ [u, v] · · ·+

. . . [u, w] ⊗ v · · ·+ . . . u ⊗ [v, w] . . . )
or equivalently σ(. . . [[v, w], u] · · ·+ . . . [v, [u, w]] · · ·+ . . . [[u, v], w] . . . ) = 0
which follows from [[v, w], u] + [v, [u, w]] + [[u, v], w] = 0. The lemma is proved.
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Theorem (Poincaré-Birkhoff-Witt. The standard monomials form a basis of
U = T/K.

By lemma 1 the standard monomials span U . Now K is spanned by elements
of the form

uj1 ⊗ uj2 ⊗ . . . ⊗ ujn
− uj1 ⊗ uj2 ⊗ . . . ⊗ ujk+1

⊗ ujk
⊗ . . . ⊗ ujn

− uj1 ⊗ uj2 ⊗
. . .⊗ [ujk

, ujk+1
] ⊗ . . .⊗ ujn

hence σ(K) = 0 and σ induces a linear map U −→ P . This linear map takes the
standard monomials to linearly independent elements of P . Hence the standard
monomials are linearly independent in U .

Corollary. The map i : L −→ U is injective.

Free Lie algebra. Let X be a set. The free Lie algebra generated by X is a pair
(F, i) where F is a Lie algebra and i : X −→ F is a map such that, if i′ : X −→ F ′

is a map of X into a Lie algebra, there is a unique Lie algebra homomorphism
j : F −→ F ′ such that i′ = ji. We show the existence of (F, i). Let V be the vector
space with basis X. Let T be the tensor algebra of V . Let F be the Lie subalgebra
of T generated by X. Then i is the obvious imbedding X ⊂ F . Let i′ : X −→ F ′ be
a map into a Lie algebra. This extends to a linear map V −→ F ′. Let h : F ′ −→ U ′

be the enveloping algebra of F ′. The composition V −→ F ′ h
−→ U ′ extends to an

algebra homomorphism T −→ U ′ and this restricts to a Lie algebra homomorphism
a : F −→ U ′. Now a(X) ⊂ h(F ′). Since F is generated by X as a Lie algebra, and
h(F ′) is a Lie subalgebra, we see that a(F ) ⊂ h(F ′). Since h is injective (by the
PBW theorem) there exists a unique homomorphism of Lie algebras j : F −→ F ′

such that F
a
−→ U ′ ie equal to F

j
−→ F ′ h

−→ U ′. This shows that (F, i) is the free
Lie algebra generated by X.

sl2(k)-modules

Let L = sl2(k). A basis is given by

e = 0 1

0 0
, f = 0 0

1 0
, g =

1 0

0 −1
.

We have [e, f ] = h, [h, e] = 2e, [h, f ] = −2f . Thus, h is semisimple. Since L is
simple, it is semisimple. Let V be an L-module, dimV < ∞. Then h : V −→ V is
semisimple. Thus V = ⊕λ∈kVλ where Vλ = {v ∈ V |hv = λv}.

If v ∈ Vλ then ev ∈ Vλ+2, fv ∈ Vλ−2.

Assume now that V is irreducible. We can find v0 ∈ V −{0} such that v0 ∈ Vλ,

ev0 = 0. Set v−1 = 0, vn = fn

n!
v0, n ∈ N. We have

(a) hvn = (λ − 2n)vn for n ≥ −1

(b) fvn = (n + 1)vn+1 for n ≥ −1
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(c) evn = (λ − n + 1)vn−1 for n ≥ 0.
(c) is shown by induction on n. For n = 0 it is clear. Assuming n ≥ 1,

evn = n−1efvn−1 = n−1hvn−1 + n−1fevn−1

= n−1(λ − 2n + 2)vn−1 + n−1f(λ − n + 2)vn−2

= n−1(λ − 2n + 2)vn−1 + n−1(λ − n + 2)(n − 1)vn−1 = (λ − n + 1)vn−1.

By (a), the non-zero vn are linearly independent. Since dimV < ∞, there exists
m ≥ 0 such that v0, v1, . . . , vm are 6= 0 and vm+1 = 0. Then vm+2 = vm+3 = · · · =
0. Now v0, v1, . . . , vm form a basis of an L-submodule which must be the whole of
V . Now (c) with n = m + 1 gives 0 = (λ − m)vn hence λ = n. Thus the action of
e, f, h in the basis v0, v1, . . . , vm is

hvn = (m − 2n)vn for n ∈ [0, m]
fvn = (n + 1)vn+1 for n ∈ [0, m]
evn = (m − n + 1)vn−1 for n ∈ [0, m]

with the convention v−1 = 0, vm+1 = 0.
Conversely, given m ≥ 0 we can define an L-module structure on an m + 1

dimensional vector space with basis v0, v1, . . . , vm by the formulas above. Thus we
have a 1-1 correspondence between the set of isomorphism classes of irreducible
L-modules and the set N.

Now let V be any finite dimensional L-module. Then:
(a) the eigenvalues of h : V −→ V are integers; the multiplicity of the eigenvalue

a equals that of −a.
(b) If h : V −→ V has an eigenvalue in 2Z then it has an eigenvalue 0.
(c) If h : V −→ V has an eigenvalue in 2Z + 1 then it has an eigenvalue 1.

Indeed, by Weyl, we are reduced to the case where V is irreducible; in that case
we use the explicit description of L given above.

A property of sl2-modules

Let V be a sl2-module such that e : V −→ V, f : V −→ V are locally nilpotent.
Then exp(e) : V −→ V, exp(−f) : V −→ V are well defined isomorphisms. Hence
τ = exp(e) exp(−f) exp(e) : V −→ V is a well defined isomorphism. For any integer
n let Vn = {x ∈ V |hx = nx}. Assume that V = ⊕nVn

Lemma. τ(Vn) ⊂ V−n.

Step 1. Assume that V has a basis ξ, η where eξ = 0, eη = ξ, fξ = η, fη =
0, hξ = ξ, hη = −η.

We have V = V1 ⊕ V−1 and exp(e)ξ = ξ, exp(e)η = η = ξ, exp(−f)ξ = ξ −
η, exp(−f)η = η. It follows that τ(ξ) = −η, τ(η) = ξ. hence the result follows in
this case.

Step 2. Assume that the result holds for V and for V ′. We show that it holds
for V ⊗ V ′ where x ∈ sl2 acts as x ⊗ 1 + 1 ⊗ x.



6 LIE ALGEBRAS

A simple computation shows that for x ∈ sl2, locally nilpotent, exp(x) acts on
V ⊗ V ′ as exp(x) ⊗ exp(x). Hence τ acts on V ⊗ V ′ as τ ⊗ τ . The result follows
easily.

Step 3. If the result holds for V then it holds for any direct summand of V (as
a sl2-module).

(Obvious.)
Step 4. The result holds when V is the irreducible module of dimension n.
(Induction on n.) This is obvious for n = 1 and is true for n = 2 by Step

1. Assume now that n ≥ 3. Then V is a direct summand of V ′ ⊗ V ′′ where V ′

is an irreducible module of dimension n − 1 and V ′′ is an irreducible module of
dimension 2. By the induction hypothesis, the result holds for V ′, V ′′ hence it
holds for V ′ ⊗ V ′′ by Step 2 and for V by Step 3.

Step 5. The result holds when dim V < ∞.
Follows from the complete reducibility of V and Step 4.
Step 6. The result holds in general.
Let x ∈ Vn. Let N, N ′ be such that eN+1x = 0, fN ′+1x = 0. The subspace

of V spanned by f iejx with 0 ≤ j ≤ N, 0 ≤ i ≤ N + N ′ is easily seen to be an
sl2-submodule V ′. We have dimV ′ < ∞. By Step 5 the result holds for V ′. Hence
τ(x) ∈ V−n.


