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ENVELOPING ALGEBRAS

In this section the ground field k is arbitrary.

Let L be a Lie algebra. A pair (U,i) where U is an associative algebra and i
is a Lie algebra homomorphism L — U is called a universal enveloping algebra
of L if the following holds: if U’ is any associative algebra and ¢’ is a Lie algebra
homomorphism L — U’ then there exists a unique algebra homomorphism f :
U — U’ such that i/ = fi.

Lemma. (a) Let (U,i),(U,1) be universal envelopmg algebras of L. Then there
exists a unique algebra isomorphism j : U — U’ such that i = ij.

(b) U is generated as an algebra by i(L).

(c) Let Ly, Ly be Lie algebras. Let (Uy,i1), (Us,iz) be universal enveloping al-
gebras of Ly, Ly. Let f : L1 — Lo be a Lie algebra homomorphism. Then there
exists a unique algebra homomorphism f: Uy — Uy such that is f = fil.

(d) Let I be an ideal of L and let I be the ideal of U generated by i(L). Then
i: L — U induces a Lie algebra homomorphism j : L/I — U/I and (U/1,j) is a
universal enveloping algebras of L/1.

(e) There is a unique algebra anti-automorphism w: U — U such that mi = —i.
We have 7% = 1.

(f) There is a unique algebra homomorphism 6 : U — URU such that §(i(a)) =
ila) @1 +1®i(a) for alla € L.

(9) If D : L — L is a derivation then there is a unique derivation D' : U — U
such that iD = D'i.

(a)-(f) are standard. We prove (g). Let Uy be the algebra of 2 x 2 matrices
with entries in U. Define a linear map ' : L — U, by

i(a) i(D(a))

ar— i(a)

This is a Lie algebra homomorphism:

. 2(a)i(b)—i(b)i(a) i(D(a))i(b)—i(b)i(D(a))+i(a)i(D(b 1(D(b))i(a
i'([a,b]) = ()() (b)i(a) i(D(a))i(b)— ()Z((a)((l)))) Z((b;((a)()) (D(b))i(a)

i(g) i(D(a)) i(b) Z(l?((b)) _ Z(é?) Z(ﬁt()l)))) Z(SL) Z(%f)m = i'(a)i'(b) — i'(b)i ().

i(a) 0 i(b
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Hence there is an algebra homomorphism j : U — Us such that i’ = ji. We have
j(z) = 3 z for all x € U where y is uniquely determined by x. Indeed this is true
for x € i(L) and these generate U. We set y = D’(z) where D' : U — U. Then
D' is a derivation of U such that iD = D’i.

Construction of a universal enveloping algebra. Let T be the tensor algebra of L.
By definition, T =Ty ®T1 P To®... where To = k1,71 =LandT; = LL®...L
(7 times). The algebra structure is characterized by

(1®..02)(11®...0Y;) =110 .., QY1 @...Y,.

Let K be the ideal of T' generated by the elements of form [a,b] —a®b—-b® a
with a,b € L. Let U =T/I. Let i : L — U be the composition of the canonical
maps L — T — U. We have

ila,b] —i(a)i(b) +i(b)i(a) = K — coset of [a,b] —a®@b+bRa =K.
Hence ¢ : L — U is a Lie algebra homomorphism.

Proposition. (U, i) is a universal enveloping algebra of L.

Let {u;|j € J} be a basis of the vector space L. The monomials u;, ®u;, ®...®
uj, (where jq,j2,...,Jn € J) form a basis of T,,. We assume that J is ordered.
Define

index(uj, @uj, ®...Quj, ) = > . 1 Mik
where n;, = 0if j; < ji and n;, = 1if j; > ji,. We have index(uj, ®u;,®...®Qu;, ) =
0 if and only if j; < js < ...Jj,. In this case the monomial is said to be standard.
We regard 1 as a standard monomial. Assume now that ji > jx+1; then

index(uj, @ uj, ®...Qu;,)
=1+ inder(uj, @uj, ®...Quj ,, Quj, ®@...0u;, ).

Lemma 1. Every element x € T is congruent modulo K to a linear combination
of standard monomials.

We may assume that x is a monomial. We may assume that x has degree
n > 0 and index p and that the result is true for monomials of degree < n or for
monomials of degree n and index < p. Assume z = uj, @ uj, ® ... ® u;, is not
standard and suppose ji > jr+1. We have

Ujy QUjy @ ... QU ,
=Uj, QUj, @...Q0Uj,, QUj D ...Q U,
+uj, Quj, ® ... @ (uy, & Ujp iy — Ujp iy R uj.) Q... uy,
=Uj; QUj, @ ... Uj, QU;, &...Quj,
+uj Quj, ® ... @ [ug,,uj, ] ®...®@uj, mod K.
The result follows from the induction hypothesis.

We now introduce the vector space P,, with basis u;, u;, ...u;, indexed by the
various 11 <o < ...t inJ. Let P=FPy P dPd....
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Lemma 2. There exists a linear map o : T — P such that

(a) o(Uiy @ Uiy, @ ... @ U, ) = Uiy Uiy - Uy, B 11 <ido < ooy,

(b) o(uj, @uj, @ ... @uj, —uj; Duj, @...QuUj,, Quj, ®...0u;, ) = o(uj ®
’LLj2 X...x [ujk,ujk+1] ®®an>

for any j1,j2,...,Jjn € J and any k.

Let T;, ; be the subspace of T}, spanned by the monomials of degree n and index
< j. Define o(1) = 1. Assume that o is already defined on Ty & 11 & ... D Tj,—1
and it satisfies (a),(b) for monomials of degree < n. We extend o linearly to
TodT1®...®T,—1®T, 0 by requiring that o(u;, @u;, ®...Qu;, ) = s Uy - . . Uy,
for a standard monomial of degree n. Now assume that ¢ > 1 and that o has
already been defined on Ty @11 & ... & T;,—1 & T}, ;1 so that (a),(b) is satisfied
for monomials of degree of degree < n — 1 or for monomials of degree n and index
< 1. Now let uj, ® uj, ® ... ® u;, be of index ¢. Suppose that ji > jry1. We set

(%) o(uj, Quj, ® ... Quy,) = o(uj, Quj, ... Quyy,, AUy, @ .. Quy, +0(uy, ®

Ujy @ ... & [ujk7u.jk+1] ®...8 an)'
This makes sense. We show that () is independent of the choice of the pair
Jk > jk+1. Assume that we have another pair j; > jj4+1. There are two cases: (1)
I>k+1,(2)l=k+1.

Case (1). We set uj, = u,uj,,, =v,uj, =w,uj, , =t By the first definition

o(..uRUV®..WwKt...)
=0(..v0U®..QWRt-+ ... [u,V|R..QWRt...)
=0(..v0U®..tQW-+..vVQUR...Q w,t]...
+. o Juv]®@. Rt w- -+ . u,v] ® ... ® [w, t] .. L).

The second definition leads to the same expression.
Case (2). We set u;, = u,uj, ., =v = uj,uj, , =w. By the first definition

o(..u®@uew...)=0c(..vQURW- -+ ...[u,v]Qw...)

=o0(..vQWRu---+ .. 0 [u,w---+... Ju,v]@w...)

=o(.. wRURu---+...v,wQu---+ .. v [u,w]---+ ... Ju, V] QW...).
By the second definition

o(...u®@uw...)=0(..uQRWRV -+ ... u® [v,w...)

=0(.. wRuUV---+ ... u,w V- +...u® [v,w]...)

=0(.. wRVAuU---+ .. w [u,v]- -+ ... Ju, W RV F+ . u® [v,w] .. ).
Thus we are reduced to proving
o(...[v,w]@u-+...0Q [u,w]--+ ... [u,v]Qw...)=0(... 0w [u,v] -+
Suwl v+ iu @ v, w] L)

or equivalently o(...[[v,w],u]- -+ ... [v, [u,w]]---+ ... [[u,v],w]...) =0
which follows from [[v, w], u] + [v, [u, w]] + [[u, v], w] = 0. The lemma is proved.
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Theorem (Poincaré-Birkhoff-Witt. The standard monomials form a basis of
U=T/K.

By lemma 1 the standard monomials span U. Now K is spanned by elements
of the form

Ujy @ Ujp & ... QUj, — Ujy QUj, @ ... QUj, QUj, B ... O Uy, — Uj; O Uj, ®
e ® [ujk7ujk+1] ... ®ujn
hence o(K) = 0 and o induces a linear map U — P. This linear map takes the
standard monomials to linearly independent elements of P. Hence the standard
monomials are linearly independent in U.

Corollary. The map t: L — U is injective.

Free Lie algebra. Let X be a set. The free Lie algebra generated by X is a pair
(F,i) where F' is a Lie algebra and ¢ : X — F' is a map such that, if i’ : X — F’
is a map of X into a Lie algebra, there is a unique Lie algebra homomorphism
j: F — F’ such that i’ = ji. We show the existence of (F,7). Let V be the vector
space with basis X. Let T be the tensor algebra of V. Let F' be the Lie subalgebra
of T generated by X. Then i is the obvious imbedding X C F. Let i’ : X — F’ be
a map into a Lie algebra. This extends to a linear map V' — F’. Let h : F/ — U’
be the enveloping algebra of F’. The composition V' — F’ ", U extends to an
algebra homomorphism 7" — U’ and this restricts to a Lie algebra homomorphism
a:F — U'. Now a(X) C h(F"). Since F is generated by X as a Lie algebra, and
h(F") is a Lie subalgebra, we see that a(F) C h(F’). Since h is injective (by the
PBW theorem) there exists a unique homomorphism of Lie algebras j : ' — F’
such that F -% U’ ie equal to F - F' 2% U’. This shows that (F,i) is the free
Lie algebra generated by X.

sly(k)-MODULES

Let L = sly(k). A basis is given by

e 01 p_00 10
00l T 10°9T 01"

We have [e, f] = h,[h,e] = 2e,[h, f] = —2f. Thus, h is semisimple. Since L is
simple, it is semisimple. Let V' be an L-module, dimV < co. Then h: V — V is
semisimple. Thus V = @ eV where V) = {v € V|hv = A\v}.

If v € V) then ev € V19, fo € Vy_s.

Assume now that V is irreducible. We can find vy € V' — {0} such that vy € V),
evg =0. Set v_1 =0,v, = %vo, n € N. We have

(a) hv, = (A = 2n)v, for n > —1

(b) fo, = (n+ 1)vy4q forn > —1
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(c) ev, = (A —n+1)v,_1 for n > 0.
(c) is shown by induction on n. For n = 0 it is clear. Assuming n > 1,

evy, =n tefup_1 =n thv,_1 +n" 1t fev,_1
=n A =2n+2)vp1 + 0 FA =0+ 2)v,_o
=n'A=2n+2up 1+t A =n+2)(n— Doy = (A —n+ Dv,_g.

By (a), the non-zero v,, are linearly independent. Since dimV < oo, there exists
m > 0 such that vy, v1,..., v, are # 0 and v,;, 11 = 0. Then v, 40 = V3 =+ =
0. Now vg,v1, ..., v, form a basis of an L-submodule which must be the whole of
V. Now (c) with n =m + 1 gives 0 = (A — m)v,, hence A = n. Thus the action of
e, f, h in the basis vy, v1, ..., Uy is

hv, = (m — 2n)v, for n € [0, m]

fon = (n+ 1)vy4q for n € [0,m]

ev, = (m —n+ 1)v,_1 for n € [0, m]
with the convention v_; = 0, v,,41 = 0.

Conversely, given m > 0 we can define an L-module structure on an m + 1
dimensional vector space with basis vg, v1, . . ., v, by the formulas above. Thus we
have a 1-1 correspondence between the set of isomorphism classes of irreducible
L-modules and the set N.

Now let V' be any finite dimensional L-module. Then:

(a) the eigenvalues of h : V' — V are integers; the multiplicity of the eigenvalue
a equals that of —a.

(b) If A : V' — V has an eigenvalue in 2Z then it has an eigenvalue 0.

(¢) If h: V — V has an eigenvalue in 2Z + 1 then it has an eigenvalue 1.
Indeed, by Weyl, we are reduced to the case where V' is irreducible; in that case
we use the explicit description of L given above.

A PROPERTY OF $l5-MODULES

Let V be a sly-module such that e : V. — V| f : V — V are locally nilpotent.
Then exp(e) : V — Viexp(—f) : V. — V are well defined isomorphisms. Hence
7 = exp(e) exp(—f)exp(e) : V — V is a well defined isomorphism. For any integer
nlet V,, = {x € V|hz = nz}. Assume that V =&, V,

Lemma. 7(V,,) C V_,.

Step 1. Assume that V has a basis &,n where e§ = 0,en = &£, f€ =n, fn =
0,hE =&, hn=—n.

We have V' = V; @ V_; and exp(e)¢ = & exple)n = n = £, exp(—f)§ = & —
n,exp(—f)n = n. It follows that 7(§) = —n, 7(n) = £. hence the result follows in
this case.

Step 2. Assume that the result holds for V' and for V’. We show that it holds
for V@V’ where x € sl actsas z ® 1+ 1 ® x.
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A simple computation shows that for = € sls, locally nilpotent, exp(x) acts on
V@V’ as exp(x) ® exp(z). Hence 7 acts on V@ V' as 7 @ 7. The result follows
easily.

Step 3. If the result holds for V' then it holds for any direct summand of V' (as
a slp-module).

(Obvious.)

Step 4. The result holds when V is the irreducible module of dimension n.

(Induction on n.) This is obvious for n = 1 and is true for n = 2 by Step
1. Assume now that n > 3. Then V is a direct summand of V' ® V' where V'’
is an irreducible module of dimension n — 1 and V" is an irreducible module of
dimension 2. By the induction hypothesis, the result holds for V', V" hence it
holds for V' ® V" by Step 2 and for V' by Step 3.

Step 5. The result holds when dim V' < oo.

Follows from the complete reducibility of V' and Step 4.

Step 6. The result holds in general.

Let z € V,,. Let N, N’ be such that eN*tlz = 0, fN'+1z = 0. The subspace
of V spanned by fileiz with 0 < j < N,0 < i < N 4+ N’ is easily seen to be an
sla-submodule V’. We have dim V' < co. By Step 5 the result holds for V’. Hence
T(x) € V_p,.



