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Proposition. Assume that k is algebraically closed, of characteristic 0. Let L be
a solvable Lie algebra, dim(L) < ∞, let V be a vector space, 0 < dim V < ∞ and
let ρ : L −→ End(V ) be a Lie algebra homomorphism. Then there exists v ∈ V −{0}
such that ρ(x)(v) ∈ kv for all x ∈ L.

Induction on dim(L). We can assume L 6= 0. Since L is solvable we have
[L, L] 6= L. Since L/[L, L] is abelian, any hyperplane in it is an ideal; taking its
inverse image under L −→ L/[L, L] we obtain an ideal I of codimension 1 in L
with [L, L] ⊂ I. By the induction hypothesis (for I, V instead of L, V ) we can find
v′ ∈ V −{0} and a linear form λ : I −→ k such that ρ(y)(v′) = λ(y)v′ for all y ∈ I.
Then W = {w ∈ V |ρ(y)(w) = λ(y)w∀y ∈ I} 6= 0.

Let w ∈ W−{0} and let x ∈ L. For i ≥ 0 let Wi = kw+kρ(x)w+· · ·+kρ(x)i−1w.
By induction on i ≥ 0 we see that for any y ∈ I:

(a) ρ(y)ρ(x)iw = λ(y)ρ(x)iw mod Wi

We can find n > 0 so that dim Wn = n, Wn = Wn+1. Hence ρ(x)Wn ⊂ Wn. From
(a) we see that, if y ∈ I, then ρ(y) acts with respect to the basis

w, ρ(x)w, . . . , ρ(x)n−1w
of Wn as an upper triangular matrix with diagonal entries λ(y). Hence tr(ρ(y), Wn) =
nλ(y). Now ρ(x)Wn ⊂ Wn, ρ(y)Wn ⊂ Wn. Hence ρ([x, y]) acts on Wn as the
commutator of two endomorphisms of Wn so that tr(ρ([x, y]), Wn) = 0. Thus
nλ([x, y]) = 0 so that

(b) λ([x, y]) = 0 (for x ∈ L, y ∈ I).
Let w ∈ W, x ∈ L. For y ∈ I we have

ρ(y)ρ(x)w = ρ(x)ρ(y)w − ρ([x, y])w = λ(y)ρ(x)w − λ([x, y])w = λ(y)ρ(x)w.
(We have used (b).) Thus ρ(x)w ⊂ W . We see that

(c) ρ(x)W ⊂ W for all x ∈ L.
Now choose z ∈ L − I. We have L = I ⊕ kz. Since ρ(z)W ⊂ W , we can find
v ∈ W − {0} such that ρ(z)v ∈ kv. Since ρ(x)(v) ∈ kv for all x ∈ I we deduce
that ρ(x)(v) ∈ kv for all x ∈ L.

Corollary (Lie). Assume that k is algebraically closed, of characteristic 0. Let
L be a solvable Lie algebra, dim(L) < ∞, let V be a vector space, dim V < ∞
and let ρ : L −→ End(V ) be a Lie algebra homomorphism. Then there exists a
sequence of vector subspaces 0 = V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = V , dimVi = i such
that ρ(x)Vi ⊂ Vi for i ∈ [0, n].
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Induction on dim(V ) using the previous proposition.

Corollary. Assume that k is algebraically closed, of characteristic 0. Let L be a
solvable Lie algebra, dim(L) < ∞. Then there exists a sequence of ideals 0 = L0 ⊂
L1 ⊂ L2 ⊂ . . . ⊂ Ln = L of L, dim Li = i.

Apply the previous corollary with V = L.

Corollary. Assume that k is algebraically closed, of characteristic 0. Let L be a
solvable Lie algebra, dim(L) < ∞.

(a) If x ∈ [L, L] then ad(x) : L −→ L is nilpotent.
(b) [L, L] is a nilpotent Lie algebra.

Let 0 = L0 ⊂ L1 ⊂ L2 ⊂ . . . ⊂ Ln = L be as in the previous corollary.
Consider a basis e1, . . . , en of L so that e1, . . . , ei is a basis of Li for all i. If
x, x′ ∈ L then ad(x), ad(x′) act in this basis as upper triangular matrices. Hence
[ad(x), ad(x′)] = ad([x, x′]) acts in this basis as an upper triangular matrix with
0 on the diagonal. Thus, if y ∈ [L, L], ad(y) : L −→ L acts as an upper triangular
matrix with 0 on the diagonal hence it is nilpotent. Hence ad(y) : [L, L] −→ [L, L]
is nilpotent for all y ∈ [L, L]. By Engel, [L, L] is nilpotent.

We now study the “Jordan decomposition” of an endomorphism x of a finite
dimensional vector space V . (Assume that k is algebraically closed.) We say that
x is semisimple if there exist a1, a2, . . . , an distinct in k such that (x − a1)(x −
a2) . . . (x − an) = 0 : V −→ V . (Equivalently, V is direct sum of x-eigenspaces.)
Then the restriction of x to an x-stable subspace is semisimple and there exists a
complementary x-stable subspace. If x, x′ : V −→ V are semisimple and commute
then V is sum of the joint eigenspaces of x and x′.

Let x ∈ End(V ). We have V = ⊕λ∈kVλ where Vλ is the generalized λ-
eigenspace of x. Let xs : V −→ V be defined by xs = λ on Vλ. Let xn : V −→ V be
defined by xn = x − λ on Vλ. Then xs is semisimple, xn is nilpotent and

x = xs + xn, xsxn = xnxs.
(This is the Jordan decomposition of x.) Clearly, if t ∈ End(V ) commutes with x
then t commutes with xs and with xn.

Conversely, assume that s, n ∈ End(V ),x = s+n, sn = ns and s is semisimple,
n is nilpotent. We show that s = xs, n = xn. Indeed, s commutes with s + n =
x hence with xs and xn. Since s, xs are commuting semisimple, we have that
s − xs is semisimple. Since n, xn are commuting nilpotent, we have that n − xn

is nilpotent.Now s − xs = −n + xn is both semisimple and nilpotent hence is 0.
Thus, s = xs, n = xn.

Lemma. Let x ∈ End(V ). Let A ⊂ B be subspaces of V . Assume that x(B) ⊂ A.
Then xs(B) ⊂ A, xn(B) ⊂ A.

The proof is routine.

Lemma. Let x ∈ End(V ). Write x = xs + xn as above.
(a) If x is semisimple then ad(x) : End(V ) −→ End(V ) is semisimple.
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(b) If x is nilpotent then ad(x) : End(V ) −→ End(V ) is nilpotent.

(c) ad(x) = ad(xs) + ad(xn) is the Jordan decomposition of ad(x) : End(V ) −→
End(V ).

(a),(b) are immediate. Now (c) follows from (a),(b) since ad(xs), ad(xn) satisfy
the characterization above of the semisimple and nilpotent part of ad(x). (Note
that [ad(xs), ad(xn)] = ad([xs, xn]) = 0.)

From now on, k is assumed to be algebraically closed, of characteristic 0.

Lemma. Let V be a finite dimensional vector space. Let A ⊂ B be subspaces
of End(V ). Let M = {x ∈ End(V )|[x, B] ⊂ A}. Assume that x ∈ M satisfies
tr(xy) = 0 for all y ∈ M . Then x is nilpotent.

Let x = s + n be the Jordan decomposition of x. Let (vi) be a basis of V
such that svi = aivi, ai ∈ k. Let eij ∈ End(V ) be defined by eij(vj) = vi and
eij(vk) = 0 for k 6= j. Then ad(s)eij = (ai − aj)eij .

Let E be the Q-vector subspace of k spanned by the ai. Let f : E −→ Q
be a linear form. Let y ∈ End(V ) be such that yvi = f(ai)vi for all i. Then
ad(y)eij = (f(ai) − f(aj))eij . We can find P (T ) ∈ k[T ] such that P (0) = 0,
P (ai−aj) = f(ai)−f(aj) for all i, j. We have ad(y) = P (ad(s)). Now ad(x)(B) ⊂
A. Hence its semisimple part ad(s) maps B into A. Since ad(y) = P (ad(s)) and
P (0) = 0 we see that ad(y)(B) ⊂ A that is y ∈ M . By assumption, tr(xy) = 0,
hence

∑

i aif(ai) = 0. Applying f to this identity in E gives
∑

i f(ai)
2 = 0. Since

f(ai) ∈ Q we have f(ai) = 0. Thus, f = 0. Since this holds for any f we have
E = 0. Hence ai = 0 for all i and x is nilpotent.

Remark. Let V be a vector space, dim V < ∞. Let x, y, z ∈ End(V ). We have
tr([x, y]z) = tr([y, z]x).

We have tr([x, y]z) = tr([y, z]x) = tr(xyz − yxz − yzx + zyx) = 0.

Theorem(Cartan). Let V be as above. Let L be a Lie subalgebra of End(V ).
Assume that tr(xy) = 0 for all x ∈ [L, L], y ∈ L. Then L is solvable.

Apply the previous lemma with A = [L, L], B = L so that

M = {z ∈ End(V )|[z, L] ⊂ [L, L]}.
We have L ⊂ M . Let x′ ∈ [L, L], z ∈ M . We show that

(a) tr(x′z) = 0.
We may assume that x′ = [x, y] where x, y ∈ L. Then tr(x′z) = tr([x, y]z) =
tr([y, z]x). This is 0 since [y, z] ∈ [L, L] (by the definition of M) and x ∈ L (see
our assumption).

Now (a) shows that the previous lemma is applicable. We see that x′ is nilpo-
tent. Hence ad(x′) : End(V ) −→ End(V ) is nilpotent. Hence ad(x′) : [L, L] −→
[L, L] is nilpotent for any x′ ∈ [L, L]. By Engel, [L, L] is nilpotent. This clearly
implies that L is solvable. The theorem is proved.
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Corollary. Let k be as above. Let L be a Lie algebra, dim(L) < ∞. Assume that
tr(ad(x)ad(y)) = 0 for all x ∈ [L, L], y ∈ L. Then L is solvable.

Apply the theorem to (ad(L), L) instead of (L, V ). Here ad(L) is the image of
ad : L −→ End(L). We see that ad(L) is solvable. Now ad(L) = L/Z(L) and Z(L)
is solvable. We deduce that L is solvable.

Definition. Let L be a Lie algebra, dim(L) < ∞. For x, y ∈ L we set
κ(x, y) = tr(ad(x)ad(y))

(Killing form). This form is symmetric and κ([x, y], z) = κ(x, [y, z]). The radical
of κ, that is, {x ∈ L|κ(x, y) = 0∀y ∈ L} is an ideal of L.

Lemma. Let I be an ideal of L. Let κ (resp. κI) be the Killing form of L (resp.
I). Then κI is the restriction of κ to I × I.

Let x, y ∈ I. Then ad(x)ad(y) : L −→ L maps L into I hence its trace on L is
equal to the trace of the restriction to I.

Theorem. Let L be as above. Then L is semisimple if and only if κ is non-
degenerate.

Let R = rad(L). Let S be the radical of κ. For any x ∈ S, y ∈ L we have
tr(ad(x)ad(y)) = 0. In particular this holds for y ∈ [S, S]. By Cartan’s theorem
the image of S under ad : S −→ End(L) is solvable. Since the kernel of this map is
contained in Z(L) (so is abelian) it follows that S is solvable. Since S is an ideal,
we have

S ⊂ R.
Thus, if R = 0 then S = 0. Assume now that S = 0. Let I be an abelian ideal
of L. Let x ∈ I, y ∈ L. Then ad(x)ad(y) maps L into I and (ad(x)ad(y))2 maps
L into [I, I] = 0. Thus ad(x)ad(y) is nilpotent hence 0 = tr(ad(x)ad(y)). Thus
I ⊂ S. Hence I = 0. Now let I ′ be a solvable non-abelian ideal of L. Then
[I ′, I ′] 6= 0. Since [I ′, I ′] is nilpotent (corollary of Lie’s theorem) we must have
Z([I ′, I ′]) 6= 0. Now Z([I ′, I ′]) is an abelian ideal of L hence it is 0 by an earlier
part of the argument. Contradiction. We see that any solvable ideal of L is 0.
Hence R = 0.

If L1, L2, . . . , Lt are Lie algebras then L1 ⊕ L2 ⊕ . . . ⊕ Lt is a Lie algebra with
bracket

[(l1, l2, . . . , lt), (l
′
1, l

′
2, . . . , l

′
t)] = ([l1, l

′
1], [l2, l

′
2], . . . , [lt, l

′
t]).

Clearly each Li is an ideal of L1 ⊕ L2 ⊕ . . .⊕ Lt.

Proposition. Let L be as above. Assume that L is semisimple.
(a) There exist ideals L1, L2, . . . , Lt of L which are simple as Lie algebras such

that L = L1 ⊕ L2 ⊕ . . .⊕ Lt (as a Lie algebra).
(b) Let I be a simple ideal of L. Then I = Li for some i.
(c) If L1, L2, . . . , Lt are simple finite dimensional Lie algebras then L = L1 ⊕

L2 ⊕ . . . ⊕ Lt is a semisimple Lie algebra.

Let I be an ideal of L. Let I⊥ = {x ∈ L|κ(x, y) = 0∀y ∈ I}. If x ∈ I⊥ and z ∈ L
then [z, x] ∈ I⊥. Indeed for y ∈ I, κ([z, x], y) = κ(x, [y, z]) = 0 since [y, z] ∈ I.
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Thus, I⊥ is an ideal. Now the Killing form of the ideal I ∩ I⊥ is the restriction
of that of L hence is 0. By Cartan, I ∩ I⊥ is solvable. Since L is semisimple and
I ∩ I⊥ is a solvable ideal of L we have I ∩ I⊥ = 0. Since dim I + dim I⊥ = dim L
(by the non-degeneracy of the Killing form) we see that L = I ⊕ I⊥.

We prove (a) by induction on dim L. If L = 0 there is nothing to prove. Assume
now that L 6= 0. Since L is semisimple, 6= 0 it is not solvable hence non-abelian.
If L has no ideal other than 0, L then L is simple and we are done. If L has an
ideal I other than 0, L then L = I ⊕ I⊥ and I, I⊥ are semisimple. We apply the
induction hypothesis to I and I⊥. The result for L follows.

We prove (b). Let I be a simple ideal of L. Then [I, L] is an ideal of I.
If it were 0 we would have I ⊂ Z(L) = 0, absurd. Hence [I, L] = I. Now
[I, L] = [I, L1] ⊕ [I, L2] ⊕ . . . ⊕ [I, Lt] hence all summands except one are 0 and
one, say [I, L1], is [I, L] = I. Then I = [I, L1] ⊂ L1 hence I ⊂ L1. Since L1 is
simple we have I = L1.

We prove (c). The Killing form of L is direct sum of the Killing forms of the
various Li hence is non-degenerate.

Corollary. Let L be as in the previous proposition. Then
(a) L = [L, L];
(b) any ideal of L is a direct sum of simple ideals of L;
(c) any ideal of L is semisimple;
(d) any quotient Lie algebra of L is semisimple.

For (a) we may assume that L is simple. Then the result is clear. We prove
(b). If I is an ideal of L then I ⊕ I ′ = L for some ideal I ′. Since the Killing form
of L is the direct sum of those of I and I ′, we see that the Killing form of I is
non-degenerate hence I is a semisimple Lie algebra. Similarly I ′ is a semisimple
Lie algebra. Hence I, I ′ are direct sums of simple Lie algebras. The summands
are the simple summands of L hence are ideals of L. This proves (b),(c),(d).

Proposition. Let L be as in the previous proposition. Let L′ be the image of
ad : L −→ D = Der(L). Then L = L′ = D.

Since L is semisimple we have Z(L) = 0 hence L = L′. Thus, L′ has a non-
degenerate Killing form κL′ . Let δ ∈ D, x ∈ L. We have [δ, ad(x)] = ad(δ(x)) :
L −→ L. (Equivalently δ([x, y]) − [x, δ(y)] = [δ(x), y] for y ∈ L.) Thus L′ is
an ideal of D. Hence κL′ is the restriction of κD, the Killing form of D. Let
I = {δ ∈ D|κD(δ, L′) = 0}. Then I ∩ L′ = 0 by the nondegeneracy of κL′ .
Now I, L′ are ideals of D hence [I, L′] = 0. Hence if δ ∈ I and x ∈ L, we have
ad(δ(x)) = [δ, ad(x)] = 0. Since ad : L −→ End(L) is injective, it follows that
δ(x) = 0 for all δ ∈ I, x ∈ L hence δ = 0 for all δ ∈ I hence I = 0. Equiva-
lently, the map D −→ Hom(L′, k) given by δ 7→ [l′ 7→ κD(δ, l′)] is injective. Thus
dim D ≤ dimL′. Since L′ ⊂ D we must have L′ = D.

Modules over a Lie algebra

Let L be a Lie algebra. A module over L (or an L-module) is a vector space
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V with a bilinear map L × V −→ V denoted (x, v) 7→ xv such that [x, y]v =
x(y(v)) − y(x(v)) for all x, y ∈ L, v ∈ V . To give an L-module structure on a
vector space is the same as to give a Lie algebra homomorphism (or representation)
φ : L −→ End(V ). (We define φ by φ(x)(v) = xv.)

An L-submodule of an L-module V is a vector subspace V ′ of V such that
x ∈ L, v ∈ V ′ =⇒ xv ∈ V ′. Then V ′ and V/V ′ are naturally L-modules. If
V, V ′ are L-modules, a homomorphism of L-modules f : L −→ L′ is a linear map
satisfying f(xv) = xf(v) for all x ∈, v ∈ V . For such f , the kernel and image of f
are L-submodules of V ,V ′ respectively.

An L-module V is said to be irreducible if V 6= 0 and there is no L-submodule
of V other than 0 and V . An L-module V is said to be completely reducible if
for any L-submodule V ′ of V there exists an L-submodule V ′′ of V such that
V = V ′ ⊕ V ′′.

If V is an irreducible L-module of finite dimension and f : V −→ V is a linear
map such that xf(v) = f(xv) for all x ∈ L, v ∈ V then f = a1 where a ∈ k.
(Schur’s lemma).
Indeed for some a ∈ k, we have V ′ = {v ∈ V |fv = av} 6= 0. By irreducibility we
have V ′ = V .

The Casimir element. Let I ′ be an ideal of the semisimple Lie algebra L. Let
V be an L-module such that the restriction of L −→ End(V ) to I ′ is injective.
We show that (, ) : I ′ × I ′ −→ k by (x, y) = tr(xy, V ) is non-degenerate. Let
S = {x ∈ I ′|(x, y) = 0∀y ∈ I ′}. This is an ideal of L. By Cartan’s criterion (with
S, V instead of L, V ) we see that S is solvable hence S = 0.

Let e1, . . . , en be a basis of I ′ and let e′1, . . . , e
′
n be the dual basis of I ′ with

respect to (, ).

The Casimir element c : V −→ V is defined by c(v) =
∑

i eie
′
iv. It is independent

of the choice of (ei): assume that (fi) is another basis of I ′ and (f ′
i) is the dual

basis. We have fi =
∑

j aijej , f ′
i =

∑

j a′
ije

′
j where aij, a

′
ij ∈ k. Now

∑

i fif
′
iv =

∑

i,j,j′ aija
′
ij′eje

′
j′v. It suffices to show that

∑

i aija
′
ij′ = δjj′ that is AtA′ = 1.

We have

δcd = (f ′
c, fd) = (

∑

i a′
cie

′
i,

∑

i adiei)) =
∑

i a′
ciadi

hence A′At = 1 hence AtA′ = 1 as desired.

For any x ∈ L, v ∈ V we have

(a) xc(v) = c(xv).
Indeed, we must show that

∑

i xeie
′
iv =

∑

i eie
′
ixv. Write [x, ei] =

∑

j aijej ,

[x, e′i] =
∑

j a′
ije

′
j . We have
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aij = ([x, ei], e
′
j) = −([ei, x], e′j) = −([x, e′j], ei) = −(

∑

h a′
jhe′h, ei) = −a′

ji,

∑

i

xeie
′
iv −

∑

i

eie
′
ixv =

∑

i

[x, ei]e
′
iv +

∑

i

ei[x, e′i]v

=
∑

i,j

aijeje
′
iv +

∑

i,j

a′
ijeie

′
jv =

∑

i,j

aijeje
′
iv +

∑

i,j

a′
jieje

′
iv

=
∑

i,j

(aij + a′
ji)eje

′
iv = 0.

Assume now that V is irreducible and that I ′ 6= 0. We show that

(b) c : V −→ V is a bijection.
Using (a) and Schur’s lemma we see that c = a1 where a is a scalar. We have
a dimV = tr(c, V ) =

∑

i tr(eie
′
i, V ) =

∑

i(ei, e
′
i) = dim I ′ 6= 0. Hence a 6= 0 and

(b) is proved.

Lemma. Let L be a Lie algebra. Let M, N be L-modules. Then Hom(V, W )
may be regarded as an L-module by (xf)(v) = x(f(v)) − f(xv). (Here f ∈
Hom(V, W ), v ∈ V .)

([x, x′]f)(v) = [x, x′](f(v))− f([x, x′]v)

= x(x′(f(v)) − x′(x(f(v))− f(xx′v)) + f(x′xv),

(x(x′(f)))(v)− (x′(x(f)))(v) = x((x′f)(v))− (x′f)(xv)− x′((xf)(v))− (xf)(x′v)

= x(x′(fv) − f(x′v)) − x′(f(xv)) + f(x′xv) − x′(x(fv) − f(xv)) + x(f(x′v))

− f(xx′v) = x(x′(fv))− x(f(x′v)) − x′(f(xv)) + f(x′xv) − x′(x(fv))

+ x′(f(xv)) + x(f(x′v)) − f(xx′v) = x(x′(fv)) − x′(x(fv))− f(xx′v) + f(x′xv)

hence [x, x′]f = x(x′(f)) − (x′(x(f)).

Lemma. Let L be a semisimple Lie algebra. Let φ : L −→ End(V ) be a Lie
algebra homomorphism, dimV < ∞. Then tr(φ(x), V ) = 0 for any x ∈ L. Hence
if dimV = 1 then xV = 0 for x ∈ L.

We know already that L = [L, L]. Hence we may assume that x = [x′, x′′],
x′, x′′ ∈ L. Then trφ(x) = tr(φ(x′)φ(x′′) − φ(x′′)φ(x′)) = 0.

Lemma. Let L be a semisimple Lie algebra. The following two conditions are
equivalent:

(a) Any finite dimensional L-module is completely reducible.
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(b) Given a finite dimensional L-module V and a codimension 1 subspace W of
V such that xV ⊂ W for all x ∈ L, there exists a line L in V complementary to
W such that xL = 0 for all x ∈ L.

Clearly (a) =⇒ (b). (We use the previous lemma.) Assume that (b) holds.
Let M be a finite dimensional L-module and let N be an L-submodule, N 6= 0.
Now Hom(M, N) is naturally an L-module. Let V = {f ∈ Hom(M, N)|f |N =
scalar}, W = {f ∈ Hom(M, N)|f |N = 0}. Then W has codimension 1 in V
and xV ⊂ W for x ∈ L. By (b) there exists u ∈ V such that xu = 0 for all
x ∈ L and u|N is a non-zero scalar c. We may assume that c = 1. Then u is a
projection M −→ N . The condition xu = 0 means that x : M −→ M commutes
with u : M −→ M . Hence the kernel of u is a complement of N in M which is
x-stable for all x ∈ L. Hence (a) holds.

Lemma. Let L be a semisimple Lie algebra. Let V be an L-module of finite
dimension. Let W be a codimension 1 subspace W of V such that LV ⊂ W . Then
there exists a line L in V complementary to W such that LL = 0.

Since dim(V/W ) = 1, L acts as 0 on the L-module V/W hence LV ⊂ W .
Let I = {x ∈ L|xW = 0} (an ideal of L) and let I ′ be an ideal of L such that
L = I ⊕ I ′; then I ′ −→ End(W ) is injective; hence I ′ −→ End(V ) is also injective.
We can form the Casimir element cV relative to I ′, V and the Casimir element cW

relative to I ′, W . The form (, ) on I ′ used to define cV coincides with the form (, )
on I ′ used to define cW (since LV ⊂ W ). Hence cV |W = cW . Also, since LV ⊂ W
we have cV V ⊂ W .

Assume first that the L-module W is irreducible. If LW = 0 then xyV = 0
for all x, y ∈ L (since xyV ⊂ xW = 0) hence [x, y]V = 0 for all x, y ∈ L; but
L = [L, L] hence xV = 0 for all x ∈ L and there is nothing to prove. If LW 6= 0,
then I 6= L hence I ′ 6= 0. Since W is irreducible, cW : W −→ W is bijective. Since
cV |W = cW , cV V ⊂ W , {v ∈ V |cV v = 0} is a line complementary to W . This line
is an L-submodule since cV : V −→ V commutes with any x ∈ L.

We now treat the general case by induction on dimV . We may assume that the
L-module W is not irreducible. Let T be an irreducible L-submodule of W . Let
V ′ = V/T, W ′ = W/T . By the induction hypothesis there exists a line L′ in V ′

complementary to W ′ and such that LL′ = 0. Let Z be the inverse image of L′

in V . It is an L-module containing T with codimension 1 and Z ∩W = T so that
LZ ⊂ T . By the first part of the proof we can find a line L in Z complementary
to T such that LL = 0. If L ⊂ W then L ⊂ Z ∩ W = T absurd. Thus, L is
complementary to W in V .

Theorem (H. Weyl). Let L be a semisimple Lie algebra. Let V be an L-module
of finite dimension. Then V is completely reducible.

We combine the previous two lemmas.

Derivation of an algebra.
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Lemma. Let V be a finite dimensional algebra over k. Let x ∈ Der(V ). Let
x = s + n be the Jordan decomposition of x in End(V ). Then s ∈ Der(V ), n ∈
Der(V ).

For u, v ∈ V, a, b ∈ k and N ≥ 0 we have (induction on N):
(x − (a + b)1)N (uv) =

∑

i

(

n
i

)

((x − a1)n−iu)((x − b1)iv).
Hence setting as above V = ⊕λ∈kVλ we have VaVb ⊂ Va+b. If u ∈ Va, v ∈ Vb then
uv ∈ Va+b hence s(uv) = (a + b)uv = (su)v + u(sv). Then s(uv) = (su)v + u(sv)
holds for all u, v ∈ V . Hence s ∈ Der(V ). Since s, x are commuting derivations,
x − s must be a derivation.

Abstract Jordan decomposition. Let L be a finite dimensional semisimple Lie
algebra. We say that x ∈ L is semisimple if ad(x) : L −→ L is semisimple. We say
that x ∈ L is nilpotent if ad(x) : L −→ L is nilpotent.

Let x ∈ L. Then ad(x) : L −→ L has a Jordan decomposition ad(x) = S + N
as an endomorphism of L. By the previous lemma, S and N are derivations of
L hence are of the form S = ad(s), N = ad(n) for well defined s, n ∈ L. Thus
s, n are semisimple/nilpotent. Since ad[s, n] = [ad(s), ad(n)] = [S, N ] = 0 and
ad : L −→ End(L) is injective we see that [s, n] = 0. We say that s is the
semisimple part of x and n is the nilpotent part of x. Assume that x = s′ + n′

with s′ semisimple, n′ nilpotent, [s′, n′] = 0. Let S′ = ad(s′), N ′ = ad(n′). Then
S′ + N ′ is the Jordan decomposition of S + N in End(L). Hence S = S ′, N = N ′.
By the injectivity of ad we have s = s′, n = n′.

We say that s + n is the Jordan decomposition of x ∈ L.

Proposition. Let L be a semisimple Lie algebra. Assume that L ⊂ End(V ) (as a
Lie algebra), dim V < ∞. Let x ∈ L and let x = σ+ν be its Jordan decomposition
in End(V ). Then σ ∈ L, ν ∈ L.

Let N be the normalizer of L in End(V ). For any L-submodule W of V let
LW = {y ∈ End(V )|y(W ) ⊂ W, tr(y, W ) = 0}. Since L = [L, L] we have L ⊂ LW .
Let L′ = N ∩ ∩W LW . (A subalgebra of N containing L as an ideal.)

Let A = ad(x) : End(V ) −→ End(V ). We have AL ⊂ L hence As(L) ⊂ L that
is ad(σ)(L) ⊂ L that is σ ∈ N . Similarly, σ ∈ LW hence σ ∈ L′. Since L′ is an
L-module, there exists by Weyl an L-submodule M of L′ such that L′ = L ⊕ M .
Since L′ ⊂ N we have [L, L′] ⊂ L hence [L, M ] = 0. Let W be any irreducible
L-submodule of V . If y ∈ M then [L, y] = 0 hence by Schur, y acts on W as a
scalar. But tr(y, W ) = 0 since y ∈ LW . Hence y acts on W as zero. By Weyl, V is
a direct sum of irreducible submodules hence y = 0. Thus M = 0, L′ = L. Since
σ ∈ L′ we have σ ∈ L. Now ν = x − σ ∈ L.

Proposition. Let L be a semisimple Lie algebra. Let φ : L −→ End(V ) be a
Lie algebra homomorphism, dim V < ∞. Let x ∈ L and let x = s + n be its
Jordan decomposition. Then φ(x) = φ(s) + φ(n) is the Jordan decomposition of
the endomorphism φ(x).

Let L′ = φ(L). This is a semisimple Lie algebra (it is a quotient of a semisimple
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Lie algebra). We show that φ(x) = φ(s) + φ(n) is the Jordan decomposition of
φ(x) in L′. Since [φ(s), φ(n)] = 0 it suffices to show that adφ(s) : L′ −→ L′ is
semisimple and adφ(n) : L′ −→ L′ is nilpotent. But adφ(s) : L′ −→ L′ is induced
by ad(s) : L −→ L which is semisimple hence it is itself semisimple. Similarly
adφ(n) : L′ −→ L′ is nilpotent. We are reduced to the case where L ⊂ End(V ) and
φ is the imbedding. Let x = σ + ν be the Jordan decomposition of x in End(V ).
We must show that σ = s, ν = n. By the previous result, σ ∈ L, ν ∈ L. Also
ad(σ) : End(V ) −→ End(V ) is semisimple, ad(ν) : End(V ) −→ End(V ) is nilpotent
hence their restrictions ad(σ) : L −→ L, ad(ν) : L −→ L are semisimple, nilpotent.
Hence σ ∈ L is semisimple, ν ∈ L is nilpotent. Since [σ, ν] = 0, x = σ + ν is the
Jordan decomposition of x in L.


