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Proposition. Assume that k is algebraically closed, of characteristic 0. Let L be
a solvable Lie algebra, dim(L) < oo, let V' be a vector space, 0 < dimV < oo and
let p: L — End(V) be a Lie algebra homomorphism. Then there existsv € V—{0}
such that p(x)(v) € kv for all x € L.

Induction on dim(L). We can assume L # 0. Since L is solvable we have
[L,L] # L. Since L/[L, L] is abelian, any hyperplane in it is an ideal; taking its
inverse image under L — L/[L, L] we obtain an ideal I of codimension 1 in L
with [L, L] C I. By the induction hypothesis (for I, V instead of L, V) we can find
v' € V —{0} and a linear form X : I — k such that p(y)(v") = A(y)v’ for all y € T.
Then W = {w € V|p(y)(w) = A(y)wVy € I} # 0.

Let w € W—{0} and let z € L. Fori > 0let W; = kw+kp(x)w+- - -+kp(x)~1w.
By induction on i > 0 we see that for any y € I:

(a) p(y)p(x)'w = A(y)p(z)'w mod W;

We can find n > 0 so that dim W,, = n, W,, = W,,1. Hence p(z)W,, C W,,. From
(a) we see that, if y € I, then p(y) acts with respect to the basis

w, p(z)w,. .., p(x)" tw
of W,, as an upper triangular matrix with diagonal entries A(y). Hence tr(p(y), W) =}
nA(y). Now p(z)W,, C Wy, p(y)W,, C W,. Hence p([z,y]) acts on W, as the
commutator of two endomorphisms of W, so that tr(p([x,y]), W,) = 0. Thus
nA([z,y]) = 0 so that

(b) AM([z,y]) =0 (for x € L,y € I).

Let we W,z € L. For y € I we have

p(y)p(@)w = p(z)p(y)w — p([z,y])w = A(y)p(z)w — A([z, y))w = A(y)p(z)w.
(We have used (b).) Thus p(z)w C W. We see that

(c) p(x)W C W for all z € L.

Now choose z € L —I. We have L = I @ kz. Since p(z)IW C W, we can find
v € W — {0} such that p(z)v € kv. Since p(x)(v) € kv for all z € I we deduce
that p(x)(v) € kv for all x € L.

Corollary (Lie). Assume that k is algebraically closed, of characteristic 0. Let
L be a solvable Lie algebra, dim(L) < oo, let V' be a vector space, dimV < oo
and let p : L — End(V') be a Lie algebra homomorphism. Then there exists a
sequence of vector subspaces 0 =Vy Cc Vi Cc Vo C...CV, =V,dimV, =1 such
that p(x)V; C V; fori € [0,n].
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Induction on dim(V') using the previous proposition.

Corollary. Assume that k is algebraically closed, of characteristic 0. Let L be a
solvable Lie algebra, dim(L) < co. Then there exists a sequence of ideals 0 = Lo C
LiCclLyc...CL,=Lof L, dimL; =1.

Apply the previous corollary with V' = L.

Corollary. Assume that k is algebraically closed, of characteristic 0. Let L be a
solvable Lie algebra, dim(L) < oo.

(a) If x € [L, L] then ad(x) : L — L is nilpotent.

(b) [L, L] is a nilpotent Lie algebra.

Let 0 = Ly Cc Ly C Ly C ... C L, = L be as in the previous corollary.
Consider a basis eq,...,e, of L so that e1,...,e; is a basis of L; for all ¢. If
x,2" € L then ad(x),ad(x’) act in this basis as upper triangular matrices. Hence
l[ad(z),ad(z")] = ad([x,z']) acts in this basis as an upper triangular matrix with
0 on the diagonal. Thus, if y € [L, L], ad(y) : L — L acts as an upper triangular
matrix with 0 on the diagonal hence it is nilpotent. Hence ad(y) : [L, L] — [L, L]
is nilpotent for all y € [L, L]. By Engel, [L, L] is nilpotent.

We now study the “Jordan decomposition” of an endomorphism x of a finite
dimensional vector space V. (Assume that k is algebraically closed.) We say that
x is semisimple if there exist ay,as,...,a, distinct in k such that (x — a1)(z —
az)...(r —ap) =0:V — V. (Equivalently, V is direct sum of z-eigenspaces.)
Then the restriction of  to an x-stable subspace is semisimple and there exists a
complementary z-stable subspace. If z,2’ : V' — V are semisimple and commute
then V' is sum of the joint eigenspaces of x and z’.

Let x € End(V). We have V. = @)ciVy where V) is the generalized -
eigenspace of x. Let x5 : V — V be defined by xs = A on V). Let z,, : V — V be
defined by z,, = x — X on V). Then x; is semisimple, x,, is nilpotent and

T =2Tg+ Ty, Lsly = TpTs.

(This is the Jordan decomposition of x.) Clearly, if t € End(V) commutes with x
then ¢ commutes with z, and with z,,.

Conversely, assume that s,n € End(V),z = s+n, sn = ns and s is semisimple,
n is nilpotent. We show that s = z,,n = x,,. Indeed, s commutes with s +n =
x hence with z; and x,. Since s,z are commuting semisimple, we have that
s — x4 is semisimple. Since n,x, are commuting nilpotent, we have that n — x,,
is nilpotent.Now s — z, = —n + x,, is both semisimple and nilpotent hence is 0.
Thus, s = z5,n = x,,.

Lemma. Letx € End(V). Let A C B be subspaces of V. Assume that x(B) C A.
Then xzs(B) C A, z,(B) C A.

The proof is routine.

Lemma. Let x € End(V). Write x = x5 + x,, as above.
(a) If x is semisimple then ad(x) : End(V) — End(V) is semisimple.
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(b) If x is nilpotent then ad(x) : End(V) — End(V) is nilpotent.
(c) ad(x) = ad(xs) + ad(x,) is the Jordan decomposition of ad(x) : End(V) —
End(V).

(a),(b) are immediate. Now (c) follows from (a),(b) since ad(xs), ad(x,,) satisfy
the characterization above of the semisimple and nilpotent part of ad(x). (Note
that [ad(xs),ad(x,)] = ad([zs, z,]) = 0.)

From now on, k is assumed to be algebraically closed, of characteristic 0.

Lemma. Let V be a finite dimensional vector space. Let A C B be subspaces
of End(V). Let M = {x € End(V)|[x,B] C A}. Assume that x € M satisfies
tr(zy) =0 for ally € M. Then x is nilpotent.

Let + = s+ n be the Jordan decomposition of x. Let (v;) be a basis of V
such that sv; = a;v;,a; € k. Let e;; € End(V) be defined by e;;(v;) = v; and
eij(vr) =0 for k # j. Then ad(s)e;; = (a; — a;)e;;.

Let E be the Q-vector subspace of k spanned by the a;. Let f : F — Q
be a linear form. Let y € End(V) be such that yv; = f(a;)v; for all i. Then
ad(y)e;; = (f(a;) — f(a;))e;j. We can find P(T') € k[T] such that P(0) = 0,
P(a;—aj) = f(a;)— f(a;) for all 4, j. We have ad(y) = P(ad(s)). Now ad(x)(B) C
A. Hence its semisimple part ad(s) maps B into A. Since ad(y) = P(ad(s)) and
P(0) = 0 we see that ad(y)(B) C A that is y € M. By assumption, tr(zy) = 0,
hence Y, a; f(a;) = 0. Applying f to this identity in E gives Y, f(a;)* = 0. Since
f(a;) € Q we have f(a;) = 0. Thus, f = 0. Since this holds for any f we have
FE = 0. Hence a; = 0 for all < and x is nilpotent.

Remark. Let V' be a vector space, dimV < co. Let x,y,z € End(V). We have
tr([z, y]z) = tr([y, z]x).

We have tr([z,y]z) = tr([y, z]x) = tr(zyz — yxz — yze + zyx) = 0.

Theorem(Cartan). Let V' be as above. Let L be a Lie subalgebra of End(V).
Assume that tr(xy) =0 for all x € [L, L],y € L. Then L is solvable.

Apply the previous lemma with A = [L, L], B = L so that
M ={z¢€ End(V)|[z,L] C [L,L]}.
We have L C M. Let 2’ € [L, L],z € M. We show that

(a) tr(2'z) = 0.

We may assume that 2/ = [z,y| where z,y € L. Then tr(z'z) = tr([z,y]z) =
tr([y, z]z). This is 0 since [y, 2] € [L, L] (by the definition of M) and x € L (see
our assumption).

Now (a) shows that the previous lemma is applicable. We see that z’ is nilpo-
tent. Hence ad(z’) : End(V) — End(V) is nilpotent. Hence ad(z’) : [L,L] —
[L, L] is nilpotent for any =’ € [L, L]. By Engel, [L, L] is nilpotent. This clearly
implies that L is solvable. The theorem is proved.
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Corollary. Let k be as above. Let L be a Lie algebra, dim(L) < co. Assume that
tr(ad(x)ad(y)) =0 for all x € [L, L],y € L. Then L is solvable.

Apply the theorem to (ad(L), L) instead of (L, V). Here ad(L) is the image of
ad : L — End(L). We see that ad(L) is solvable. Now ad(L) = L/Z(L) and Z(L)
is solvable. We deduce that L is solvable.

Definition. Let L be a Lie algebra, dim(L) < oo. For z,y € L we set

r(x,y) = tr(ad(z)ad(y))

(Killing form). This form is symmetric and x([z,y], z) = k(x, [y, z]). The radical
of k, that is, {z € L|k(x,y) = OVy € L} is an ideal of L.

Lemma. Let I be an ideal of L. Let k (resp. k1) be the Killing form of L (resp.
I). Then kg is the restriction of k to I X I.

Let z,y € I. Then ad(x)ad(y) : L — L maps L into I hence its trace on L is
equal to the trace of the restriction to I.

Theorem. Let L be as above. Then L is semisimple if and only if k is non-
degenerate.

Let R = rad(L). Let S be the radical of k. For any x € S,y € L we have
tr(ad(z)ad(y)) = 0. In particular this holds for y € [S,S]. By Cartan’s theorem
the image of S under ad : S — End(L) is solvable. Since the kernel of this map is
contained in Z(L) (so is abelian) it follows that S is solvable. Since S is an ideal,
we have

S CR.

Thus, if R =0 then S = 0. Assume now that S = 0. Let I be an abelian ideal
of L. Let z € I,y € L. Then ad(x)ad(y) maps L into I and (ad(x)ad(y))? maps
L into [I,I] = 0. Thus ad(x)ad(y) is nilpotent hence 0 = tr(ad(x)ad(y)). Thus
I € S. Hence I = 0. Now let I’ be a solvable non-abelian ideal of L. Then
[I',I'] # 0. Since [I’,I'] is nilpotent (corollary of Lie’s theorem) we must have
Z([I',I']) # 0. Now Z([I’,I']) is an abelian ideal of L hence it is 0 by an earlier
part of the argument. Contradiction. We see that any solvable ideal of L is 0.
Hence R = 0.

If Ly, Lo, ..., L; are Lie algebras then Ly @ Lo @ ... & L, is a Lie algebra with
bracket

[(llv la,. .., lt): ( /17 /27 RS lwlt)] = ([llv /1]7 [l27 Z/Z]v R [lt7 l:t])

Clearly each L; is an ideal of L1 & Lo @ ... @ L.

Proposition. Let L be as above. Assume that L is semisimple.

(a) There exist ideals Ly, Lo, ..., Ly of L which are simple as Lie algebras such
that L=1L1 ® Lo ® ...® Ly (as a Lie algebra).

(b) Let I be a simple ideal of L. Then I = L; for some 1.

(¢c) If L1, Lo, ..., Ly are simple finite dimensional Lie algebras then L = L1 @
Lo ®...® Ly is a semisimple Lie algebra.

Let I be anideal of L. Let I+ = {x € L|k(x,y) = 0Vy € I}. fr € [t and z € L
then [z,z] € It. Indeed for y € I, x([2,7],y) = k(z, [y, 2]) = 0 since [y, 2] € I.
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Thus, I+ is an ideal. Now the Killing form of the ideal I N I+ is the restriction
of that of L hence is 0. By Cartan, I NI+ is solvable. Since L is semisimple and
I NI+ is a solvable ideal of L we have I NI+ = 0. Since dim I + dim I+ = dim L
(by the non-degeneracy of the Killing form) we see that L = I & I+,

We prove (a) by induction on dim L. If L = 0 there is nothing to prove. Assume
now that L # 0. Since L is semisimple, # 0 it is not solvable hence non-abelian.
If L has no ideal other than 0, L then L is simple and we are done. If L has an
ideal I other than 0, L then L = I @ I+ and I, I+ are semisimple. We apply the
induction hypothesis to I and I+. The result for L follows.

We prove (b). Let I be a simple ideal of L. Then [I, L] is an ideal of I.
If it were 0 we would have I C Z(L) = 0, absurd. Hence [I,L] = I. Now
[I,L] = [I,L1] @ [I,L2] & ... [I, L] hence all summands except one are 0 and
one, say [I,L4|, is [I,L] = I. Then I = [I, L] C Ly hence I C L;. Since L; is
simple we have I = L.

We prove (c). The Killing form of L is direct sum of the Killing forms of the
various L; hence is non-degenerate.

Corollary. Let L be as in the previous proposition. Then
(a) L= L, L]
(b) any ideal of L is a direct sum of simple ideals of L;
(c) any ideal of L is semisimple;
(d) any quotient Lie algebra of L is semisimple.

For (a) we may assume that L is simple. Then the result is clear. We prove
(b). If I is an ideal of L then I & I’ = L for some ideal I’. Since the Killing form
of L is the direct sum of those of I and I’, we see that the Killing form of I is
non-degenerate hence I is a semisimple Lie algebra. Similarly I’ is a semisimple
Lie algebra. Hence I,I’ are direct sums of simple Lie algebras. The summands
are the simple summands of L hence are ideals of L. This proves (b),(c),(d).

Proposition. Let L be as in the previous proposition. Let L' be the image of
ad: L — D = Der(L). Then L =L" = D.

Since L is semisimple we have Z(L) = 0 hence L = L’. Thus, L’ has a non-
degenerate Killing form k.. Let § € D,z € L. We have [§, ad(z)] = ad((z)) :
L — L. (Equivalently d([z,y]) — [z,0(y)] = [0(z),y] for y € L.) Thus L’ is
an ideal of D. Hence k. is the restriction of kp, the Killing form of D. Let
I = {6 € D|kp(6,L') = 0}. Then I N L = 0 by the nondegeneracy of k.
Now I, L' are ideals of D hence [I,L'] = 0. Hence if 6 € I and z € L, we have
ad(6(x)) = [d,ad(x)] = 0. Since ad : L — End(L) is injective, it follows that
d(z) =0 forall § € I,x € L hence § = 0 for all § € I hence I = 0. Equiva-
lently, the map D — Hom(L', k) given by 0 — [I’ — kp(0,1")] is injective. Thus
dim D < dim L’. Since L' C D we must have L' = D.

MODULES OVER A LIE ALGEBRA

Let L be a Lie algebra. A module over L (or an L-module) is a vector space
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V' with a bilinear map L x V' — V denoted (z,v) — zv such that [z,y]v =
z(y(v)) — y(x(v)) for all z,y € L,v € V. To give an L-module structure on a
vector space is the same as to give a Lie algebra homomorphism (or representation)
¢: L — End(V). (We define ¢ by ¢(z)(v) = zv.)

An L-submodule of an L-module V' is a vector subspace V' of V such that
x € LveV' = zveV'. Then V' and V/V’ are naturally L-modules. If
V,V’ are L-modules, a homomorphism of L-modules f : L — L’ is a linear map
satisfying f(zv) = xf(v) for all x €,v € V. For such f, the kernel and image of f
are L-submodules of V,V’ respectively.

An L-module V is said to be irreducible if V' # 0 and there is no L-submodule
of V other than 0 and V. An L-module V is said to be completely reducible if
for any L-submodule V' of V' there exists an L-submodule V" of V such that
V=VeV"

If V is an irreducible L-module of finite dimension and f : V — V is a linear
map such that xf(v) = f(zv) for all z € L,v € V then f = al where a € k.
(Schur’s lemma).

Indeed for some a € k, we have V' = {v € V|fv = av} # 0. By irreducibility we
have V' = V.

The Casimir element. Let I’ be an ideal of the semisimple Lie algebra L. Let
V be an L-module such that the restriction of L — End(V') to I’ is injective.
We show that (,) : I’ x I' — k by (z,y) = tr(zy,V) is non-degenerate. Let
S ={z € I'l(x,y) =0Vy € I'}. This is an ideal of L. By Cartan’s criterion (with
S,V instead of L, V) we see that S is solvable hence S = 0.

Let eq,...,e, be a basis of I’ and let €],... e/, be the dual basis of I’ with
respect to ().

The Casimir elementc: V — V is defined by c¢(v) = ), e;ejv. It is independent
of the choice of (e;): assume that (f;) is another basis of I’ and (f/) is the dual
basis. We have f; = 3 aje;, fi = >, aj;e} where a;;,aj; € k. Now _, fifjv =
> i aijaijejeiv. It suffices to show that »°; azjai; = d;; that is A'A" = 1.
We have

6ca = (fo, fa) = (X2 aieq, Doy aaies)) = D, ag;aa;
hence A’A* =1 hence A*A’ = 1 as desired.

For any x € L,v € V we have

(a) xc(v) = c(zv).
Indeed, we must show that >, we;e;v = -, ejejav. Write [z,e;] = 3, aje;,
[z, €] =3 ; aj;e;. We have

L/
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aij = ([z,e], €) = —([ei, 2], €}) = —([@, €}], ;) = =32, ajpep. €) = —aj;,

E Teeiv — E eea:v—E a:ezev—l—g eilx, et]v
—E awejelv—i—g aljeev—g aljejelv—i—g aﬂe‘7

= Z ai; + aji)ejeiv = 0.

2]

Assume now that V is irreducible and that I’ # 0. We show that

(b) ¢: V — V is a bijection.
Using (a) and Schur’s lemma we see that ¢ = al where a is a scalar. We have
adimV = tr(c,V) = >, tr(e;e;, V) = > .(e;,€e;) = dim I’ # 0. Hence a # 0 and
(b) is proved.

Lemma. Let L be a Lie algebra. Let M, N be L-modules. Then Hom(V, W)
may be regarded as an L-module by (zf)(v) = z(f(v)) — f(xv). (Here f €
Hom(V,W),v e V.)

([z,2']f)(v) = [z, 2'[(f (v)) = f([z,2"]v)
= z(2'(f(v)) — 2'(2(f(v)) = f(zz'v)) + f(2'av),

(@' () () = (" (@) () = z((«"f)(v)) = (@' ) (zv) — ' ((2f)(v) = (2f)(2v)
= z(2'(fv) = f('v)) — 2 (f(2v)) + f(&'20) — 2" (x(fv) — f(20)) + 2(f(2"v))

— f(aa'v) = x(2'(fv)) — 2(f(2'0)) — 2 (f (xv)) + f(2"zv) — 2"(x(fv))
+2'(f(20)) + 2(f (') — fza'v) = 2(z'(fv)) — 2" (x(fv)) — f(z2'v) + f(z'2v)

hence [z,2/]f = 2 () — (a/(2(f))-

Lemma. Let L be a semisimple Lie algebra. Let ¢ : L — End(V) be a Lie
algebra homomorphism, dimV < oo. Then tr(¢(x),V) =0 for any x € L. Hence
if dimV =1 then 2V =0 forx € L.

We know already that L = [L,L]. Hence we may assume that z = [2/,2"],
x',2” € L. Then tro(x) = tr(p(z')p(z") — p(a")p(x’)) = 0.

Lemma. Let L be a semisimple Lie algebra. The following two conditions are
equivalent:
(a) Any finite dimensional L-module is completely reducible.
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(b) Given a finite dimensional L-module V' and a codimension 1 subspace W of
V' such that xV C W for all x € L, there exists a line L in V' complementary to
W such that xL£ =0 for all x € L.

Clearly (a) = (b). (We use the previous lemma.) Assume that (b) holds.
Let M be a finite dimensional L-module and let N be an L-submodule, N # 0.
Now Hom(M, N) is naturally an L-module. Let V' = {f € Hom(M, N)|f|ny =
scalar}, W = {f € Hom(M,N)|f|n = 0}. Then W has codimension 1 in V
and £V C W for z € L. By (b) there exists u € V such that xu = 0 for all
x € L and u|y is a non-zero scalar c. We may assume that ¢ = 1. Then u is a
projection M — N. The condition zu = 0 means that x : M — M commutes
with v : M — M. Hence the kernel of u is a complement of N in M which is
x-stable for all x € L. Hence (a) holds.

Lemma. Let L be a semisimple Lie algebra. Let V' be an L-module of finite
dimension. Let W be a codimension 1 subspace W of V' such that LV C W. Then
there exists a line L in V' complementary to W such that LL = 0.

Since dim(V/W) = 1, L acts as 0 on the L-module V/W hence LV C W.
Let I = {z € L|zaW = 0} (an ideal of L) and let I’ be an ideal of L such that
L=1®1I"; then I'" — End(W) is injective; hence I’ — End(V') is also injective.
We can form the Casimir element ¢" relative to I’, V and the Casimir element ¢"
relative to I', WW. The form (,) on I’ used to define ¢ coincides with the form (, )
on I’ used to define ¢V (since LV C W). Hence ¢ |y = ¢, Also, since LV C W
we have ¢V'V c W.

Assume first that the L-module W is irreducible. If LW = 0 then zyV = 0
for all z,y € L (since zyV C W = 0) hence [z,y]V = 0 for all z,y € L; but
L =[L, L] hence zV = 0 for all x € L and there is nothing to prove. If LW # 0,
then I # L hence I’ # 0. Since W is irreducible, ¢V : W — W is bijective. Since
w=c", "V cW, {veV|cYv =0} is a line complementary to W. This line
is an L-submodule since ¢V : V — V commutes with any = € L.

We now treat the general case by induction on dim V. We may assume that the
L-module W is not irreducible. Let T be an irreducible L-submodule of W. Let
V' =V/T,W' = W/T. By the induction hypothesis there exists a line £ in V'
complementary to W’ and such that LL = 0. Let Z be the inverse image of L’
in V. It is an L-module containing 7" with codimension 1 and ZNW = T so that
LZ C T. By the first part of the proof we can find a line £ in Z complementary
to T such that LL = 0. If L C W then £L C ZNW = T absurd. Thus, L is
complementary to W in V.

Theorem (H. Weyl). Let L be a semisimple Lie algebra. Let V' be an L-module
of finite dimension. Then V is completely reducible.

We combine the previous two lemmas.
Derivation of an algebra.
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Lemma. Let V be a finite dimensional algebra over k. Let x € Der(V). Let
x = s+ n be the Jordan decomposition of x in End(V). Then s € Der(V),n €
Der(V).

For u,v € V,a,b € k and N > 0 we have (induction on N):

(z = (a+ b))V (wv) = >, (1) ((z — al)""u)((x — bl)"v).

Hence setting as above V = @ ¢V we have V,V, C Vyyp. If u € Vg, v € Vj then
uv € Vaqp hence s(uv) = (a + b)uv = (su)v + u(sv). Then s(uv) = (su)v + u(sv)
holds for all u,v € V. Hence s € Der(V). Since s,z are commuting derivations,
x — s must be a derivation.

Abstract Jordan decomposition. Let L be a finite dimensional semisimple Lie
algebra. We say that = € L is semisimple if ad(x) : L — L is semisimple. We say
that « € L is nilpotent if ad(x) : L — L is nilpotent.

Let z € L. Then ad(z) : L — L has a Jordan decomposition ad(x) = S+ N
as an endomorphism of L. By the previous lemma, S and N are derivations of
L hence are of the form S = ad(s), N = ad(n) for well defined s,n € L. Thus
s,n are semisimple/nilpotent. Since ad[s,n] = [ad(s),ad(n)] = [S, N] = 0 and
ad : L — End(L) is injective we see that [s,n] = 0. We say that s is the
semisimple part of  and n is the nilpotent part of x. Assume that x = s’ + n’
with s’ semisimple, n nilpotent, [s',n'] = 0. Let S = ad(s’), N’ = ad(n’). Then
S’ + N’ is the Jordan decomposition of S+ N in End(L). Hence S = S', N = N'.
By the injectivity of ad we have s = s',n =n'.

We say that s + n is the Jordan decomposition of x € L.

Proposition. Let L be a semisimple Lie algebra. Assume that L C End(V) (as a
Lie algebra), dimV < co. Letx € L and let x = o +v be its Jordan decomposition
in End(V). Then o € L,v € L.

Let N be the normalizer of L in End(V). For any L-submodule W of V' let
Lyw ={y € End(V)|y(W) C W, tr(y, W) = 0}. Since L = [L, L] we have L C Lyy.
Let L' = N NNy Lw. (A subalgebra of N containing L as an ideal.)

Let A = ad(z) : End(V) — End(V'). We have AL C L hence As(L) C L that
is ad(o)(L) C L that is ¢ € N. Similarly, 0 € Ly hence o € L. Since L' is an
L-module, there exists by Weyl an L-submodule M of L’ such that L' = L & M.
Since L' C N we have [L,L'] C L hence [L,M] = 0. Let W be any irreducible
L-submodule of V. If y € M then [L,y] = 0 hence by Schur, y acts on W as a
scalar. But tr(y, W) = 0 since y € Ly . Hence y acts on W as zero. By Weyl, V is
a direct sum of irreducible submodules hence y = 0. Thus M = 0, L’ = L. Since
oce€Ll’wehave c € L. Nowv =2 — 0o € L.

Proposition. Let L be a semisimple Lie algebra. Let ¢ : L — End(V) be a
Lie algebra homomorphism, dimV < oo. Let x € L and let x = s + n be its
Jordan decomposition. Then ¢(x) = ¢(s) + ¢(n) is the Jordan decomposition of
the endomorphism ¢(x).

Let L' = ¢(L). This is a semisimple Lie algebra (it is a quotient of a semisimple
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Lie algebra). We show that ¢(x) = ¢(s) + ¢(n) is the Jordan decomposition of
¢(x) in L'. Since [¢p(s),p(n)] = 0 it suffices to show that adp(s) : L' — L' is
semisimple and ad¢(n) : L' — L' is nilpotent. But ad¢(s) : L' — L’ is induced
by ad(s) : L — L which is semisimple hence it is itself semisimple. Similarly
adp(n) : L' — L’ is nilpotent. We are reduced to the case where L C End(V') and
¢ is the imbedding. Let x = 0 4+ v be the Jordan decomposition of z in End(V).
We must show that ¢ = s,v = n. By the previous result, 0 € L,v € L. Also
ad(c) : End(V) — End(V) is semisimple, ad(v) : End(V) — End(V) is nilpotent
hence their restrictions ad(o) : L — L,ad(v) : L — L are semisimple, nilpotent.
Hence o € L is semisimple, v € L is nilpotent. Since [o,v] =0, x = 0 + v is the
Jordan decomposition of x in L.



