LIE ALGEBRAS 1

DEFINITION OF A LIE ALGEBRA

k is a fixed field. Let L be a k-vector space (or vector space). We say that L is
a k-algebra (or algebra) if we are given a bilinear map L x L — L denoted (z,y) —
xy. If L, L’ are algebras, an algebra homomorphism f : L — L’ is a linear map
such that f(zy) = f(x)f(y) for all z,y. We say that f is an algebra isomorphism
if it is an algebra homomorphism and a vector space isomorphism. In this case
f~': L' — L is an algebra isomorphism. If L is an algebra, a subset L' C L is a
subalgebra if it is a vector subspace and x € L',y € L' = xy € L’. Then L’ is
itself an algebra in an obvious way. If L is an algebra, a subset I C L is an ideal
if it is a vector subspace; x € Lyye I = zxzye l;x € l,ye L = xy € 1.
Then I is a subalgebra. Moreover, the quotient vector space V/I is an algebra
with multiplication (z+ I)(y + I = zy + I. (Check that this is well defined.) The
canonical map L — L/I is an algebra homomorphism with kernel I. Conversely,
if f: L — L'is any algebra homomorphism then ker(f) = f~1(0) is an ideal of L.

We say that the algebra L is a Lie algebra if

(a) xzx = 0 for all z;

(b) 2(yz) + y(zx) + z(xy) = 0 for all z,y, z. (Jacobi identity).
Note that (a) implies

(a’) zy = —yx for all z,y.
Indeed zy + yx = (z +y)(z +y) — xx — yy = 0.

Traditionally in a Lie algebra one writes [z, y] instead of xy and one calls [z, ]
the bracket.

Example (a). Let A be an algebra. Assume that (xy)z = z(yz), that is, the
algebra A is associative. Define a new algebra structure on A by [z, y] = zy — yz.
This makes A into a Lie algebra. We check the Jacobi identity:

[z, [y, 21l + [y, [z, 2] + [2, [, ]
=x(yz — 2y) — (yz — 2y)r + y(zx — x2) — (22 — 22)y + 2(2vy — yx) — (vy — yx)z = 0.

Example (b). Let V be a vector space. Let End(V) be the vector space of
endomorphisms of V' (linear maps V' — V). This is an associative algebra where
the product xy is the composition of endomorphisms (zy)(v) = z(y(v)) for v € V.
By example (a), End(V) is a Lie algebra with bracket [z,y] = xy — yz. This Lie
algebra is also denoted by gl(V').
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Example (c¢). Let V be as in (b). Assume that dim(V) < oco. Let L =
{z € End(V)|tr(x) = 0}. This is a (Lie) subalgebra of End(V). Indeed, if
z,y € End(V) = gl(V) then tr[z,y| = tr(zy — yz) = 0 hence [z,y| € L. Thus L is
even an ideal of gl(V'). The Lie algebra L is also denoted by sl(V).

Example (d). Let V be as in (b). Let (,): V x V — k be a bilinear map. Let
L ={x € End(V)|(x(v),v") + (v,2(v")) = OVv,v" € V'}. We show that L is a Lie
subalgebra of gl(V'). Indeed, if z,y € L and v,v" € V' we have

([, y)(v), v) + (v, [z, ](v"))
= (2(y(v)),v") = (Y(@(v),v") + (v, 2(y(v)) — (v, y(2(v)) = 0.

Example (e). Let V' be as in (c¢). Assume that we are given a sequence of vector
subspaces 0 =Vp c Vi Cc Vo C...CV,=V,dimV; =1i. Let

t={x € End\V)|z(V;) CV; forz € [0,n]}

n={z € End(V)|z(V;) C Vi_; for i € [1,n]}.

Then t is a Lie subalgebra of End(V') and n is a Lie subalgebra of t.

Example (f). Let A be an algebra. A derivation of A is a linear map d: A — A
such that d(zy) = d(z)y + 2d(y) = 0 for all x,y. (Leibniz rule). Let Der(A) be
the set of all derivations of A. This is a vector subspace of End(A). We show that
Der(A) is a Lie subalgebra of End(A). Indeed, let d,d’ € Der(A) and x,y € A.
We have

[d, d'](zy) = d(d'(xy)) — d'(d(xy)) = d(d'(x)y + xd'(y)) — d'(d(x)y + d(y))
= d(d'(z))y + d'(x)d(y) + d(z)d'(y) + d(d'(y))

—d'(d(x))y — d(z)d'(y) — d'(z)d(y) — zd'(d(

= d(d'(z))y — d'(d(z))y + zd(d'(y)) — zd'(d(y)) = [d, d'[(x)y + z[d, d') ()

hence [d,d'] € Der(A).

Example (g). Let L be a Lie algebra. By (f), Der(L) is again a Lie algebra. If
x € L then ad(x) : L — L, y — [x,y] is a derivation of L, that is, ad(x)[y,y’] =
[ad(z)(y), y'] + [y, ad(z)(y")] for all y,y". (Equivalently, [z, [y,y']] = [[=,y],y] +
[y, [z, y']] which follows from Jacobi’s identity.) The map = — ad(z) is a Lie algebra
homomorphism L — Der(L), that is, it is linear (obviously) and, for x, z’,y € L we
have ad([z,2'])(y) = ad(z)(ad(z)y) — ad(z’)(ad(x)y). (Equivalently, [[z,z'],y] =
[z, [, y]] — [/, [z, y]], which again follows from Jacobi’s identity.)

Example (h). Let V' be as in (a). Define an algebra structure on A on V' by
xy = 0 for all x,y. This is a Lie algebra. (An abelian Lie algebra.)

Example (i). Let L be a Lie algebra. Let [L, L] be the vector subspace of L
spanned by {[z,y||x € L,y € L}. This is an ideal of L. One calls [L, L] the derived
algebra of L.

Example (j). Let L be a Lie algebra. Let Z;, = {x € L|[z,y] = 0Vy € L}. This
is an (abelian) subalgebra of L called the centre of L.
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Example (k). Let L be a Lie algebra. Let K be a vector subspace of L. Then
Np(K) ={z € L|[z,y] € KV¥y € K} is a Lie subalgebra of L. Indeed, if z,z’ €
Np(K) and y € K we have [[z,2],y] = [[z,y], 2] + [z, [z, y]] € [2/, K]+ [z, K] C
K + K C K. One calls Np(K) the normalizer of K in L.

Example (1). Let L = s[(V) where V is a 2-dimensional vector space. Identify
L with the set of 2 x 2 matrices with trace 0. A basis is given by

10
€= g(l)’f: (1)8’9: 0-1°
We have [e, f] = h, [h, e] = 2e, [h, f] = —2f.

A Lie algebra L is said to be simple if it is not abelian and L has no ideals other
than 0, L.

We show that L in Ex.(1) is simple. (We assume 27! € k.) Let I be an ideal
other than 0. We show that I = L. Let x = ae +bf + ch € I — {0}. Now

e, [e, z]] = [e,bh — 2¢] = —2be € I, [f,[f,z]] = [f,ah + 2cf] = 2af € I.

If a # 0 we deduce f € I hence h = [e, f] € I and e = —27Y[e, h] € I; thus [ = L.
Similarly if b # 0 then I = L. Thus we may assume that a = b= 0. Then h € [
and e = —271[e,h] € I, f =27 Y[f,h] € I so that [ = L.

Let A be an algebra. An automorphism of A is an algebra isomorphism L — L.

Lemma. Assume that k has characteristic 0. If d : A — A is a derivation such

that d* = 0 for some n > 0 then e? = > neN % : A — A is an automorphism of
A.

From the definition of a derivation we get
S P q
for all s > 0. (Use induction on s.) For z,y € A we have

dp d4 ar ,  di d*

el(x)el(y) =D (@ > W= >y 1@ ) = > rlay) = e'(ay).
p q s ptgq=s s

Thus e? is an algebra homomorphism. We have e?e™% = e~%e? = 1. Thus e? is a

vector space isomorphism. The lemma is proved.

SOLVABLE, NILPOTENT LIE ALGEBRAS

Let L be a Lie algebra. If X, X’ are subsets of L, let [X, X’] be the subspace
spanned by {[z,2']|x € X,2’ € X'}. If 1,1 are ideals of L then [I, '] is an ideal
of L. Hence

LO =1, LMW =[L,L], L = [LM, LMW], LB) = [L&) L], ...
are ideals of L and L(® 5 L) 5 L3 5

L is said to be solvable if L™ = 0 for some n > 1. For example t is a solvable
Lie algebra.

L solvable, L’ subalgebra = L’ is solvable.

L solvable, I ideal = L/I is solvable.



4 LIE ALGEBRAS 1

L Lie algebra, I ideal such that I and L/I are solvable = L is solvable.

L Lie algebra, I, J ideals such that I and J are solvable =— I + J solvable
ideal.

It follows that, if dim L < oo there exists a unique solvable ideal of L which
contains any solvable ideal of L. This is call the radical of L. Notation: rad(L).
We say that L is semisimple if rad(L) = 0. In any case L/rad(L) is semisimple.

For a Lie algebra L,

=L L'=[L L, L*>=[L LY, L3=[L,L%,...
are ideals of L and L’ D L' D L2 > ....

L is said to be nilpotent if L™ = 0 for some n > 1. For example n is a nilpotent
Lie algebra. But t is not nilpotent although it is solvable. Clearly, L(Y) ¢ L.
Hence L nilpotent = L solvable.

L nilpotent, L’ subalgebra = L’ is nilpotent.

L nilpotent, I ideal = L/I is nilpotent.

L Lie algebra, L/Z(L) nilpotent = L is nilpotent.

L nilpotent, L # 0 = Z(L) # 0.

Lemma. Let V be a vector space, dimV < oo. Let x € gl(V') be nilpotent. Then
ad(x) : gl(V) — gl(V) is nilpotent.

For y € End(V) set A(y) = xy, B(y) = yz. Then ad(z)y = (A — B)(y). By
assumption, A, B are nilpotent endomorphisms of End(V). They commute hence
A — B is a nilpotent endomorphism of End(V). The lemma is proved.

Proposition. Let L be a Lie algebra, dim(L) < oo, let V be a vector space,
0 <dimV < oo and let p: L — End(V) be a Lie algebra homomorphism such
that p(l) : V. — V is nilpotent for alll € L. Then there exists v € V. — {0} such
that p(1)(v) =0 for alll € L.

Induction on dim(L). If p is not injective, then dim(p(L)) < dim(L) and the
proposition is applicable to p(L) instead of L. Hence it holds for L itself. Thus
we may assume that p is injective or that L is a Lie subalgebra of End(V).

We may assume that L # 0. Let L’ be a Lie subalgebra of L with L' # L
of maximal possible dimension. By the lemma, if € L', then ad(z) : L — L is
nilpotent. Hence it induces a nilpotent linear map L/L’ — L/L’. By the induction
hypothesis applied to L', L/L’ instead of L,V there exists € L — L’ such that
[#',2] € L' for all 2’ € L’. Thus, L’ is properly contained in N, (L"). By the choice
of L' we have N (L") = L hence L’ is an ideal of L. Any line in L/L’ is a one
dimensional subalgebra; its inverse image in L contains L’ properly hence is equal
to L, by the choice of L’. Thus, dim(L/L") = 1. Hence, if 2 € L — L’ we have
L = L' ® kz. By the induction hypothesis, W = {v € V|zv = O0Vz € L'} # 0.
Since L’ is an ideal, W is stable under L. In particular z(W) = W. Since z is
a nilpotent endomorphism, we can find v € W — {0} such that zv = 0. Since
L'v =0, we have Lv = 0.
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Theorem(Engel). Let L be a Lie algebra, dim(L) < co. Assume that ad(x) :
L — L is nilpotent for any x € L. Then L is nilpotent.

Induction on dim(L). We can assume that L # 0. By the proposition (with
V = L) there exists x € L — {0} such that [L,z] = 0 that is, Z(L) # 0. Now the
induction hypothesis applies to L/Z(L). Hence L/Z(L) is nilpotent. Hence L is
nilpotent.

Remark. Conversely, if L is a nilpotent Lie algebra, then ad(x) : L — L is
nilpotent for any = € L. Indeed, clearly ad(xz)L® C L™ hence ad(z)"L C L™ for
any n. Now use L™ = 0 for large n.

Corollary). Let L,V,p be as in the proposition. Then there exists a sequence
of vector subspaces 0 = Vo Cc Vi C Vo C ... C V, =V, dimV; = i such that
p(x)V; C Vi forie[1,n].

Induction on dim V. By the proposition, we can find v € V — {0} such that
p(x)v =0 for all x € L. Set Vi = kv. Let W = V/V;. If W = 0, we are done.
If W # 0 we apply the induction hypothesis to L, W instead of L, V. We find a
sequence of vector subspaces 0 =Wy Cc Wy CcWy C...CW,,_1 =W, dimW, =1
such that p(x)W; C W;_1 for i € [1,n — 1]. Let V; be the inverse image of W;_;
under V' — V (i € [2,n]). Then Vi, V5, ... have the required properties.

Lemma. Let L be a nilpotent Lie algebra, dim(L) < oco. Let I be an ideal of L
such that I # 0. Then INZ(L) # 0.

Applying the proposition to L, I (instead of L, V') we see that there exists = € I
such that [L,x] = 0. Then z € I N Z(L).



