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Definition of a Lie algebra

k is a fixed field. Let L be a k-vector space (or vector space). We say that L is
a k-algebra (or algebra) if we are given a bilinear map L×L −→ L denoted (x, y) 7→
xy. If L, L′ are algebras, an algebra homomorphism f : L −→ L′ is a linear map
such that f(xy) = f(x)f(y) for all x, y. We say that f is an algebra isomorphism

if it is an algebra homomorphism and a vector space isomorphism. In this case
f−1 : L′ −→ L is an algebra isomorphism. If L is an algebra, a subset L′ ⊂ L is a
subalgebra if it is a vector subspace and x ∈ L′, y ∈ L′ =⇒ xy ∈ L′. Then L′ is
itself an algebra in an obvious way. If L is an algebra, a subset I ⊂ L is an ideal

if it is a vector subspace; x ∈ L, y ∈ I =⇒ xy ∈ I; x ∈ I, y ∈ L =⇒ xy ∈ I.
Then I is a subalgebra. Moreover, the quotient vector space V/I is an algebra
with multiplication (x + I)(y + I = xy + I. (Check that this is well defined.) The
canonical map L −→ L/I is an algebra homomorphism with kernel I. Conversely,
if f : L −→ L′ is any algebra homomorphism then ker(f) = f−1(0) is an ideal of L.

We say that the algebra L is a Lie algebra if
(a) xx = 0 for all x;
(b) x(yz) + y(zx) + z(xy) = 0 for all x, y, z. (Jacobi identity).

Note that (a) implies
(a’) xy = −yx for all x, y.

Indeed xy + yx = (x + y)(x + y) − xx − yy = 0.
Traditionally in a Lie algebra one writes [x, y] instead of xy and one calls [x, y]

the bracket.
Example (a). Let A be an algebra. Assume that (xy)z = x(yz), that is, the

algebra A is associative. Define a new algebra structure on A by [x, y] = xy − yx.
This makes A into a Lie algebra. We check the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]]

= x(yz − zy) − (yz − zy)x + y(zx − xz) − (zx − xz)y + z(xy − yx) − (xy − yx)z = 0.

Example (b). Let V be a vector space. Let End(V ) be the vector space of
endomorphisms of V (linear maps V −→ V ). This is an associative algebra where
the product xy is the composition of endomorphisms (xy)(v) = x(y(v)) for v ∈ V .
By example (a), End(V ) is a Lie algebra with bracket [x, y] = xy − yx. This Lie
algebra is also denoted by gl(V ).
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Example (c). Let V be as in (b). Assume that dim(V ) < ∞. Let L =
{x ∈ End(V )|tr(x) = 0}. This is a (Lie) subalgebra of End(V ). Indeed, if
x, y ∈ End(V ) = gl(V ) then tr[x, y] = tr(xy − yx) = 0 hence [x, y] ∈ L. Thus L is
even an ideal of gl(V ). The Lie algebra L is also denoted by sl(V ).

Example (d). Let V be as in (b). Let (, ) : V × V −→ k be a bilinear map. Let
L = {x ∈ End(V )|(x(v), v′) + (v, x(v′)) = 0∀v, v′ ∈ V }. We show that L is a Lie
subalgebra of gl(V ). Indeed, if x, y ∈ L and v, v′ ∈ V we have

([x, y](v), v′) + (v, [x, y](v′))

= (x(y(v)), v′) − (y(x(v), v′) + (v, x(y(v′)) − (v, y(x(v′)) = 0.

Example (e). Let V be as in (c). Assume that we are given a sequence of vector
subspaces 0 = V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = V , dim Vi = i. Let

t = {x ∈ End(V )|x(Vi) ⊂ Vi for i ∈ [0, n]}
n = {x ∈ End(V )|x(Vi) ⊂ Vi−1 for i ∈ [1, n]}.

Then t is a Lie subalgebra of End(V ) and n is a Lie subalgebra of t.
Example (f). Let A be an algebra. A derivation of A is a linear map d : A −→ A

such that d(xy) = d(x)y + xd(y) = 0 for all x, y. (Leibniz rule). Let Der(A) be
the set of all derivations of A. This is a vector subspace of End(A). We show that
Der(A) is a Lie subalgebra of End(A). Indeed, let d, d′ ∈ Der(A) and x, y ∈ A.
We have

[d, d′](xy) = d(d′(xy)) − d′(d(xy)) = d(d′(x)y + xd′(y)) − d′(d(x)y + xd(y))

= d(d′(x))y + d′(x)d(y) + d(x)d′(y) + xd(d′(y))

− d′(d(x))y − d(x)d′(y) − d′(x)d(y)− xd′(d(y))

= d(d′(x))y − d′(d(x))y + xd(d′(y)) − xd′(d(y)) = [d, d′](x)y + x[d, d′](y)

hence [d, d′] ∈ Der(A).
Example (g). Let L be a Lie algebra. By (f), Der(L) is again a Lie algebra. If

x ∈ L then ad(x) : L −→ L, y 7→ [x, y] is a derivation of L, that is, ad(x)[y, y′] =
[ad(x)(y), y′] + [y, ad(x)(y′)] for all y, y′. (Equivalently, [x, [y, y′]] = [[x, y], y′] +
[y, [x, y′]] which follows from Jacobi’s identity.) The map x 7→ ad(x) is a Lie algebra
homomorphism L −→ Der(L), that is, it is linear (obviously) and, for x, x′, y ∈ L we
have ad([x, x′])(y) = ad(x)(ad(x′)y) − ad(x′)(ad(x)y). (Equivalently, [[x, x′], y] =
[x, [x′, y]] − [x′, [x, y]], which again follows from Jacobi’s identity.)

Example (h). Let V be as in (a). Define an algebra structure on A on V by
xy = 0 for all x, y. This is a Lie algebra. (An abelian Lie algebra.)

Example (i). Let L be a Lie algebra. Let [L, L] be the vector subspace of L
spanned by {[x, y]|x ∈ L, y ∈ L}. This is an ideal of L. One calls [L, L] the derived

algebra of L.
Example (j). Let L be a Lie algebra. Let ZL = {x ∈ L|[x, y] = 0∀y ∈ L}. This

is an (abelian) subalgebra of L called the centre of L.
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Example (k). Let L be a Lie algebra. Let K be a vector subspace of L. Then
NL(K) = {x ∈ L|[x, y] ∈ K∀y ∈ K} is a Lie subalgebra of L. Indeed, if x, x′ ∈
NL(K) and y ∈ K we have [[x, x′], y] = [[x, y], x′] + [x, [x′, y]] ∈ [x′, K] + [x, K] ⊂
K + K ⊂ K. One calls NL(K) the normalizer of K in L.

Example (l). Let L = sl(V ) where V is a 2-dimensional vector space. Identify
L with the set of 2 × 2 matrices with trace 0. A basis is given by

e = 0 1

0 0
, f = 0 0

1 0
, g =

1 0

0 −1
.

We have [e, f ] = h, [h, e] = 2e, [h, f ] = −2f .
A Lie algebra L is said to be simple if it is not abelian and L has no ideals other

than 0, L.
We show that L in Ex.(l) is simple. (We assume 2−1 ∈ k.) Let I be an ideal

other than 0. We show that I = L. Let x = ae + bf + ch ∈ I − {0}. Now
[e, [e, x]] = [e, bh − 2e] = −2be ∈ I, [f, [f, x]] = [f, ah + 2cf ] = 2af ∈ I.

If a 6= 0 we deduce f ∈ I hence h = [e, f ] ∈ I and e = −2−1[e, h] ∈ I; thus I = L.
Similarly if b 6= 0 then I = L. Thus we may assume that a = b = 0. Then h ∈ I
and e = −2−1[e, h] ∈ I, f = 2−1[f, h] ∈ I so that I = L.

Let A be an algebra. An automorphism of A is an algebra isomorphism L
∼
−→ L.

Lemma. Assume that k has characteristic 0. If d : A −→ A is a derivation such

that dn = 0 for some n > 0 then ed =
∑

n∈N

dn

n!
: A −→ A is an automorphism of

A.

From the definition of a derivation we get
d

s

s! (xy) =
∑

p+q=s
d

p

p! (x)d
q

q! (y)

for all s ≥ 0. (Use induction on s.) For x, y ∈ A we have

ed(x)ed(y) =
∑

p

dp

p!
(x)

∑

q

dq

q!
(y) =

∑

s

∑

p+q=s

dp

p!
(x)

dq

q!
(y) =

∑

s

ds

s!
(xy) = ed(xy).

Thus ed is an algebra homomorphism. We have ede−d = e−ded = 1. Thus ed is a
vector space isomorphism. The lemma is proved.

Solvable, nilpotent Lie algebras

Let L be a Lie algebra. If X, X ′ are subsets of L, let [X, X ′] be the subspace
spanned by {[x, x′]|x ∈ X, x′ ∈ X ′}. If I, I ′ are ideals of L then [I, I ′] is an ideal
of L. Hence

L(0) = L, L(1) = [L, L], L(2) = [L(1), L(1)], L(3) = [L(2), L(2)], . . .
are ideals of L and L(0) ⊃ L(1) ⊃ L(2) ⊃ . . . .

L is said to be solvable if L(n) = 0 for some n ≥ 1. For example t is a solvable
Lie algebra.

L solvable, L′ subalgebra =⇒ L′ is solvable.
L solvable, I ideal =⇒ L/I is solvable.
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L Lie algebra, I ideal such that I and L/I are solvable =⇒ L is solvable.

L Lie algebra, I, J ideals such that I and J are solvable =⇒ I + J solvable
ideal.

It follows that, if dimL < ∞ there exists a unique solvable ideal of L which
contains any solvable ideal of L. This is call the radical of L. Notation: rad(L).
We say that L is semisimple if rad(L) = 0. In any case L/rad(L) is semisimple.

For a Lie algebra L,

L0 = L, L1 = [L, L], L2 = [L, L1], L3 = [L, L2], . . .
are ideals of L and L0 ⊃ L1 ⊃ L2 ⊃ . . . .

L is said to be nilpotent if Ln = 0 for some n ≥ 1. For example n is a nilpotent
Lie algebra. But t is not nilpotent although it is solvable. Clearly, L(i) ⊂ Li.
Hence L nilpotent =⇒ L solvable.

L nilpotent, L′ subalgebra =⇒ L′ is nilpotent.

L nilpotent, I ideal =⇒ L/I is nilpotent.

L Lie algebra, L/Z(L) nilpotent =⇒ L is nilpotent.

L nilpotent, L 6= 0 =⇒ Z(L) 6= 0.

Lemma. Let V be a vector space, dim V < ∞. Let x ∈ gl(V ) be nilpotent. Then

ad(x) : gl(V ) −→ gl(V ) is nilpotent.

For y ∈ End(V ) set A(y) = xy, B(y) = yx. Then ad(x)y = (A − B)(y). By
assumption, A, B are nilpotent endomorphisms of End(V ). They commute hence
A − B is a nilpotent endomorphism of End(V ). The lemma is proved.

Proposition. Let L be a Lie algebra, dim(L) < ∞, let V be a vector space,

0 < dim V < ∞ and let ρ : L −→ End(V ) be a Lie algebra homomorphism such

that ρ(l) : V −→ V is nilpotent for all l ∈ L. Then there exists v ∈ V − {0} such

that ρ(l)(v) = 0 for all l ∈ L.

Induction on dim(L). If ρ is not injective, then dim(ρ(L)) < dim(L) and the
proposition is applicable to ρ(L) instead of L. Hence it holds for L itself. Thus
we may assume that ρ is injective or that L is a Lie subalgebra of End(V ).

We may assume that L 6= 0. Let L′ be a Lie subalgebra of L with L′ 6= L
of maximal possible dimension. By the lemma, if x ∈ L′, then ad(x) : L −→ L is
nilpotent. Hence it induces a nilpotent linear map L/L′ −→ L/L′. By the induction
hypothesis applied to L′, L/L′ instead of L, V , there exists x ∈ L − L′ such that
[x′, x] ∈ L′ for all x′ ∈ L′. Thus, L′ is properly contained in NL(L′). By the choice
of L′ we have NL(L′) = L hence L′ is an ideal of L. Any line in L/L′ is a one
dimensional subalgebra; its inverse image in L contains L′ properly hence is equal
to L, by the choice of L′. Thus, dim(L/L′) = 1. Hence, if z ∈ L − L′ we have
L = L′ ⊕ kz. By the induction hypothesis, W = {v ∈ V |xv = 0∀x ∈ L′} 6= 0.
Since L′ is an ideal, W is stable under L. In particular z(W ) = W . Since z is
a nilpotent endomorphism, we can find v ∈ W − {0} such that zv = 0. Since
L′v = 0, we have Lv = 0.
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Theorem(Engel). Let L be a Lie algebra, dim(L) < ∞. Assume that ad(x) :
L −→ L is nilpotent for any x ∈ L. Then L is nilpotent.

Induction on dim(L). We can assume that L 6= 0. By the proposition (with
V = L) there exists x ∈ L − {0} such that [L, x] = 0 that is, Z(L) 6= 0. Now the
induction hypothesis applies to L/Z(L). Hence L/Z(L) is nilpotent. Hence L is
nilpotent.

Remark. Conversely, if L is a nilpotent Lie algebra, then ad(x) : L −→ L is
nilpotent for any x ∈ L. Indeed, clearly ad(x)Li ⊂ Li+1 hence ad(x)nL ⊂ Ln for
any n. Now use Ln = 0 for large n.

Corollary). Let L, V, ρ be as in the proposition. Then there exists a sequence

of vector subspaces 0 = V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = V , dim Vi = i such that

ρ(x)Vi ⊂ Vi−1 for i ∈ [1, n].

Induction on dim V . By the proposition, we can find v ∈ V − {0} such that
ρ(x)v = 0 for all x ∈ L. Set V1 = kv. Let W = V/V1. If W = 0, we are done.
If W 6= 0 we apply the induction hypothesis to L, W instead of L, V . We find a
sequence of vector subspaces 0 = W0 ⊂ W1 ⊂ W2 ⊂ . . . ⊂ Wn−1 = W , dim Wi = i
such that ρ(x)Wi ⊂ Wi−1 for i ∈ [1, n − 1]. Let Vi be the inverse image of Wi−1

under V −→ V (i ∈ [2, n]). Then V1, V2, . . . have the required properties.

Lemma. Let L be a nilpotent Lie algebra, dim(L) < ∞. Let I be an ideal of L
such that I 6= 0. Then I ∩ Z(L) 6= 0.

Applying the proposition to L, I (instead of L, V ) we see that there exists x ∈ I
such that [L, x] = 0. Then x ∈ I ∩ Z(L).


