
NAME:

Fall 2012 18.440 Final Exam: 100 points
Carefully and clearly show your work on each problem (without

writing anything that is technically not true) and put a box
around each of your final computations.
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1. (10 points) Lisa’s truck has three states: broken (in Lisa’s possession),
working (in Lisa’s possession), and in the shop. Denote these states B, W,
and S.

(i) Each morning the truck starts out B, it has a 1/2 chance of staying
B and a 1/2 chance of switching to S by the next morning.

(ii) Each morning the truck starts out W, it has 9/10 chance of staying
W, and a 1/10 chance of switching to B by the next morning.

(iii) Each morning the truck starts out S, it has a 1/2 chance of staying S
and a 1/2 chance of switching to W by the next morning.

Answer the following

(a) Write the three-by-three Markov transition matrix for this problem.

(b) If the truck starts out W on one morning, what is the probability
that it will start out B two days later?

(c) Over the long term, what fraction of mornings does the truck start
out in each of the three states, B, S, and W?
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2. (10 points) Suppose that X1, X2, X3, . . . is an infinite sequence of
independent random variables which are each equal to 1 with probability
1/2 and −1 with probability 1/2. Write Yn =

∑n
i=1Xi. Answer the

following:

(a) What is the probability that Yn reaches 10 before the first time that
it reaches −30?

(b) In which of the cases below is the sequence Zn a martingale? (Just
circle the corresponding letters.)

(i) Zn = Xn + Yn

(ii) Zn =
∏n

i=1(2Xi + 1)

(iii) Zn =
∏n

i=1(−Xi + 1)

(iv) Zn =
∑n

i=1 Yi

(v) Zn =
∑n

i=2XiXi−1
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3. (10 points) Ten people throw their hats into a box and then randomly
redistribute the hats among themselves (each person getting one hat, all
10! permutations equally likely). Let N be the number of people who get
their own hats back. Compute the following:

(a) E[N2]

(b) P (N = 8)
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4. (10 points) When Harry’s cell phone is on, the times when he receives
new text messages form a Poisson process with parameter λT = 3/minute.
The times at which he receives new email messages form an independent
Poisson process with parameter λE = 1/minute. He receives personal
messages on Facebook as an independent Poisson process with rate
λF = 2/minute.

(a) After catching up on existing messages one morning, Harry begins to
wait for new messages to arrive. Let X be the amount of time (in
minutes) that Harry has to wait to receive his first text message.
Write down the probability density function for X.

(b) Compute the probability that Harry receives 10 new messages total
(including email, text, and Facebook) during his first two minutes of
waiting.

(c) Let Y be the amount of time elapsed before the third email message.
Compute Var(Y ).

(d) What is the probability that Harry receives no messages of any kind
during his first five minutes of waiting?
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5. (10 points) Suppose that X and Y have a joint density function f given
by

f(x, y) =

{
1/π x2 + y2 < 1

0 x2 + y2 ≥ 1
.

(a) Compute the probability density function fX for X.

(b) Express E[sin(XY )] as a double integral. (You don’t have to
explicitly evaluate the integral.)
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6. (10 points) Let X be the number on a standard die roll (i.e., each of
{1, 2, 3, 4, 5, 6} is equally likely) and Y the number on an independent
standard die roll. Write Z = X + Y .

(a) Compute the conditional probability P [X = 6|Z = 8].

(b) Compute the conditional expectation E[Y |Z] as a function of Z (for
Z ∈ {2, 3, 4, . . . , 12}).
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7. (10 points) Suppose that Xi are i.i.d. random variables, each of which
assumes a value in {−1, 0, 1}, each with probability 1/3.

(a) Compute the moment generating function for X1.

(b) Compute the moment generating function for the sum
∑n

i=1Xi.
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8. (10 points) Let X and Y be independent random variables. Suppose X
takes values in {1, 2} each with probability 1/2 and Y takes values in
{1, 2, 3, 4} each with probability 1/4. Write Z = X + Y .

(a) Compute the entropies H(X) and H(Y ).

(b) Compute H(X,Z).

(c) Compute H(X + Y ).
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9. (10 points) Let X be a normal random variable with mean 0 and
variance 1.

(a) Compute E[eX ].

(b) Compute E[eX1X>0].

(c) Compute E[X2 + 2X − 5].
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10. (10 points) Let X be uniformly distributed random variable on [0, 1].

(a) Compute the variance of X.

(b) Compute the variance of 3X + 5.

(c) If X1, . . . , Xn are independent copies of X, and
Z = max{X1, X2, . . . , Xn}, then what is the cumulative distribution
function FZ?
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