Name:
ID:

18440: Probability and Random variables Quiz 2
Friday, November 14th, 2014

- You will have 50 minutes to complete this test.
- No calculators, notes, or books are permitted.
- If a question calls for a numerical answer, you do not need to multiply everything out. (For example, it is fine to write something like (0.9)7!/(3!2!) as your answer.)
- Don't forget to write your name on the top of every page.
- Please show your work and explain your answer. We will not award full credit for the correct numerical answer without proper explanation. Good luck!

ID:

Problem 1 (25 points) Let X_{1}, \ldots, X_{n} be independent standard normal variables $N(0,1)$.

- (5 points) What is the law of $\sum_{i=1}^{n} X_{i}$? (give the name and density)
- (5 points) What is the law of $\sum_{i=1}^{n=1} X_{i}^{2}$? (give the name and density)
- (5 points) Let (X, Y) be jointly Gaussian, that is with density

$$
f(x, y)=C e^{-\frac{x^{2}}{2}-\frac{y^{2}}{2}-c x y}
$$

with C so that $\int f(x, y) d x d y=1$. with $|c|<1$. Compute $\operatorname{Cov}(X, Y)$ and show that X and Y are independent iff $\operatorname{Cov}(X, Y)=0$.

- (10 points) Determine the joint density of $U=X_{2}$ and $V=X_{1} / X_{2}$ and show that V has a Cauchy law.

Answer:

- The sum of independent normal random variables is a normal random variable with mean and variance equal to the sum of the means and sum of the variances respectively of the component variables. So, $X=\sum_{i=1}^{n} X_{i}$ is a $N(0, n)$ and therefore has density

$$
f_{X}(y)=\frac{1}{\sqrt{2 \pi n}} e^{-\frac{y^{2}}{2 n}}
$$

- $Y=\sum_{i=1}^{n} X_{i}^{2}$ is a chi-squared distribution, that is a $\Gamma(n / 2,1 / 2)$ distribution, which has density

$$
\frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} y^{\frac{n}{2}-1} e^{-\frac{y}{2}}
$$

- Notice that $\mathbb{E}[X]=\mathbb{E}[Y]=0$ by symmetry. Do the change of variable $x \rightarrow z=x-c y$ to find that

$$
\int x y e^{-\frac{x^{2}}{2}-\frac{y^{2}}{2}-c x y} d x d y=\int(z+c y) y e^{-\frac{z^{2}}{2}-\left(1-c^{2}\right) \frac{y^{2}}{2}} d z d y=c \sqrt{2 \pi} \int y^{2} e^{-\left(1-c^{2}\right) \frac{y^{2}}{2}} d y
$$

Similarly $\int e^{-\frac{x^{2}}{2}-\frac{y^{2}}{2}-c x y} d x d y=\sqrt{2 \pi} \int y^{2} e^{-\left(1-c^{2}\right) \frac{y^{2}}{2}} d y$ Hence

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]=\frac{c \int y^{2} e^{-\left(1-c^{2}\right) \frac{y^{2}}{2}} d z d y}{\int e^{-\left(1-c^{2}\right) \frac{y^{2}}{2}} d y}=\left(1-c^{2}\right)^{-1} c
$$

If $\operatorname{Cov}(X, Y)=0, c=0$ by the above and the density is a product of a function of x by a function of y, and therefore X and Y are independent. If X, Y are independent, and centered, the covariance vanishes. Hence $\operatorname{Cov}(X, Y)=0$ iff X, Y are independent.

- Either compute the Jacobian for the change of variables or for a given X_{2}, remark that the law of $V=g\left(X_{1}\right)=X_{1} / X_{2}$ has density

$$
C\left|X_{2}\right| e^{-X_{2}^{2} V^{2} / 2}
$$

by the change of variable formula (here C is the normalizing constant). As a consequence, the joint law of (U, V) is given by

$$
f(v, u)=f_{V \mid U}(v \mid x) f_{U}(x)=C|x| e^{-\frac{x^{2}}{2}\left(v^{2}+1\right)}
$$

Then, the density of V is given by

$$
\begin{aligned}
f_{V}(v) & =\int_{-\infty}^{\infty} f_{V, U}(v, x) d x \\
& =C \int_{-\infty}^{\infty}|x| x e^{-\frac{x^{2}}{2}\left(v^{2}+1\right)} \\
& =C^{\prime}\left(v^{2}+1\right)^{-1}
\end{aligned}
$$

by rescaling. Here C^{\prime} is some constant. This is a Cauchy distribution. and $C=\frac{1}{\pi}$

Name:

ID:

Problem 2 (30 points) At a bus stop, the times at which bus 69 , bus 12, bus 56, bus 49 arrive are independent and form Poisson point processes with rate $\lambda=6 /$ hour, 4 /hour, 10 /hour and 2 hour respectively.

- (5 points) Write down the probability density function for the amount of time until the first bus 69 arrives.
- (5 points) Let T be the first time one of the buses 69,12 , 49 or 56 arrive. Write down the probability density function for T and name the distribution.
- (5 points) Compute the probability that exactly 5 bus 56 pass during the first hour.
- (5 points) Bus 69 and 12 go to the train station. Knowing that non of these 2 buses passed between noon and 1 PM , what is the probability one of them will come before $1: 30 \mathrm{PM}$?
- (10 points) Compute the probability that exactly 5 bus 56 pass before the first bus 69 .

Answer:

- The pdf for the time until the first occurence of a Poisson process is exponential: $p(t)=$ $\lambda \exp -\lambda t=6 e^{-6 t}$.
- T is the minimum of a set of exponentially distributed variables, so it has an exponential distribution with parameter $\lambda=6+4+10+2=22$.

$$
p(t)=22 e^{-22 t}
$$

- The number of buses that arrive in a time interval t follows a Poisson distribution with parameter $\lambda t=10$, so

$$
P(5 \text { bus } 56)=\frac{10^{5}}{5!} e^{-10}
$$

- Exponential distributions are memoryless; this is the same as the probability that one comes in the first half hour.

$$
\begin{aligned}
P(69 \cup 12) & =1-P(\text { no } 69 \cap \text { no } 12) \\
& =1-P(\text { no } 69) P(\text { no } 12) \\
& =1-e^{-\frac{6}{2}} e^{-\frac{4}{2}} \\
& =1-e^{-5}
\end{aligned}
$$

- Letting E be the event that exactly 5 bus 56 arrive before the first bus 69 , we can find $P(E)$ by conditioning on the time t when the first bus 69 arrives:

$$
\begin{aligned}
P(E) & =\int_{0}^{\infty} P(E \mid t) p(t) d t \\
& =\int_{0}^{\infty}\left(\frac{(10 t)^{5}}{5!} e^{-10 t}\right)\left(6 e^{-6 t}\right) d t \\
& =\frac{6\left(10^{5}\right)}{5!} \int_{0}^{\infty} t^{5} e^{-16 t} d t \\
& =\frac{6\left(10^{5}\right)}{5!16^{6}} \int_{0}^{\infty} u^{5} e^{-u} d u
\end{aligned}
$$

To evaluate the integral, integrate by parts five times: each integration by parts brings down the exponent of u by one, so altogether this adds a factor of $5!$. Then

$$
P(E)=\frac{3}{8}\left(\frac{5}{8}\right)^{5} \int_{0}^{\infty} e^{-u} d u=\frac{3 \times 5^{5}}{8^{6}}
$$

ID:

Problem 3 (15 points) Let X_{1}, X_{2}, X_{3} be independent uniform variables on [0,1$]$. Let $X=$ $\min \left\{X_{1}, X_{2}, X_{3}\right\}$ and $Y=\max \left\{X_{1}, X_{2}, X_{3}\right\}$

- (5 points) Compute the density function of (X, Y).
- (5 points) Compute $\operatorname{Cov}(X, Y)$.
- (5 points) Are X and Y independent? Why?

Answer:

- We compute the joint distribution of X, Y. Take $x \leq y$. Note that by translation and rescaling

$$
\begin{aligned}
P(\{Y \leq y\} \cap\{X \geq x\}) & =\int_{x \leq x_{1}, x_{2}, x_{3} \leq y} d x_{1} d x_{2} d x_{3} \\
& =3!\int_{x \leq x_{1} \leq x_{2} \leq x_{3} \leq y} d x_{1} d x_{2} d x_{3} \\
& =3!\int_{0 \leq x_{1} \leq x_{2} \leq x_{3} \leq y-x} d x_{1} d x_{2} d x_{3} \\
& =3!(y-x)^{3} \int_{0 \leq x_{1} \leq x_{2} \leq x_{3} \leq 1} d x_{1} d x_{2} d x_{3} \\
& =(y-x)^{3}
\end{aligned}
$$

If $y<x, P(\{Y \leq y\} \cap\{X \geq x\})=0$. so that

$$
f_{X, Y}(x, y)=-\partial_{x} \partial_{y} P(\{Y \leq y\} \cap\{X \geq x\})=6(y-x) 1_{x \leq y} .
$$

- Y and X have expected values $\mathbb{E}[Y]=\int_{0}^{1} 3 y^{3} d y=\frac{3}{4}$ and $\mathbb{E}[X]=1-\mathbb{E}[Y]=\frac{1}{4}$ respectively.

$$
\begin{aligned}
\mathbb{E}[X Y] & =\int 6 x y(y-x) d x d y \\
& =\left.\int\left(3 x^{2} y^{2}-2 x^{3} y\right)\right|_{x=0} ^{x=y} d y \\
& =\left.\left(\frac{1}{5} y^{5}\right)\right|_{0} ^{1} \\
& =\frac{1}{5}
\end{aligned}
$$

So $\operatorname{Cov}(X, Y)=\frac{1}{5}-\frac{1}{4} \frac{3}{4}=\frac{1}{80}$.

- They are not independent. The covariance is not zero, and the conditional probability $p(Y=y \mid X=x)$ does not equal the probability $p(Y=y)$.

Name:
 \qquad ID:

Problem 4 (20 points) Toss a coin independently 10000 times where the probability of a head is p.

- (5 points) What is the probability that the first head appears at the $1000^{\text {th }}$ toss? Give the exact formula, name the distribution, and then approximate it when $p=0,001$.
- (5 points) What is the probability that the tenth head appears at the $1000^{\text {th }}$ toss ? Give the exact formula, name the distribution, and then approximate it when $p=0,001$.
- (10 points) Let Y be the number of heads till time 10000. Approximate $P(Y \geq 7689)$ when $p=1 / 2$. You may use the function $\Phi(a)=\int_{-\infty}^{a} e^{-x^{2} / 2} d x / \sqrt{2 \pi}$.

Answer: Let h_{n} be the the toss when the $n^{\text {th }}$ head appears.

- This is a negative binomial distribution:

$$
p\left(h_{1}\right)=(1-p)^{999} p .
$$

For $p=0.001, p\left(h_{1}\right)=\frac{p}{1-p}(1-p)^{\frac{1}{p}} \approx \frac{0.001}{0.999} e^{-1}=\frac{1}{999 e} \approx 0.00037$.

- This is also a negative binomial:

$$
p\left(h_{10}\right)=\binom{999}{9}(1-p)^{990} p^{10}
$$

We can approximate it with a gamma distribution with parameters $t=10$ and $\beta=p$, evaluated at $x=1000$:

$$
p\left(h_{10}\right) \approx \frac{\beta^{t} x^{t-1} e^{-\beta x}}{\Gamma(t)}=\frac{e^{-1}}{1000 \Gamma(10)}=\frac{1}{1000(9!) e}
$$

- The number of heads has a binomial distribution. When $p=1 / 2$, this is approximately a normal distribution with mean $\mu=n p=5000$ and variance $\sigma^{2}=n p(1-p)=2500$. So

$$
P(Y \geq 7689) \approx \int_{\mu+\frac{2688.5}{50} \sigma}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x=\int_{\frac{2688.5}{50}}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x=1-\Phi\left(\frac{2688.5}{50}\right) .
$$

This is very close to zero.

Name: \qquad

ID:

Problem 5 (10 points) Let W be a Gamma random variable with parameters (t, β) and suppose that conditional on $W=w, X_{1}, \ldots, X_{n}$ are independent exponential variables with rate w. Show that the conditional distribution of W given $X_{1}=x_{1}, X_{2}=x_{2} \ldots, X_{n}=x_{n}$ is gamma with parameter $\left(t+n, \beta+\sum_{i=1}^{n} x_{i}\right)$

Answer:

We know $p\left(x_{1} \ldots x_{n} \mid w\right)$ and $p(w)$, so to find $p\left(w \mid x_{1} \ldots x_{n}\right)$ we just need to use Bayes' rule:

$$
\begin{aligned}
p\left(w \mid x_{1} \ldots x_{n}\right) & =\frac{p\left(x_{1} \ldots x_{n} \mid w\right) p(w)}{p\left(x_{1} \ldots x_{n}\right)} \\
& =w^{n} e^{-w \sum_{i=1}^{n} x_{i}} \frac{\beta^{t} w^{t-1} e^{-\beta w}}{\Gamma(t)}\left(\int_{0}^{\infty}\left(w^{\prime}\right)^{n} e^{-w^{\prime} \sum_{i=1}^{n} x_{i}} \frac{\beta^{t}\left(w^{\prime}\right)^{t-1} e^{-\beta w}}{\Gamma(t)} d w^{\prime}\right)^{-1} \\
& =w^{t+n-1} e^{-w\left(\beta+\sum_{i=1}^{n} x_{i}\right)}\left(\int_{0}^{\infty}\left(w^{\prime}\right)^{n+t-1} e^{-w^{\prime}\left(\beta+\sum_{i=1}^{n} x_{i}\right)} d w^{\prime}\right)^{-1} \\
& =w^{t+n-1} e^{-w\left(\beta+\sum_{i=1}^{n} x_{i}\right)}\left(\left(\beta+\sum_{i=1}^{n} x_{i}\right)^{-n-t} \int_{0}^{\infty}\left(u^{\prime}\right)^{n+t-1} e^{-u} d u\right)^{-1} \\
& =\frac{w^{t+n-1}\left(\beta+\sum_{i=1}^{n} x_{i}\right)^{n+t} e^{-w\left(\beta+\sum_{i=1}^{n} x_{i}\right)}}{\Gamma(t+n)} .
\end{aligned}
$$

This is a gamma distribution with the given parameters.

