
Problem set 8, due May 8

This homework is graded on 12 points; 1 point per exercise, except the two last which are 1.5
each. No collaboration for this homework. Do it on your own. Detail the arguments.

•(A) Below are 3 transition matrices. Draw the transition graphs, whether the chain is irreducible
or not, and classify the states.

(1)  0 1 0
0 0 1

1/2 1/2 0


(2) 

1/2 0 1/2 0 0
1/3 1/2 0 1/6 0
1/4 0 3/4 0 0
0 0 0 1/2 1/2
0 0 0 1/2 1/2


(3) 

0 1/2 1/2 0 0 0
0 0 0 1/3 1/3 1/3
0 0 0 1/3 1/3 1/3
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 1/2 1/2


•(B)Bernoulli-Laplace diffusion model Let two urns A and B filled with r red and r white

marbles respectively. Consider a sequence of trials each consisting in drawing one marble from each
urn and switching them. Let Xn be the number of red marbles in urn A after n trials, n ∈ N. Find
the transition matrix for the homogeneous Markov chain {Xn}n≥1, and classify the states. Find the
stationary distribution.

• (C)Image of Markov chains Let (Xk) be a homogeneous Markov process on a finite set S
with transition matrix P . Fix a map Φ : S → S′ where S′ is another finite set. Find a general
sufficient condition on P and Φ such that (Φ(Xk))k≥0 is a Markov process.

•(D) Transience versus recurrence Let f1, f2 . . . , be a sequence of positive real numbers such
that

∑
i≥1 fi ≤ 1. Let Fn =

∑n
i=1 fi, F0 = 0, and the Markov chain with state space Z+ defined by

the transition matrix P = (Pij) with

Pi0 =
fi+1

1− Fi
Pii+1 = 1− Pi0 =

1− Fi+1

1− Fi
for i ≥ 0 and Fi < 1. If Fi = 1, put Pii+1 = 0. Let ql denote the probability that the Markov chain
is in state 0 at time l and T0 be the first return time to 0. Show that

(1) P (T0 = l) = fl. Deduce a necessary and sufficient condition for transience. In the sequel
assume that the chain is recurrent.

(2) For l ≥ 1 ql =
∑

k fkql−k
(3) Find the necessary and sufficient conditions on the fi, i ≥ 1 for positive recurrence of the

origin and the other integer numbers.
(4) Describe a stationary solution for P in case of positive recurrence.
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•(E) Tennis game Consider a game of tennis between two players A and B. Let us assume
that A wins the points with probability p, and that points are won independent. In a game there
is essentially 17 different states: 0-0, 15-0, 30-0, 40-0, 15-15, 30-15, 40-15, 0-15, 0-30, 0-40, 15-30,
15-40, advantage A, advantage B, game A, game B, deuce (30-30 and deuce, respectively 30-40 and
advantage B, respectively 40-30 and advantage A may be considered to be the same state). Show
that the probability for A winning the game, pA, is

pA = p4 + 4p4q +
10p4q2

1− 2pq
=

{
p4(1−16q4)
p4−q4 p 6= q

1
2 p = q.

where q = 1− p.
• (F)Heavy tail random walk We consider a random walk on Z so that Sn =

∑n
i=1 Yi where

Yi are i.i.d random variables with values in Z. We investigate recurrence when the Yi may have
infinite variance.

(1) Let φ(θ) = E[eiθY1 ] for θ ∈ R. Show that

P(Sn = 0) =
1

2π

∫ 2π

0
φ(θ)ndθ .

(2) Show that ∑
n≥0

P (Sn = 0) = lim
r↑1

1

2π

∫ 2π

0
<(

1

1− rφ(θ)
)dθ

(3) Deduce a criterium for recurrence of the origin.
(4) Let Y be a discrete stable law, that is Y takes values in N and φ(θ) = e−(1−e

iθ)α for α ∈ (0, 1].
Show that the random walk is transient.

(5) Assume that the above analysis extends to the case where the variables are real-valued and
consider the case where the Yi’s are the α-stable variables so that φ(θ) = e−|θ|

α , α ∈ (0, 2).
Show that the random walk is recurrent iff α ≥ 1.

•(G)Exercise 4.2.7 in Stroock book Let X. be a Markov chain with transition probability P .
Let i be a recurrent state and let

µk = E[

ρi−1∑
m=0

1k(Xm)|X0 = i] ∈ [0,∞] ∈ [0,∞]

(1) Show that µP = µ.
(2) Show that if i is not positive recurrent, µi = 1 and

∑
µj = +∞ and if i is positive recurrent

µj = 0 unless j communicates with i, and that in the latter case µj ∈ (0,∞).
(3) If i is positive recurrent, show that with C the communicating class of i

µ̄ =
µ∑
µk

= πC

(H)Poisson process
(1) A Poisson process Nt, t ≥ 0 with parameter λ is characterized by

Nt =
∑
n≥1

1∑n
i=1 Zi≤t

where Zi are independent exponentially distributed variables with parameter λ.
Suppose buses arrive as a Poisson process of rate λ > 0 per hour. Suppose you arrive at

the bus stop just as a bus pulls away. What is the expected time you have to wait until the
next bus arrives? After waiting for an hour with no sign of the next bus, you start to get a
bit fed up. What is the expected time you will have to wait now?
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(2) Red cars pass a point on a road according to a Poisson process of rate λ and blue cars
according to an independent Poisson process of rate µ. What is the probability that the
first car that passes the point is red?

•(I)Erdös-Rényi graph We consider a random graph Gn,p with n vertices such that the number
k of neighbors of a vertex v ∈ Gn,p is distributed as a binomial

B(n− 1, p)(k) =

(
n− 1
k

)
pk(1− p)n−1−k

Equivalently, each edge is added randomly with probability p, independently of the other edges,
and the vertices are labelled. We take p = c/n. We want to find the size of the largest connected
component of this graph. To that end we consider the exploration process defined as follows: We first
choose a vertex v. Then, we explore the neighbors of v ; they are then said to be explored (otherwise
they are unexplored). In other words, the vertices have 3 states: unexplored (0), explored(1),
saturated (2). Being given a configuration in {0, 1, 2}|V |, our transition is deterministic: all neighbors
of newly explored vertices become explored, all explored become saturated, the others stay the same.
From each newly explored vertex, we explore all the vertices which have not yet been explored.
The randomness comes from the underlying graph. Moreover, it should be understood that the
exploration only explores from one vertex at a step. This vertex is decided based on the information
of the already explored and saturated vertices in a deterministic way. We prove that if c < 1, the
largest connected component has size O(log(n)). To that end we prove that the exploration process
stops after O(log(n)) steps (a slightly more intricate argument using the same process could show
that for c > 1 it is of size of order n)

(1) Show that if at time p there are n − k unexplored vertices, the numbers of newly explored
vertices at time p+ 1 follows B(n− k, c/n).

(2) Show that if Xi are independent B(n, c/n) variables,

P(v belongs to a component of size ≥ k) ≤ P(

k∑
i=1

Xi ≥ k − 1)

(3) Deduce that

lim
n→∞

P(∃ a component of size ≥ 3

(1− c)2
log n) = 0 .

• (J)Weighted deck of cards We consider a deck of cards {1, . . . , n} with probability ωi > 0 so
that

∑n
i=1 ωi = 1. We denote the arrangements of the cards by a permutation of {1, . . . , n}: σ(i) is

the card at position i. Each time we pick the card i with probability wi and put it at the top.
(1) Write down the transition probability matrix P on the space Sn of permutations of {1, . . . , n}.
(2) Show that it has a unique stationary measure π and describe it.
(3) Show by a coupling argument similar to that given in the course that

‖P t(σ, .)− π‖TV ≤
n∑
i=1

(1− wi)t .

•(K) Coupling for the Glauber dynamics of the Potts model The Potts model on the
graph G = (V,E) has state space Ω = {1, . . . , q}|V | and is described by the measure

πβ(x) =
1

Zβ
exp{β

∑
v'w

1xv 6=w}
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where v ' w iff x and w are neighbors, β is a real number and Zβ the normalizing constant so that
πβ is a probability measure. β is a real number. Consider the Glauber dynamics for πβ , that is the
Markov chain so that at each time a vertex v is picked at random and its color in c ∈ {1, . . . , q} is
then chosen randomly under the probability measure

P (xv = c) =
exp{β

∑
w'v 1xw 6=c}∑

q′ exp{β
∑

w'v 1xw 6=q′}

Following the course, construct a Markovian coupling between Xx
n and Xy

n starting from x and y
respectively, so that if β is small enough (in absolute value), there exists a constant c < 1 so that

E[ρ(Xx
n , X

y
n)] ≤ cnρ(x, y)

and deduce an upper bound on the mixing time of this chain. Here, ρ denotes the hamming distance
ρ(x, y) =

∑
1xv 6=yv .


