Problem set 2, due February 27

This homework is graded on 4 points; the 3 first exercises are graded on 0.5 point each, the third on 1 point and the last on 1.5 points.

• The adjoint of a transition probability matrix. Let P be a transition probability matrix with a stationary probability π . Assume $\pi_i > 0$ for all $i \in \mathbb{S}$. Define the *adjoint* of P with respect to π as the matrix P^T given for $i, j \in \mathbb{S}$ by

$$(P^T)_{ij} = \frac{\pi_j}{\pi_i} P_{ji}$$

- (1) Show that P^T is a transition probability matrix for which π is also a stationary probability.
- (2) Denote \mathbb{P} and \mathbb{P}^T to denote probabilities computed for the Markov chain with transition probability P and P^T respectively, with initial condition π . Show that these chains are the *reverse* of each others in the sense that for all $i_0, \ldots, i_n \in \mathbb{S}$

$$\mathbb{P}^{T}(X_{0} = i_{0}, \dots, X_{n} = i_{n}) = \mathbb{P}(X_{n} = i_{0}, \dots, X_{0} = i_{n})$$

•The stationary measure of a doubly stochastic matrix. Let S be finite. Let P be a doubly stochastic matrix, that is a matrix with non-negative entries such that its rows and columns sum up to one. Under the condition that each entry is strictly positive, show that P has a unique equilibrium measure and describe it.

•Simple random walk on \mathbb{Z} . Let $X_n, n \ge 0$ be the random walk on \mathbb{Z} with equal probability 1/2 to go one step left or right. Show that $Y_n = |X_n|$ is a Markov chain and exhibit the transition matrix.

•Coupling and total variation distance. A coupling of two probability vectors μ, ν is a pair of random variables (X, Y) defined on a single probability space such that $\mathbb{P}(X = i) = \mu_i, \mathbb{P}(Y = j) = \nu_j$. Show that, with $\mu(A) = \sum_{i \in A} \mu_i$ (1)

$$\|\mu - \nu\|_{v} = 2 \max_{A \in S} |\mu(A) - \nu(A)|$$

Hint: Show that if $B = \{x : \mu(x) \ge \nu(x)\}$ then for all $A \subset \mathbb{S}$, $\mu(A) - \nu(A) \le \mu(B) - \nu(B)$. (2) Show that

$$\|\mu - \nu\|_{\mathbf{v}} \le 2\inf\{\mathbb{P}(X \neq Y); (X, Y) \text{ coupling of } \mu \text{ and } \nu\}$$

Hint: Use the first point.

(3) Let ν (resp μ) be the probability vector on $\mathbb{S} = \mathbb{N}$ given as the law of f(X) (resp. $g(\tilde{X})$) for X, \tilde{X} standard Gaussian variables, that is

$$\mathbb{P}(X \ge t) = \mathbb{P}(\tilde{X} \ge t) = \frac{1}{\sqrt{2\pi}} \int_t^\infty e^{-y^2/2} dy$$

and f, g functions from \mathbb{R} into \mathbb{N} . In other words, $\mu_i = \int \mathbf{1}_{f(y)=i} e^{-y^2/2} dy / \sqrt{2\pi}$ Show that

$$\|\nu - \mu\|_{\mathbf{v}} \le \frac{2}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} |f(y) - g(y)| e^{-y^2/2} dy.$$

•Branching processes. Take $S = \mathbb{N}$. the state *i* represents the number of members in the population and the process evolves so that at each step every individual, independently of the others, dies and is replaced by a random number of offsprings distributed according to a probability vector $\mu = (\mu_1, \ldots, \mu_k, \ldots)$. Thus, 0 is an absorbing state (if the process reaches 0 it stays there for ever), and given that there are $i \geq 1$ individuals alive at a given time *n*, the number of individuals

alive at time n + 1 will be distributed as the sum of *i* mutually independent identically distributed random variables with law μ Let μ^{*m} so that $\mu_i^{*0} = \delta_{0,j}$ and for $m \ge 1$ set

$$\mu_j^{*m} = \sum_{i=0}^j \mu_{j-i}^{*(m-1)} \mu_i$$

and denote X_n the population at the *n*th step. Observe that μ^{*m} is the distribution of the number of individuals at time n + 1 knowing that there are *m* individuals at time *n* for any $n \ge 0$, that is

$$\mathbb{P}(X_{n+1} = k | X_n = m) = \mu_k^{*m}.$$

Then the transition probability matrix of the branching process is Pgiven by $P_{ij} = (\mu^{*i})_j$. The first question is to predict extinction, that is compute $\lim_{n\to\infty} \mathbb{P}(X_n = 0)$. Assume that $\mu_0 > 0$ and $\mu_0 + \mu_1 < 1$ since otherwise the answer is trivial.

(1) Set $f(s) = \sum_{k=0}^{\infty} s^k \mu_k$ for $s \in [0, 1]$ and define $f^{\circ n}$ so that $f^{\circ 0}(s) = s$ and $f^{\circ n} = f \circ f^{\circ (n-1)}$. Show that $\gamma = \sum_k k \mu_k = f'(1)$ and

$$\mathbb{E}[s^{X_n}|X_0 = i] = [f^{\circ n}(s)]^i = \sum_{j=0}^{\infty} s^j (P^n)_{ij}.$$

Hint: Begin by showing that $f(s)^i = \sum_j s^j (\mu^{*i})_j$.

- (2) Observe that $s \to f(s) s$ is continuous, positive at s = 0, null at s = 1, twice differentiable and strictly convex on (0, 1) (that is f''(x) > 0 for all $x \in [0, 1]$). Conclude that either $\gamma \leq 1$ and f(s) > s for all $s \in [0, 1)$ or $\gamma > 1$ and there exists one $\alpha \in (0, 1)$ at which $f(\alpha) = \alpha$.
- (3) Deduce that

$$\gamma \le 1 \Rightarrow \lim_{n \to \infty} \mathbb{E}[s^{X_n} | X_0 = i] = 1 \quad \text{for all } s \in (0, 1]$$

and

$$\gamma > 1 \Rightarrow \lim_{n \to \infty} \mathbb{E}[s^{X_n} | X_0 = i] = \alpha^i \quad \text{for all } s \in (0, 1)$$

(4) Conclude that $\gamma \leq 1$ implies

$$\lim_{n \to \infty} \mathbb{P}(X_n = 0 | X_0 = i) = 1$$

whereas $\gamma > 1$ implies

$$\lim_{n \to \infty} P(X_n = 0 | X_0 = i) = \alpha^i$$

and

$$\lim_{n \to \infty} \mathbb{P}(1 \le X_n \le L | X_0 = i) = 0 \quad \text{for all } L \ge 1$$

hence, when $\gamma > 1$ then either the population gets extinct or grows indefinitely.