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Introduction to Linear Algebra, Sixth Edition

Gilbert Strang Wellesley-Cambridge Press

One goal of this Preface can be achieved right away. You need to know about the video
lectures for MIT’s Linear Algebra courseMath 18.06. Those videos go with this book,
and they are part of MIT’s OpenCourseWare. The direct links to linear algebra are

https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/

https://ocw.mit.edu/courses/18-06sc-linear-algebra-fall-2011/

On YouTube those lectures are athttps://ocw.mit.edu/1806videos and /1806scvideos

The first link brings the original lectures from the dawn of OpenCourseWare. Problem
solutions by graduate students (really good) and also a short introduction to linear algebra
were added to the new 2011 lectures. On both websites, the left column is a link to the
contents (click on+). And the course today has a new start—the crucial ideas of linear
independence and the column space of a matrix have moved nearthe front.

I would like to tell you about those ideas in this Preface.

Start with two column vectorsa1 anda2. They can have three components each,
so they correspond to points in3-dimensional space. The picture needs a center point
which locates the zero vector :

a1 =





2
3
1



 a2 =





1
4
2



 zero vector =





0
0
0



 .

The vectors are drawn on this2-dimensional page. But we all have practice in visualizing
three-dimensional pictures. Here area1,a2, 2a1, and the vector suma1 + a2.

0 =





0
0
0





a2 =





1
4
2





a1 =





2
3
1



 2a1 =





4
6
2





a1 + a2 =





3
7
3





2a1 + a2

A
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That picture illustrated two basic operations—adding vectors a1 + a2 and multiplying

a vector by 2. Combining those operations produced a “linear combination” 2a1 + a2 :

Linear combination = ca1 + da2 for any numbers c and d

Those numbers c and d can be negative. In that case ca1 and da2 will reverse their direc-

tions : they go right to left. Also very important, c and d can involve fractions. Here is a

picture with a lot more linear combinations. Eventually we want all vectors ca1 + da2.

−a1 + a2

a2

a1 + a2

2a1 + a2

−a1 +
1

2
a2

2a1 +
1

2
a2

−a1
0

a1

2a1

−a1 −
1

2
a2

2a1 −
1

2
a2

−a1 − a2

−a2

a1 − a2

2a1 − a2

Here is the key ! The combinations ca1 + da2 fill a whole plane. It is an infinite plane

in 3-dimensional space. By using more and more fractions and decimals c and d, we fill in

a complete plane. Every point on the plane is a combination of a1 and a2.

Now comes a fundamental idea in linear algebra : a matrix. The matrix A holds

n column vectorsa1,a2, . . . ,an. At this point our matrix has two columnsa1 anda2, and

those are vectors in 3-dimensional space. So the matrix has three rows and two columns.

3 by 2 matrix

m = 3 rows

n = 2 columns

A =



 a1 a2



 =





2 1
3 4
1 2





The combinations of those two columns produced a plane in three-dimensional space.

There is a natural name for that plane. It is the column space of the matrix. For any A,

the column space of A contains all combinations of the columns.

Here are the four ideas introduced so far. You will see them all in Chapter 1.

1. Column vectors a1 and a2 in three dimensions

2. Linear combinations ca1 + da2 of those vectors

3. The matrix A contains the columns a1 and a2

4. Column space of the matrix = all linear combinations of the columns = plane
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Now we include 2 more columns in A

The 4 columns are in 3-dimensional space
A =





2 1 3 0
3 4 7 0
1 2 3 −1





Linear algebra aims for an understanding of every column space. Let me try this one.

Columns 1 and 2 produce the same plane as before (same a1 and a2)

Column 3 contributes nothing new because a3 is on that plane : a3 = a1 + a2

Column 4 is not on the plane : Adding in c4a4 raises or lowers the plane

The column space of this matrix A is the whole 3-dimensional space : all points !

You see how we go a column at a time, left to right. Each column can be independent

of the previous columns or it can be a combination of those columns. To produce every

point in 3-dimensional space, you need three independent columns.

Matrix Multiplication A = CR

Using the words “linear combination” and “independent columns” gives a good picture

of that 3 by 4 matrix A. Column 3 is a linear combination : column 1 + column 2.

Columns 1, 2, 4 are independent. The only way to produce the zero vector as a

combination of the independent columns 1, 2, 4 is to multiply all those columns by zero.

We are so close to a key idea of Chapter 1 that I have to go on. Matrix multiplication

is the perfect way to write down what we know. From the 4 columns of A we pick out the

independent columns a1,a2,a4 in the column matrix C. Every column of R tells us the

combination of a1, a2, a4 in C that produces a column of A. A equals C times R :

A =





2 1 3 0
3 4 7 0
1 2 3 −1



=





2 1 0
3 4 0
1 2 −1









1 0 1 0
0 1 1 0
0 0 0 1



= CR

Column 3 of A is dependent on columns 1 and 2 of A, and column 3 of R shows how.

Add the independent columns 1 and 2 of C to get column a3 = a1 + a2 = (3,7,3) of A.

Matrix multiplication : Each column j of CR is C times column j of R

Section 1.3 of the book will multiply a matrix times a vector (two ways). Then Section

1.4 will multiply a matrix times a matrix. This is the key operation of linear algebra.

It is important that there is more than one good way to do this multiplication.

I am going to stop here. The normal purpose of the Preface is to tell you about the

big picture. The next pages will give you two ways to organize this subject—especially

the first seven chapters that more than fill up most linear algebra courses. Then come

optional chapters, leading to the most active topic in applications today : deep learning.
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The Four Fundamental Subspaces

You have just seen how the course begins—with the columns of a matrix A. There were

two key steps. One step was to take all combinations ca1 + da2 + ea3 + fa4 of the

columns. This led to the column space of A. The other step was to factor the matrix into

C times R. That matrix C holds a full set of independent columns.

I fully recognize that this is only the Preface to the book. You have had zero practice

with the column space of a matrix (and even less practice with C and R). But the good

thing is : Those are the right directions to start. Eventually, every matrix will lead to four

fundamental spaces. Together with the column space of A comes the row space—all

combinations of the rows. When we take all combinations of the n columns and all

combinations of the m rows—those combinations fill up “spaces” of vectors.

The other two subspaces complete the picture. Suppose the row space is a plane in

three dimensions. Then there is one special direction in the 3D picture—that direction is

perpendicular to the row space. That perpendicular line is the nullspace of the matrix.

We will see that the vectors in the nullspace (perpendicular to all the rows) solve Ax = 0 :

the most basic of linear equations.

And if vectors perpendicular to all the rows are important, so are the vectors

perpendicular to all the columns. Here is the picture of the Four Fundamental Subspaces.

Row space

Dimension r

Nullspace of A

dimension n − r

n dimensional

space

combinations

of the rows

��perpendicular

to the rows

The Big Picture
(m rows and n columns)

Column space

Dimension r

Nullspace of AT

dimension m − r

m dimensional
space

combinations

of the columns

��

perpendicular

to the columns

The Four Fundamental Subspaces : An m by n matrix with r independent columns.

This picture of four subspaces comes in Chapter 3. The idea of perpendicular spaces is

developed in Chapter 4. And special “basis vectors” for all four subspaces are discovered

in Chapter 7. That step is the final piece in the Fundamental Theorem of Linear Algebra.

The theorem includes an amazing fact about any matrix, square or rectangular :

The number of independent columns equals the number of independent rows.
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Five Factorizations of a Matrix

Here are the organizing principles of linear algebra. When our matrix has a special property,

these factorizations will show it. Chapter after chapter, they express the key idea in a direct

and useful way.

The usefulness increases as you go down the list. Orthogonal matrices are the win-

ners in the end, because their columns are perpendicular unit vectors. That is perfection.

2 by 2 Orthogonal Matrix =

[

cos θ − sin θ

sin θ cos θ

]

= Rotation by Angle θ

Here are the five factorizations from Chapters 1, 2, 4, 6, 7 :

1 A = CR = R combines independent columns in C to give all columns of A

2 A = LU = Lower triangular L times Upper triangular U

4 A = QR = Orthogonal matrix Q times Upper triangular R

6 S = QΛQT = (Orthogonal Q) (Eigenvalues in Λ) (Orthogonal QT)

7 A = UΣV T = (Orthogonal U ) (Singular values in Σ) (Orthogonal V T)

May I call your attention to the last one ? It is the Singular Value Decomposition (SVD).

It applies to every matrix A. Those factors U and V have perpendicular columns—all of

length one. Multiplying any vector by U or V leaves a vector of the same length—so

computations don’t blow up or down. And Σ is a positive diagonal matrix of “singular

values”. If you learn about eigenvalues and eigenvectors in Chapter 6, please continue

a few pages to singular values in Section 7.1.

Deep Learning

For a true picture of linear algebra, applications have to be included. Completeness is

totally impossible. At this moment, the dominating direction of applied mathematics

has one special requirement : It cannot be entirely linear !

One name for that direction is “deep learning”. It is an extremely successful approach to

a fundamental scientific problem : Learning from data. In many cases the data comes in a

matrix. Our goal is to look inside the matrix for the connections between variables. Instead

of solving matrix equations or differential equations that express known input-output rules,

we have to find those rules. The success of deep learning is to build a function F (x,v)
with inputs x and v of two kinds :

The vectors v describes the features of the training data.

The matrices x assign weights to those features.

The function F (x,v) is close to the correct output for that training data v.

When v changes to unseen test data, F (x,v) stays close to correct.

This success comes partly from the form of the learning function F , which allows it to

include vast amounts of data. In the end, a linear function F would be totally inadequate.

The favorite choice for F is piecewise linear. This combines simplicity with generality.
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Applications in the Book and on the Website

I hope this book will be useful to you long after the linear algebra course is complete.

It is all the applications of linear algebra that make this possible. Matrices carry data,

and other matrices operate on that data. The goal is to “see into a matrix” by understand-

ing its eigenvalues and eigenvectors and singular values and singular vectors. And each

application has special matrices—here are four examples :

Markov matrices M Each column is a set of probabilities adding to 1.

Incidence matrices A Graphs and networks start with a set of nodes. The matrix

A tells the connections (edges) between those nodes.

Transform matrices F The Fourier matrix uncovers the frequencies in the data.

Covariance matrices C The variance is key information about a random variable.

The covariance explains dependence between variables.

We included those applications and more in this Sixth Edition. For the crucial computation

of matrix weights in deep learning, Chapter 9 presents the ideas of optimization. This is

where linear algebra meets calculus : derivative = zero becomes a matrix equation at the

minimum point because F (x) has many variables.

Several topics from the Fifth Edition gave up their places but not their importance.

Those sections simply moved onto the Web. The website for this new Sixth Edition is

math.mit.edu/linearalgebra

That website includes sample sections from this new edition and solutions to all Problem

Sets. These sections (and more) are saved online from the Fifth Edition :

Fourier Series Norms and Condition Numbers

Iterative Methods and Preconditioners Linear Algebra for Cryptography

Here is a small touch of linear algebra—three questions before this course gets serious :

1. Suppose you draw three straight line segments of lengths r and s and t on this page.

What are the conditions on those three lengths to allow you to make the segments

into a triangle ? In this question you can choose the directions of the three lines.

2. Now suppose the directions of three straight lines u,v,w are fixed and different.

But you could stretch those lines to au, bv, cw with any numbers a, b, c.

Can you always make a closed triangle out of the three vectors au, bv, cw ?

3. Linear algebra doesn’t stay in a plane ! Suppose you have four lines u,v,w, z

in different directions in 3-dimensional space. Can you always choose the numbers

a, b, c,d (zeros not allowed) so that au+ bv + cw + dz = 0 ?

For typesetting this book, maintaining its website, offering quality textbooks to Indian fans,

I am grateful to Ashley C. Fernandes of Wellesley Publishers (www.wellesleypublishers.com)

gilstrang@gmail.com Gilbert Strang
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Elimination and Factorization A = CR

Gilbert Strang

Abstract If a matrix A has rank r, then its row echelon form (from elimination)
contains the identity matrix in its first r independent columns. How do we interpret

the matrix F that appears in the remaining columns of that echelon form ? F

multiplies those first r independent columns of A to give its n−r dependent columns.
Then F reveals bases for the row space and the nullspace of the original matrix A.
And F is the key to the column-row factorization A = CR.

1. Elimination must be just about the oldest algorithm in linear algebra. By sys-
tematically producing zeros in a matrix, it simplifies the solution of m equations
Ax = b. We take as example this 3 by 4 matrix A, with row 1+ row 2 = row 3.
Then its rank is r = 2, and we execute the familiar elimination steps to find its
reduced row echelon form Z :

A =





1 2 11 17
3 7 37 57
4 9 48 74



 → Z =





1 0 3 5
0 1 4 6
0 0 0 0



 .

At this point, we pause the algorithm to ask a question : How is Z related to

A ? One answer comes from the fundamental subspaces associated with A :

1) The two nonzero rows of Z (call them R) are a basis for the row space of A.

2) The first two columns of A (call them C) are a basis for the column space of
A.

3) The nullspace of Z equals the nullspace of A (orthogonal to the same row
space).

Those were our reasons for elimination in the first place. “Simplify the matrix A

without losing the information it contains.” By applying the same steps to the right
hand side of Ax = b, we reach an equation Zx = d—with the same solutions x and
the simpler matrix Z.

The object of this short note is to express the result of elimination in a different
way. This factorization cannot be new, but it deserves new emphasis.

Elimination factors A into C times R = (m × r) times (r × n)

A =





1 2 11 17
3 7 37 57
4 9 48 74



 =





1 2
3 7
4 9





[

1 0 3 5
0 1 4 6

]

= CR

C has full column rank r = 2 and R has full row rank r = 2. When we establish
that A = CR is true for every matrix A, this factorization brings with it a proof of
the first great theorem in linear algebra : Column rank equals row rank.

1



2 Elimination and Factorization A = CR

2. Here is a description of C and R that is independent of the algorithm (row
operations) that computes them.

Suppose the first r independent columns of A go into C. Then the

other n − r columns of A must be combinations CF of those independent

columns in C. That key matrix F is part of the row factor R =
[

I F
]

P ,

with r independent rows. Then right away we have A = CR :

A=CR=
[

C CF
]

P =
[

Independent cols Dependent cols
]

Permute cols

(1)
If the r independent columns come first in A, that permutation matrix will be P = I.
Otherwise we need P to permute the n columns of C and CF into correct position
in A.

Here is an example of A =C
[

I F
]

P in which P exchanges columns 2 and 3 :

A=

[

1 2 3 4
1 2 4 5

]

=

[

1 3
1 4

][

1 2 0 1
0 0 1 1

]

=

[

1 3
1 4

][

1 0 2 1
0 1 0 1

]

P =CR. (2)

The essential information in Z = rref(A) is the list of r independent columns of
A, and the matrix F (r by n− r) that combines those independent columns to give
the n− r dependent columns CF in A. This uniquely defines Z in equation (3).

3. The factorization A = CR is confirmed. But how do we determine the first r

independent columns in A (going into C) and the dependencies CF of the remaining
n− r columns ? This is the moment for row operations on A. Three operations
are allowed, to put A into its reduced row echelon form Z = rref(A) :

(a) Subtract a multiple of one row from another row (below or above)

(b) Exchange two rows

(c) Divide a row by its first nonzero entry

All linear algebra teachers and a positive fraction of students know those steps and
their outcome rref(A). It contains an r by r identity matrix I (only zeros can
precede those 1’s). The position of I reveals the first r independent columns of A.
And equation (1) above reveals the meaning of F ! It tells us how the n−r dependent

columns CF of A come from the independent columns in C. The remaining m− r

dependent rows of A must become zero rows in Z :

Elimination reduces A to Z = rref (A) =

[

I F

0 0

]

P (3)

All our row operations (a)(b)(c) are invertible. (This is Gauss-Jordan elimination :
operating on rows above the pivot row as well as below.) But the matrix that
reduces A to this echelon form is less important than the factorization A = CR

that it uncovers in equation (1).
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4. Before we apply A=CR to solving Ax = 0, we want to give a column by column
(left to right) construction of rref(A) from A. After elimination on k columns, that
part of the matrix is in its own rref form. We are ready for elimination on the
current column k + 1. This new column has an upper part u and a lower part ℓ :

First k + 1 columns

[

Ik Fk

0 0

]

Pk followed by

[

u

ℓ

]

. (4)

The big question is : Does this new column k + 1 join with Ik or Fk ?

If ℓ is all zeros, the new column is dependent on the first k columns. Then
u joins with Fk to produce Fk+1 in the next step to column k + 2.

If ℓ is not all zero, the new column is independent of the first k columns.
Pick any nonzero in ℓ (preferably the largest) as the pivot. Move that row of A to
the top of ℓ. Then use that pivot row to zero out (by standard elimination) all the
rest of column k + 1. (That step is expected to change the columns after k + 1.)
Column k + 1 joins with Ik to produce Ik+1. We adjust Pk and we are ready for
column k + 2.

At the end of elimination, we have a most desirable list of column numbers.
They tell us the first r independent columns of A. Those are the columns of
C. They led to the identity matrix Ir by r in the row factor R of A = CR.

5. What is achieved by reducing A to rref(A) ? The row space is not changed !
Then its orthogonal complement (the nullspace of A) is not changed. Each column
of CF tells us how a dependent column of A is a combination of the independent
columns in C. Effectively, the columns of F are telling us n − r solutions to

Ax = 0. This is easiest to see by example.

x1 +2x2 +11x3+17x4= 0
3x1 +7x2 +37x3+57x4= 0

reduces to
[

I F
]

x =
x1 +3x3 +5x4 = 0
x2 +4x3 +6x4 = 0

The solution with x3 = 1 and x4 = 0 is x =
[

−3 −4 1 0
]T

. Notice 3 and 4

from F . The second solution with x3 = 0 and x4 = 1 is x =
[

−5 −6 0 1
]T

.
Those solutions are the two columns of X in AX = 0. (This example has P = I.)
The n − r columns of X are a natural basis for the nullspace of A :

A=C
[

I F
]

P multiplies X =PT

[

−F

In−r

]

to give AX =−CF +CF = 0. (5)

With PPT = I for the permutation, each column of X solves Ax = 0. Those n− r

solutions in X tell us what we know : Each dependent column of A is a combina-
tion of the independent columns in C. In the example, column 3 = 3 (column 1)
+ 4 (column 2).

Gauss-Jordan elimination leading to A = CR is less efficient than the Gauss
process that directly solves Ax = b. The latter stops at a triangular system Ux = c :
back substitution creates x. Gauss-Jordan has the extra cost of eliminating upwards.

If we only want to solve equations, stopping at a triangular factorization is faster.
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6. Block elimination The row operations that reduce A to its echelon form
produce one zero at a time. A key part of that echelon form is an r by r identity
matrix. If we think on a larger scale—instead of one row at a time—that output

I tells us that some r by r matrix has been inverted. Following that lead
brings a “matrix understanding” of elimination.

Suppose that the matrix W in the first r rows and columns of A is invertible.
Then elimination takes all its instructions from W ! One entry at a time—or all
at once by “block elimination”—W will change to I. In other words, the first r

rows of A will yield I and F . This identifies F as W−1H. And the last m − r

rows will become zero rows.

Block elimination A =

[

W H

J K

]

reduces to

[

I F

0 0

]

= rref(A). (6)

That just expresses the facts of linear algebra : If A begins with r independent
rows and its rank is r, then the remaining m − r rows are combinations of those
first r rows :

[

J K
]

=JW−1
[

W H
]

. Those m − r rows become zero rows in
elimination.

In general that first r by r block might not be invertible. But elimination will
find W . We can move W to the upper left corner by row and column permutations
Pr and Pc.Then the full expression of block elimination to reduced row echelon
form is

PrAPc =

[

W H

J K

]

→

[

I W−1H

0 0

]

(7)

7. This raises an interesting point. Since A has rank r, we know that it has r in-
dependent rows and r independent columns. Suppose those rows are in a submatrix
B and those columns are in a submatrix C. Is it always true that the r by r “inter-
section” W of those rows with those columns will be invertible ? (Everyone agrees
that somewhere in A there is an r by r invertible submatrix. The question is whether
B ∩ C can be counted on to provide such a submatrix.) Is W automatically full
rank ?

The answer is yes. The intersection of r independent rows of A with r in-

dependent columns does produce a matrix W of rank r. W is invertible.

Proof : Every column of A is a combination of the r columns of C.
Every column of the r by n matrix B is the same combination of the r columns of W .
Since B has rank r, its column space is all of Rr.
Then the column space of W is also Rr and the square submatrix W has rank r.
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