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2.5 Inverse Matrices

mf the square matrixd has an inverse, thenboth='A =7 and AA~! = 1I. \
2 Thealgorithmto test invertibility is elimination :A must have: (nonzero) pivots.
3 Thealgebratest for invertibility is the determinant of : det A must not be zero.

4 Theequationthat tests for invertibility isAz = 0: = = 0 must be the only solution.

5 If A andB (same size) are invertible then sa4s3 : [(AB)*1 =B 1'Ah

6 AA~! = [ isn equations fon columns ofA~!. Gauss-Jordan eliminatés 7] to [I A~1].

(The last page of the book givéd equivalent conditions for a squareto be invertible. /

Supposed is a square matrix. We look for arriverse matrix A~! of the same size,
such thatd—! times A equalsI. WhateverA does,A~! undoes. Their product is the
identity matrix—which does nothing to a vector,40' Az = x. But A~! might not exist

What a matrix mostly does is to multiply a vecter Multiplying Az = b by A1
givesA 'Ax = A~ 'b. Thisisz = A~'b. The productd—'A4 is like multiplying by
a number and then dividing by that number. A number has anseviéit is not zero—
matrices are more complicated and more interesting. Thexmét ! is called “A inverse.”

DEFINITION The matrixA4 is invertible if there exists a matrixi—! that “inverts’ A :

Two-sided inverse A'A=T and AA '=1. (1)

Not all matrices have inversesThis is the first question we ask about a square matrix:

Is A invertible? We don’t mean that we immediately calculdte!. In most problems
we never compute it! Here are six “notes” abatit!.

Note 1 The inverse exists if and only if elimination produces pivots(row exchanges
are allowed). Elimination solvedz = b without explicitly using the matrixd—!.

Note 2 The matrix A cannot have two different inverses. Suppdsé = I and also
AC = 1. ThenB = C, according to this “proof by parentheses”:

B(AC) = (BA)C gives BI=IC or B=C. 2

This shows that &ft-inverseB (multiplying from the left) and aight-inverseC' (mul-
tiplying A from the right to giveAC = I) must be thesame matrix

Note 3 If Ais invertible, the one and only solutiontbr = bisxz = A~ ! b:

Multipy Axz=b by A™'. Then xz=A'Ax=A"'b.
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Note 4 (Important)Suppose there is a nonzero vectarsuch thatAxz = 0. ThenA
cannot have an invers&lo matrix can bring back tozx.

If A is invertible, thendz = 0 can only have the zero solutian= A~10 = 0.

Note 5 A 2 by2 matrix is invertible if and only ifad — bc is not zero:

—1
o |la b 1 d —b
2 by 2 Inverse: [C d} == [_C a} . 3)

This numberd — bc is thedeterminanbf A. A matrix is invertible if its determinant is not
zero (Chapteb). The test fom pivots is usually decided before the determinant appears.

Note 6 A diagonal matrix has an inverse provided no diagonal entiie zero:

dy 1/dy
If A= then A~ = .
dn 1/dn
Example 1 The2 by 2 matrix A = [} 2] is not invertible. It fails the test in Notg,
becausaid — bc equals2 — 2 = 0. It fails the test in Note3, becausedx = 0 when

x = (2,—1). It fails to have two pivots as required by Nate
Elimination turns the second row of this matrixinto a zero row.

The Inverse of a ProductAB

For two nonzero numbers andb, the suma 4+ b might or might not be invertible. The
numbers: = 3 andb = —3 have inverse% and—%. Their suma + b = 0 has no inverse.
But the productib = —9 does have an inverse, whichjsimes—1.

For two matricesA and B, the situation is similar. It is hard to say much about the
invertibility of A + B. But theproductAB has an inverse, if and only if the two factots
and B are separately invertible (and the same size). The impioptint is thatA~! and
B~! come inreverse order

If AandB are invertible then so id B. The inverse of a productB is
(AB)"'=B7tA. (4)
To see why the order is reversed, multiply timesB~'A~!. Inside that isSBB~! = I:

Inverse of AB (AB)(B™*A™) = ATA™' = AA™ =T

We moved parentheses to multigBB ! first. Similarly B~ A~! timesAB equalsl.
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B~1'A~! illustrates a basic rule of mathematics: Inverses come \erse order.
It is also common sense: If you put on socks and then shoedijr¢hdéo be taken off
are the . The same reverse order applies to three or more matrices:

Reverse order (ABC)' =c'BtA™h 5)

Example 2 Inverse of an elimination matrix If £ subtracts$ times rowl from row 2,
thenE—! adds5 times rowl to row?2:

1 0 0 10 0
%iulbggggs E=|-5 1 0| and E'= |5 1 0
0 0 1 0 0 1

Multiply EE~ to get the identity matri¥. Also multiply £~ E to getl. We are adding
and subtracting the samdimes rowl. If AC = I then automatically”A = 1.

For square matrices, an inverse on one side is automaticaltyinverse on the other side

Example 3 Supposé- subtractst times row?2 from row 3, andF~! adds it back:

1 0 0 1 0 0
F=|0 1 0| and F'=1(0 1 0
0 -4 1 0 4 1

Now multiply F by the matrixE in Example 2 to find E. Also multiply E—! timesF—!
to find (FE)~. Notice the order$’E andE—1 F—1!

1 0 O 1 0 0
FE=| -5 1 0| sinvertedby E~'F~'1=| 5 1 0f (@)
20 —4 1 0 4 1

The result is beautiful and correct. The prodéat contains 20" but its inverse doesn't.
E subtractss times row1 from row 2. ThenF subtractst times thenewrow 2 (changed
by row 1) from row 3. In this order F'E, row 3 feels an effect from rowd.

In the orderE—!F~1, that effect does not happen. Fifst! adds4 times row?2 to
row 3. After that, E~! adds5 times rowl1 to row2. There is n®0, because ro doesn’t
change againin this order E-1F—1, row 3 feels no effect from rowd..

This is why the next section choosds= LU, to go back from the trianguldf to A.
The multipliers fall into place perfectly in the lower trigmlar L.

In elimination orderF follows E. In reverse ordeE ! follows F—1.
E—1F—1is quick. The multiplierss, 4 fall into place below the diagonal ot ’s.
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Calculating A~! by Gauss-Jordan Elimination

I hinted thatA—! might not be explicitly needed. The equatida: = b is solved by
x = A~'b. But it is not necessary or efficient to compute! and multiply it timesb.
Elimination goes directly tac. And elimination is also the way to calculats™, as we
now show. The Gauss-Jordan idea is to solve! = I, finding each column ofi—!.

A multiplies the first column ofdA~* (call thatx;) to give the first column of (call
thate,). This is our equatiomz; = e; = (1,0,0). There will be two more equations.
Each of the columnsey, x5, 23 of A~ is multiplied by A to produce a column off:

3 columns of A—1 AA_lz A[iL‘l To 1123} = [61 e 63] =1. (7)

To invert a3 by 3 matrix A, we have to solve three systems of equatiofs; = e; and
Azy = ey = (0,1,0) andAzs = e3 = (0,0, 1). Gauss-Jordan findé~! this way.

The Gauss-Jordan method computesA—! by solving all n equations together
Usually the “augmented matrix’A b] has one extra columh. Now we have three
right sidese, e2, es (When A is 3 by 3). They are the columns df, so the augmented
matrix is really the block matrikA 1]. | take this chance to invert my favorite matii,
with 2’s on the main diagonal and1’s next to the2's:

2 -1 01 0 O
[K €1 €2 63} = —1 2 —1 0 1 0
0o -1 2 0 0 1

Start Gauss-Jordan onk

2 -1 0 1 0 0
-0 3 -1 1 1 0 (3 row 1 +row2)
0 -1 2 0 0 1]
(2 -1 0 1 0 0]
-0 2 -1 1 1 0
o 0 4 I 2 4 (2 row 2 + row 3)
L 3 3 3 . 3

We are halfway tad . The matrix in the first three columnsiis (upper triangular). The
pivots2, %, % are onits diagonal. Gauss would finish by back substitufitre contribution
of Jordan igo continue with eliminationHe goes all the way to theeduced echelon form
R = I. Rows are added to rows above them, to prodigres above the pivots

Zero above 2 -1 0 100
e o 3 o 3 3 3 3
( third pivot ) 0 (2) . b2 z{ (5 row 3 +row 2)
- 3 3 3
2 0o o 2 1 1 2
Zero above 0 3 0 : Ly 3 (5 row2+rowl)
second pivot 2 12
L0 0 5 5 3 1

The final Gauss-Jordan step is to divide each row by its pivbe new pivots are all.
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We have reached in the first half of the matrix, becaud€ is invertible. The three
columns of K ~! are in the second half of I K1 ]:

0 o 38 1 1
(divide by?2) 4 2 4
(divide by 3) 001 0 2 1 L |=[Ia2 o =]=[1 K]
(divide by 3) . 1 s
o0 1 3 3 3

Starting from the3 by 6 matrix [ K 7], we ended with I K~']. Here is the whole
Gauss-Jordan process on one line for any invertible matrix

Gauss-Jordan Multiply [A I] by A~' toget [I A~'].

The elimination steps create the inverse matrix while cirang to 1. For large matrices,
we probably don’'t wantd—! at all. But for small matrices, it can be very worthwhile to
know the inverse. We add three observations abiut': an important example.

1. K is symmetricacross its main diagonal. Thén! is also symmetric.

2. K is tridiagonal (only three nonzero diagonals). Bhi~! is a dense matrix with
no zeros. That is another reason we don’t often compute severatrices. The
inverse of a band matrix is generally a dense matrix.

3. Theproduct of pivotss 2 (2) (3) = 4. This numbet is thedeterminantof K .

1

3 21
K~ involves division by the determinant d& K'= 1 2 4 2. (8)
1 2 3

This is why an invertible matrix cannot have a zero determinant: we need to divide.

Example 4 Find A~! by Gauss-Jordan elimination starting fromn= [2 2 ].

0 1 0 -2 1
7 -3 - 1
-2 1 0

Example 5 If A is invertible and upper triangular, so isA—!. Start withAA—! = I.

_% _:%J (thisis[I A~1]).

>

~

Il
| — |
>N

— O g W

1 0]%[2 5o ) 0} (thisis[U L~1])
0
1

1 Atimescolumnj of A~! equalscolumnj of I, ending withn — j zeros.
2 Back substitution keeps those— j zeros at the end of columynof A—1.

3 Putthose columni...x0...0]T into A~! and that matrix is upper triangular!
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A~ — é _1 _(1) . (1) 1 1 Columnsj =1 and 2 end
1o o 1 1o o 1 with3 —j =2 and 1 zeros

The code forX = inv(A) can useref, the reduced row echelon form from Chapter

I = eye (n); % Define then by n identity matrix
R= mef ([A I]); % Eliminate on the augmented matfix 1]
X=R(:,n+1:n+n) % Pick X = A~ from the last: columns of R

A must be invertible, or elimination cannot reduce iftfin the left half of R).
Gauss-Jordan shows why ! is expensive. We solve equations for its» columns.
But all those equations involve the same mattivn the left side (where most of the work
is done). The total cost fad~! is n? multiplications and subtractions. To solve a single

Ax = bthat cost (see the next section)i/3.

To solve Az = b without A—1, we deal withonecolumn b to find one columnz.

Singular versus Invertible

We come back to the central question. Which matrices hawrses? The start of this
section proposed the pivot tesd—1 exists exactly whend has a full set ofn pivots.
(Row exchanges are allowed.) Now we can prove that by Gaarslsdd elimination:

1. With n pivots, elimination solves all the equatioAs:; = e;. The columnse; go
into A~!. ThenAA~! = I andA~! is at least aight-inverse

2. Elimination is really a sequence of multiplications BYs andP’'s and D~
Left-inverse C CA=({D ' ---E---P---E)A=1. 9)

D~ divides by the pivots. The matricés produce zeros below and above the pivots.
P will exchange rows if needed (see Section 2.7). The prodattixnin equation (9) is
evidently aleft-inverse of A. With n pivots we have reached—'A = I.

The right-inverse equals the left-inversgéhat was Note 2 at the start of in this section.
So a square matrix with a full set of pivots will always haveva{sided inverse.

Reasoning in reverse will now show thatmust haven pivots if AC' = 1.

1. If A doesn'thave: pivots, elimination will lead to aero row

2. Those elimination steps are taken by an invertilleSo a row ofM A is zera

3. If AC = I had been possible, theW AC = M. The zero row ofM A, timesC,
gives a zero row of\/ itself.

4. An invertible matrix)M can't have a zero rowd musthaven pivots if AC = 1.

That argument took four steps, but the outcome is short apdiitant.C is A",
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Elimination gives a complete test for invertibility of a sqe matrix. A—1 exists (and
Gauss-Jordan finds it) exactly wheA hasn pivots The argument above shows more:

If AC=1 then CA=1 and C=A4"" (10)

Example 6  If L is lower triangular with 1's on the diagonal, solis .
A triangular matrix is invertible if and only if no diagonal &tries are zero.

HereL hasl’s so L~! also hagl’s. Use the Gauss-Jordan method to constfuct from
Ess, E31, F91. Notice howL ! contains the strange entty, from 3 times5 minus4.

Gauss-Jordan

on triangular L =[L 1]

=W
o
o
=
en)

—
(@)
(@)
—
ja]
(@)

(3 times rowl from row 2)
(4 times rowl from row 3)
(then5 times row2 from row 3)

1
o O
(20
— O
|
= W
O =
— O

The inverse 1 0 1 0 0
is still 0 1 0-3 1 o0f=[I L]
triangular =10 0 1 11 -5 1]

Recognizing an Invertible Matrix

Normally, it takes work to decide if a matrix is invertibleh@ usual way is to find a full set
of nonzero pivots in elimination. (Then the nonzero deteant comes from multiplying

those pivots.) But for some matrices you can see quicklyttiet are invertible because
every numbeu;; on their main diagonal dominates the off-diagonal part af tow:.

Diagonally dominant matrices are invertible. Eacha;; on the diagonal is larger than
the total sum along the rest of rawOn every row,

lai| > Y |ai;| meansthat |aii| > |ai| + - (skiplail) - + [aim].  (11)
J#i
Examples. Aisdiagonallydominant3 > 2). Bis not (but still invertible).C is singular.
3 1 1 2 11 1 11
A=1]1 3 1 B=|1 21 c=|111
1 1 3 1 1 3 1 1 3
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Reasoning. Take any nonzero vectat. Suppose its largest component|is|. Then
Ax = 0is impossible, because ravwof Az = 0 would need

ai1T1 + -+ T + -+ apey, = 0.

Those can't add to zero whe# is diagonally dominant! The size af;x; (that one
particular term) is greater than all the other terms contdiine

Al |z;] < |a] Z laijz;| < Z laij| |z:i| < |ais||z;| becausea;; dominates
J#i J#i

This shows thatiz = 0 is only possible wher: = 0. SoA is invertible The exampleB

was also invertible but not quite diagonally dominghis not larger thar + 1.

B REVIEW OF THE KEY IDEAS =

. The inverse matrix gived A~ = Tand4A—'A = 1.
. Alisinvertible if and only if it has: pivots (row exchanges allowed).
. Important If Axz = 0 for a nonzero vectoz, thenA has no inverse.

. Theinverse ofA B is the reverse produ@—*A=1. And(ABC)~! = C~-'B~ 1A~

g A W N P

. The Gauss-Jordan method solvdsl—! = T to find the n columns of A—1.
The augmented matrik4 1] is row-reducedtd A~'].

6. Diagonally dominant matrices are invertible. Edeh| dominates its row.

® WORKED EXAMPLES =

25A Theinverse of a triangulatifference matrix A is a triangulassum matrix S :

1 0 0|1 0 O 1 0 0|1 0 O
[AT]=]-1 1 0/010|=]|0 1o0[1 10
0 -1 1|0 0 1 0 -1 1|0 0 1
1 0 0|1 0 O
=10 1 0|1 1 0|=[I A*']=[I summatriy.
0 0 11 1 1

If I changea;3 to —1, then all rows ofA add to zero. The equatiadz = 0 will now
have the nonzero solutian= (1, 1,1). A clear signal This new A can't be inverted.
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25 B Three of these matrices are invertible, and three are sing#lind the inverse
when it exists. Give reasons for noninvertibility (zeroatetinant, too few pivots, nonzero
solution toAx = 0) for the other three. The matrices are in the ordeB,C, D, S, E :

{4 3] [4 3} {6 6] {6 6] }(1)8 11(1)
8 6 8 7 6 0 6 6 111 111
Solution
1 0 0
_ 1 7T =3 _ 1 0 6 _
1_ - 1 _ 1 _
B _4{—8 4} ¢ 36[6 —6} § (1)_1(1)

A is not invertible because its determinantdis6 — 3-8 = 24 — 24 = 0. D is not
invertible because there is only one pivot; the second rawimes zero when the first row
is subtractedE has two equal rows (and the second column minus the first eoisizero).
In other wordsEx = 0 has the solutior = (-1, 1, 0).

Of course all three reasons for noninvertibility would aptgl each of4, D, E.
25 C Apply the Gauss-Jordan method to invert this triangulars@@h matrix” L.

You seePascal’s triangle—adding each entry to the entry on its left gives the entrpwel
The entries of’. are “binomial coefficients”. The next row would bbe4, 6,4, 1.

1 0 0 O

. . 11 0 0
Triangular Pascal matrix L = 12 1 0 = abs(pascal (4,1))

1 3 3 1

Solution Gauss-Jordan starts witl, 7] and produces zeros by subtracting row

10 0 0|1 0 0 O 10 0 0 10 0 0
(L 1]= 11 0 0{0 1 0 O _ 01 00]-1 100
121 0(0 0 1 0 0 210-1 010
1 3 3 1|0 0 01 0 3 3 1|-1 0 01

The next stage creates zeros below the second pivot, usitigplets 2 and3. Then the
last stage subtracsstimes the new rovg from the new rowt:

1000 1 000 1000 1 0 00
01001 100 0100[-1 1 00| . _,
o010/ 1 -210/7loo1o0] 1 -2 10HLI
003 1| 2 -3 0 1 000 1|-1 3 -3 1

All the pivots werel! So we didn’t need to divide rows by pivots to gkt The inverse
matrix L~! looks like L itself, except odd-numbered diagonals have minus signs.
The same pattern continuestdy n Pascal matriced.—! has “alternating diagonals”.
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Problem Set 2.5

1 Find the inverses (directly or from tteeby 2 formula) of A, B, C':

0 3 2 0 3 4
A_[4 0] and B_[4 2] and C_[5 7].

2 For these “permutation matrices” firfe—! by trial and error (with 1's and 0’s):

0 0 1 0 10
P=1{0 1 0 and P=1|0 0 1|.
1 0 0 1 00

3 Solve for the first columrtz, y) and second columft, z) of A~
10 20| (=] |1 and 10 20) (¢t| 1|0
20 50| |y| |0 20 50| |z|  |1]°

4 Showthat] § 2] is notinvertible by trying to solvelA~! = I for column1 of A~

1 2] =] _[1 For a differentA, could columnl of A~!
3 6| |y| |0 be possible to find but not colunth?

5 Find an upper trianguldy (not diagonal) with? = I which givesU = U ~*.

6 (a) If Aisinvertible andAB = AC, prove quickly thatB = C.
(b) If A= [1}1], find two different matrices such thatB = AC.

7 (Important) If A has row 1+ row 2 = row 3, show that4 is not invertible:

(a) Explain whyAx = (0,0, 1) cannot have a solution. Add ednt+ eqn2.
(b) Which right sidesb1, bo, b3) might allow a solution todx = b?

(c) In elimination, what happens to equatidf
8 If A has column + column2 = column3, show thatA is not invertible:

(a) Find a nonzero solutionto Az = 0. The matrix is3 by 3.
(b) Elimination keeps columh + column2 = column3. Explain why there is no
third pivot.

9 Supposé is invertible and you exchange its first two rows to redthls the new
matrix B invertible? How would you find3—* from A~1?
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10 Find the inverses (in any legal way) of

000 2 320 0
003 0 430 0
A=1g 4 0 ol @4 B=|; 5 ¢ 5
500 0 007 6

11 (a) Find invertible matricegl andB such thatd + B is not invertible.
(b) Find singular matriced andB such thatd + B is invertible.

12 Ifthe productC’ = AB is invertible(A and B are square), thed itself is invertible.
Find a formula forA—? that involvesC~! and B.

13  Ifthe productM = ABC of three square matrices is invertible, thBns invertible.
(So ared andC'.) Find a formula forB—! that involvesM —! and A andC.

14  If you add rowl of A to row2 to getB, how do you findB~! from A~1?

Notice the order. The inverse ofB = E (1)] [ A } is .

15 Prove that a matrix with a column of zeros cannot have an sever

16 Multiply [2 %] times[_¢ ~2]. What is the inverse of each matrixdél # bc?

C

17 (&) What3 by 3 matrix E has the same effect as these three steps? Subtradt row
from row 2, subtract rowd from row 3, then subtract row from row 3.

(b) What single matrix. has the same effect as these three reverse steps? Add row
2 to row 3, add rowl1 to row 3, then add rowl to row 2.

18 If Bis the inverse ofA2, show thatA B is the inverse ofd.

19  Find the numbera andb that give the inverse df x eye (4) — ones (4, 4):

-1

4 -1 -1 -1 a b b b
“1 4 -1 1| _|b a b b
-1 -1 4 -1| “|b b a b
-1 -1 -1 4 b b b oa

What areq andb in the inverse ob x eye (5) — ones (5, 5)?
20 Show thatA = 4 x eye (4) — ones (4, 4) is notinvertible : Multiply A x ones (4, 1).

21  There are sixtee by 2 matrices whose entries ar&s and0’s. How many of them
are invertible?
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Questions22-28 are about the Gauss-Jordan method for calculatingd —?*.

22  Changel into A~! as you reducet to I (by row operations):

a3 e [y gL

23  Follow the3 by 3 text example but with plus signs id. Eliminate above and below
the pivots to reduced I]to[I A~']:

21 01 00
[AI]=]1 210 10
01 2 0 01
24  Use Gauss-Jordan elimination pii 7] to find the upper trianguldy —*:

1
vu-t=1 0
0

o = Q

b 1 0 0
c 7, x x3| =0 1 0
1 0 0 1

25 Find A= andB~! (if they exis} by eliminationon A I]and[B I]:

2 1 1 2 -1 -1
A=11 2 1 and B = |-1 2 —1
1 1 2 -1 -1 2

26  What three matriceB,; andEy, andD~! reduced = [ 1 2] to the identity matrix?
Multiply D~'E5 Eo; to find A1,

27  Invertthese matriced by the Gauss-Jordan method starting With 7]:

A:

[l R

0 0 1 1
1 3 and A=1|1 2
0 1 1 2

W N =

28 Exchange rows and continue with Gauss-Jordan toAiné:

(an=y 509

29  True or false (with a counterexample if false and a reasand)t

(a) A4 by4 matrix with a row of zeros is not invertible.
(b) Every matrix withl’s down the main diagonal is invertible.
(c) If Aisinvertible thend—! andA? are invertible.
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30

31

32

33

34

35

36

37

38

39

(Recommended) Prove thdtis invertible ifa # 0 anda # b (find the pivots or
A~1). Then find three numbetrsso thatC is not invertible:

b b 2
A= a b C=lc
a a 8

SIS IS
~N 0O O

This matrix has a remarkable inverse. Find! by elimination on[ A I]. Extend
to a5 by 5 “alternating matrix” and guess its inverse; then multigyconfirm.

InvertA = and solvedx = (1,1,1,1).

-1 1 -1
1 -1 1
0 1 -1
0 0 1

oo o

Suppose the matricdd and(@ have the same rows dsbut in any order. They are
“permutation matrices”. Show th& — @ is singular by solvindP — Q) « = 0.

Find and check the inverses (assuming they exist) of thesk Iphatrices:
1 0 A 0 0 I
c I C D I D\
Could a4 by 4 matrix A be invertible if every row contains the numbérd, 2,3 in

some order? What if every row @ containg), 1,2, —3 in some order?

In the Worked Exampl@.5 C, the triangular Pascal matrik hasL—' = DLD,
where the diagonal matri® has alternating entrids —1,1, —1. ThenLDLD = I,
so what is the inverse dfD = pascal (4,1)?

The Hilbert matrices hav&l;; = 1/(i + j — 1). Ask MATLAB for the exact by 6
inverseinvhilb (6). Then ask it to computiav (hilb (6)). How can these be different,
when the computer never makes mistakes?

(a) Useinv(P) to invertMATLAB's 4 by 4 symmetric matrixP = pascal (4).

(b) Create Pascal’s lower triangulr= abs (pascal (4, 1)) and testP = LLT.

If A =ones(4)andb = rand (4, 1), how doesMATLAB tell you thatAxz = b has no
solution? For the speciél= ones (4, 1), which solution taAdx =b is found by A\ b?

Challenge Problems

(Recommended} is a4 by 4 matrix with1's on the diagonal and a, —b, —c on the
diagonal above. Find—! for this bidiagonal matrix.
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40

41

42

43

44
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Supposéy,, Fs, F5 are4 by 4 identity matrices, excep; hasa, b, ¢ in columnl
and E; hasd, e in column2 and E3 hasf in column3 (below thel’s). Multiply
L = E, Es E5 to show that all these nonzeros are copied ibto

E, E>E3 is in theoppositeorder from elimination (becaus®; is acting first). But
E1E>FE3 = Lis in thecorrectorder to invert elimination and recovdr.

Second difference matrices have beautiful inverses if thteyt with 77, = 1
(instead ofK(;; = 2). Here is the3 by 3 tridiagonal matrixI” and its inverse:
1 -1 0 3 2 1
T=1|-1 2 -1 T '=12 2 1
0 -1 2 1 1 1

One approach is Gauss-Jordan eliminatiorf6n I']. | would rather writeT” as the
product of first differences timesU. The inverses of. andU in Worked Example
2.5 A aresum matrices so hereard = LU andT ! = UL~

1 1 -1 0 1 1 1|1
T=|-1 1 1 -1 T = 1 1|1 1

0 -1 1 1 {11 1 1

difference difference sum sum

Question. (4 by 4) What are the pivots off? What is its4 by 4 inverse?
The reverse ordév L gives what matrix/™*? What is the inverse af*?

Here are two more difference matrices, both importBot are they invertibl@

2 -1 0 -1 1 -1 0 0

. -1 2 -1 0 -1 2 -1 0
Cyclic C = 0 —1 9 _1 Free endsF = 0 1 9 _1
-1 0 -1 2 0 0 -1 1

Elimination for a block matrix When you multiply the first block rowWA B] by
CA~! and subtract from the second ré@ D], the “Schur complemehtS appears:

I 0] [A4 B| [A B A andD are square
-CA~Y I||C D| |0 S S=D-CA'B.
Multiply on the right to subtraci—! B times block columr from block columre.
2 3 3
A Bl[I -A"'B . A B
] _
[0 S} {0 7 ]_. Find S for [C I]_ 11 (1) (1)

The block pivots ared and S. If they are invertible, soi§A B; C D].

How does the identityl( + BA) = (I + AB)A connect the inverses df+ BA
andl + AB? Those are both invertible or both singular: not obvious.





