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2.5 Inverse Matrices'

&

$

%

1 If the square matrixA has an inverse, then bothA−1A = I andAA−1 = I.

2 Thealgorithmto test invertibility is elimination :A must haven (nonzero) pivots.

3 Thealgebratest for invertibility is the determinant ofA : detA must not be zero.

4 Theequationthat tests for invertibility isAx = 0 : x = 0 must be the only solution.

5 If A andB (same size) are invertible then so isAB : |(AB)−1 = B−1A−1.

6 AA−1 = I is n equations forn columns ofA−1. Gauss-Jordan eliminates[A I] to [I A−1].

7 The last page of the book gives14 equivalent conditions for a squareA to be invertible.

SupposeA is a square matrix. We look for an “inverse matrix” A−1 of the same size,
such thatA−1 timesA equalsI. WhateverA does,A−1 undoes. Their product is the
identity matrix—which does nothing to a vector, soA−1Ax = x. ButA−1 might not exist.

What a matrix mostly does is to multiply a vectorx. Multiplying Ax = b by A−1

givesA−1Ax = A−1b. This is x = A−1b. The productA−1A is like multiplying by
a number and then dividing by that number. A number has an inverse if it is not zero—
matrices are more complicated and more interesting. The matrix A−1 is called “A inverse.”

DEFINITION The matrixA is invertible if there exists a matrixA−1 that “inverts”A :

Two-sided inverse A−1A = I and AA−1 = I. (1)

Not all matrices have inverses. This is the first question we ask about a square matrix:
Is A invertible? We don’t mean that we immediately calculateA−1. In most problems
we never compute it ! Here are six “notes” aboutA−1.

Note 1 The inverse exists if and only if elimination producesn pivots(row exchanges
are allowed). Elimination solvesAx = b without explicitly using the matrixA−1.

Note 2 The matrixA cannot have two different inverses. SupposeBA = I and also
AC = I. ThenB = C, according to this “proof by parentheses” :

B(AC) = (BA)C gives BI = IC or B = C. (2)

This shows that aleft-inverseB (multiplying from the left) and aright-inverseC (mul-
tiplying A from the right to giveAC = I) must be thesame matrix.

Note 3 If A is invertible, the one and only solution toAx = b isx = A−1 b:

Multiply Ax = b by A−1. Then x = A−1Ax = A−1 b.
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Note 4 (Important)Suppose there is a nonzero vectorx such thatAx = 0. ThenA
cannot have an inverse.No matrix can bring0 back tox.

If A is invertible, thenAx = 0 can only have the zero solutionx = A−10 = 0.

Note 5 A 2 by 2 matrix is invertible if and only ifad− bc is not zero:

2 by 2 Inverse:
[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
. (3)

This numberad− bc is thedeterminantof A. A matrix is invertible if its determinant is not
zero (Chapter5). The test forn pivots is usually decided before the determinant appears.

Note 6 A diagonal matrix has an inverse provided no diagonal entries are zero :

If A =



d1

. . .
dn


 then A−1 =



1/d1

. . .
1/dn


 .

Example 1 The2 by 2 matrix A =
[
1 2
1 2

]
is not invertible. It fails the test in Note5,

becausead − bc equals2 − 2 = 0. It fails the test in Note3, becauseAx = 0 when
x = (2,−1). It fails to have two pivots as required by Note1.

Elimination turns the second row of this matrixA into a zero row.

The Inverse of a ProductAB

For two nonzero numbersa andb, the suma + b might or might not be invertible. The
numbersa = 3 andb = −3 have inverses13 and− 1

3 . Their suma+ b = 0 has no inverse.
But the productab = −9 does have an inverse, which is13 times− 1

3 .
For two matricesA andB, the situation is similar. It is hard to say much about the

invertibility of A+B. But theproductAB has an inverse, if and only if the two factorsA
andB are separately invertible (and the same size). The important point is thatA−1 and
B−1 come inreverse order:

If A andB are invertible then so isAB. The inverse of a productAB is

(AB)−1 = B−1A−1. (4)

To see why the order is reversed, multiplyAB timesB−1A−1. Inside that isBB−1 = I:

Inverse ofAB (AB)(B−1A−1) = AIA−1 = AA−1 = I.

We moved parentheses to multiplyBB−1 first. SimilarlyB−1A−1 timesAB equalsI.
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B−1A−1 illustrates a basic rule of mathematics: Inverses come in reverse order.
It is also common sense: If you put on socks and then shoes, thefirst to be taken off
are the . The same reverse order applies to three or more matrices:

Reverse order (ABC)−1 = C−1B−1A−1. (5)

Example 2 Inverse of an elimination matrix. If E subtracts5 times row1 from row2,
thenE−1 adds5 times row1 to row2 :

E subtracts
E−1 adds

E =




1 0 0
−5 1 0
0 0 1


 and E−1 =



1 0 0
5 1 0
0 0 1


 .

Multiply EE−1 to get the identity matrixI. Also multiplyE−1E to getI. We are adding
and subtracting the same5 times row1. If AC = I then automaticallyCA = I.

For square matrices, an inverse on one side is automaticallyan inverse on the other side.

Example 3 SupposeF subtracts4 times row2 from row3, andF−1 adds it back:

F =



1 0 0
0 1 0
0 −4 1


 and F−1 =



1 0 0
0 1 0
0 4 1


 .

Now multiplyF by the matrixE in Example 2 to findFE. Also multiplyE−1 timesF−1

to find (FE)−1. Notice the ordersFE andE−1F−1!

FE =




1 0 0
−5 1 0

20 −4 1


 is inverted by E−1F−1 =




1 0 0
5 1 0

0 4 1


 . (6)

The result is beautiful and correct. The productFE contains “20” but its inverse doesn’t.
E subtracts5 times row1 from row 2. ThenF subtracts4 times thenewrow 2 (changed
by row1) from row3. In this orderFE, row3 feels an effect from row1.

In the orderE−1F−1, that effect does not happen. FirstF−1 adds4 times row2 to
row 3. After that,E−1 adds5 times row1 to row2. There is no20, because row3 doesn’t
change again.In this orderE−1F−1, row3 feels no effect from row1.

This is why the next section choosesA = LU , to go back from the triangularU to A.
The multipliers fall into place perfectly in the lower triangularL.

In elimination orderF followsE. In reverse orderE−1 followsF−1.
E−1F−1 is quick. The multipliers5, 4 fall into place below the diagonal of1’s.
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Calculating A−1 by Gauss-Jordan Elimination

I hinted thatA−1 might not be explicitly needed. The equationAx = b is solved by
x = A−1b. But it is not necessary or efficient to computeA−1 and multiply it timesb.
Elimination goes directly tox. And elimination is also the way to calculateA−1, as we
now show. The Gauss-Jordan idea is to solveAA−1 = I, finding each column ofA−1.

A multiplies the first column ofA−1 (call thatx1) to give the first column ofI (call
thate1). This is our equationAx1 = e1 = (1, 0, 0). There will be two more equations.
Each of the columnsx1, x2, x3 of A−1 is multiplied byA to produce a column ofI:

3 columns ofA−1 AA−1 = A
[
x1 x2 x3

]
=

[
e1 e2 e3

]
= I. (7)

To invert a3 by 3 matrixA, we have to solve three systems of equations:Ax1 = e1 and
Ax2 = e2 = (0, 1, 0) andAx3 = e3 = (0, 0, 1). Gauss-Jordan findsA−1 this way.

The Gauss-Jordan method computesA−1 by solving all n equations together.
Usually the “augmented matrix”[A b] has one extra columnb. Now we have three
right sidese1, e2, e3 (whenA is 3 by 3). They are the columns ofI, so the augmented
matrix is really the block matrix[A I ]. I take this chance to invert my favorite matrixK,
with 2’s on the main diagonal and−1’s next to the2’s:

[
K e1 e2 e3

]
=




2 −1 0 1 0 0
−1 2 −1 0 1 0
0 −1 2 0 0 1




Start Gauss-Jordan onK

→




2 −1 0 1 0 0
0 3

2 −1 1
2 1 0

0 −1 2 0 0 1


 (12 row 1+ row 2)

→




2 −1 0 1 0 0
0 3

2 −1 1
2 1 0

0 0 4
3

1
3

2
3 1




(23 row 2+ row 3)

We are halfway toK−1. The matrix in the first three columns isU (upper triangular). The
pivots2, 32 ,

4
3 are on its diagonal. Gauss would finish by back substitution.The contribution

of Jordan isto continue with elimination! He goes all the way to thereduced echelon form
R = I. Rows are added to rows above them, to producezeros above the pivots:

(
Zero above
third pivot

)
→




2 −1 0 1 0 0
0 3

2 0 3
4

3
2

3
4

0 0 4
3

1
3

2
3 1


 (34 row 3+ row 2)

(
Zero above
second pivot

)
→




2 0 0 3
2 1 1

2

0 3
2 0 3

4
3
2

3
4

0 0 4
3

1
3

2
3 1




(23 row 2+ row 1)

The final Gauss-Jordan step is to divide each row by its pivot.The new pivots are all1.
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We have reachedI in the first half of the matrix, becauseK is invertible. The three
columns ofK−1 are in the second half of[ I K−1 ]:

(divide by2)

(divide by 3
2 )

(divide by 4
3 )




1 0 0 3

4

1

2

1

4

0 1 0 1

2
1 1

2

0 0 1 1

4

1

2

3

4



=

[
I x1 x2 x3

]
=

[
I K−1

]
.

Starting from the3 by 6 matrix [K I ], we ended with[ I K−1 ]. Here is the whole
Gauss-Jordan process on one line for any invertible matrixA :

Gauss-Jordan Multiply
[
A I

]
by A−1 to get [ I A−1].

The elimination steps create the inverse matrix while changingA to I. For large matrices,
we probably don’t wantA−1 at all. But for small matrices, it can be very worthwhile to
know the inverse. We add three observations aboutK−1 : an important example.

1. K is symmetricacross its main diagonal. ThenK−1 is also symmetric.

2. K is tridiagonal (only three nonzero diagonals). ButK−1 is a dense matrix with
no zeros. That is another reason we don’t often compute inverse matrices. The
inverse of a band matrix is generally a dense matrix.

3. Theproduct of pivotsis 2
(
3
2

) (
4
3

)
= 4. This number4 is thedeterminantof K.

K−1 involves division by the determinant ofK K−1 =
1

4



3 2 1
2 4 2
1 2 3


 . (8)

This is why an invertible matrix cannot have a zero determinant: we need to divide.

Example 4 FindA−1 by Gauss-Jordan elimination starting fromA =
[
2 3
4 7

]
.

[
A I

]
=

[
2 3 1 0
4 7 0 1

]
→

[
2 3 1 0
0 1 −2 1

] (
this is

[
U L−1

])

→
[
2 0 7 −3
0 1 −2 1

]
→

[
1 0 7

2 −3
2

0 1 −2 1

] (
this is

[
I A−1

])
.

Example 5 If A is invertible and upper triangular, so isA−1. Start withAA−1 = I.

1 A timescolumnj of A−1 equalscolumnj of I, ending withn− j zeros.

2 Back substitution keeps thosen− j zeros at the end of columnj of A−1.

3 Put those columns[∗ . . . ∗ 0 . . . 0]T intoA−1 and that matrix is upper triangular!
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A−1 =




1 −1 0
0 1 −1
0 0 1



−1

=




1 1 1
0 1 1
0 0 1


 Columnsj = 1 and 2 end

with 3− j = 2 and 1 zeros.

The code forX = inv(A) can userref , the reduced row echelon form from Chapter3:

I = eye (n); % Define then by n identity matrix
R = rref ([A I]); % Eliminate on the augmented matrix[A I]
X = R( : , n+ 1 : n+ n) % PickX = A−1 from the lastn columns ofR

A must be invertible, or elimination cannot reduce it toI (in the left half ofR).
Gauss-Jordan shows whyA−1 is expensive. We solven equations for itsn columns.

But all those equations involve the same matrixA on the left side (where most of the work
is done). The total cost forA−1 is n3 multiplications and subtractions. To solve a single
Ax = b that cost (see the next section) isn3/3.

To solveAx = b without A−1, we deal withonecolumn b to find one columnx.

Singular versus Invertible

We come back to the central question. Which matrices have inverses? The start of this
section proposed the pivot test:A−1 exists exactly whenA has a full set ofn pivots.
(Row exchanges are allowed.) Now we can prove that by Gauss-Jordan elimination:

1. With n pivots, elimination solves all the equationsAxi = ei. The columnsxi go
intoA−1. ThenAA−1 = I andA−1 is at least aright-inverse.

2. Elimination is really a sequence of multiplications byE’s andP ’s andD−1:

Left-inverseC CA = (D−1 · · ·E · · ·P · · ·E)A = I. (9)

D−1 divides by the pivots. The matricesE produce zeros below and above the pivots.
P will exchange rows if needed (see Section 2.7). The product matrix in equation (9) is
evidently aleft-inverse ofA. With n pivots we have reachedA−1A = I.

The right-inverse equals the left-inverse. That was Note 2 at the start of in this section.
So a square matrix with a full set of pivots will always have a two-sided inverse.

Reasoning in reverse will now show thatA must haven pivots if AC = I.

1. If A doesn’t haven pivots, elimination will lead to azero row.
2. Those elimination steps are taken by an invertibleM . So a row ofMA is zero.
3. If AC = I had been possible, thenMAC = M . The zero row ofMA, timesC,

gives a zero row ofM itself.
4. An invertible matrixM can’t have a zero row!A musthaven pivots ifAC = I.

That argument took four steps, but the outcome is short and important.C isA−1.
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Elimination gives a complete test for invertibility of a square matrix.A−1 exists (and
Gauss-Jordan finds it) exactly whenA hasn pivots. The argument above shows more:

If AC = I then CA = I and C = A−1 (10)

Example 6 If L is lower triangular with 1’s on the diagonal, so isL−1.

A triangular matrix is invertible if and only if no diagonal entries are zero.

HereL has1’s soL−1 also has1’s. Use the Gauss-Jordan method to constructL−1 from
E32, E31, E21. Notice howL−1 contains the strange entry11, from 3 times5 minus4.

Gauss-Jordan
on triangular L



1 0 0 1 0 0
3 1 0 0 1 0
4 5 1 0 0 1


 =

[
L I

]

→
→



1 0 0 1 0 0
0 1 0 −3 1 0
0 5 1 −4 0 1




(3 times row1 from row2)
(4 times row1 from row3)
(then5 times row2 from row3)

The inverse
is still
triangular →



1 0 0 1 0 0
0 1 0 −3 1 0
0 0 1 11 −5 1


 =

[
I L−1

]
.

Recognizing an Invertible Matrix

Normally, it takes work to decide if a matrix is invertible. The usual way is to find a full set
of nonzero pivots in elimination. (Then the nonzero determinant comes from multiplying
those pivots.) But for some matrices you can see quickly thatthey are invertible because
every numberaii on their main diagonal dominates the off-diagonal part of that rowi.

Diagonally dominant matrices are invertible. Eachaii on the diagonal is larger than
the total sum along the rest of rowi. On every row,

|aii| >
∑

j 6= i

|aij | means that |aii| > |ai1|+ · · · (skip |aii|) · · ·+ |ain|. (11)

Examples. A is diagonally dominant(3 > 2). B is not (but still invertible).C is singular.

A =




3 1 1
1 3 1
1 1 3


 B =




2 1 1
1 2 1
1 1 3


 C =




1 1 1
1 1 1
1 1 3



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Reasoning. Take any nonzero vectorx. Suppose its largest component is|xi|. Then
Ax = 0 is impossible, because rowi of Ax = 0 would need

ai1x1 + · · ·+ aiixi + · · ·+ ainxn = 0.

Those can’t add to zero whenA is diagonally dominant! The size ofaiixi (that one
particular term) is greater than all the other terms combined:

All |xj| ≤≤≤ |xi|
∑

j 6= i

|aijxj|≤≤≤
∑

j 6= i

|aij | |xi|<<< |aii| |xi| becauseaii dominates

This shows thatAx = 0 is only possible whenx = 0. SoA is invertible. The exampleB
was also invertible but not quite diagonally dominant:2 is not larger than1 + 1.

REVIEW OF THE KEY IDEAS

1. The inverse matrix givesAA−1 = I andA−1A = I.

2. A is invertible if and only if it hasn pivots (row exchanges allowed).

3. Important. If Ax = 0 for a nonzero vectorx, thenA has no inverse.

4. The inverse ofAB is the reverse productB−1A−1. And(ABC)−1 = C−1B−1A−1.

5. The Gauss-Jordan method solvesAA−1 = I to find the n columns ofA−1.
The augmented matrix

[
A I

]
is row-reduced to

[
I A−1

]
.

6. Diagonally dominant matrices are invertible. Each|aii| dominates its row.

WORKED EXAMPLES

2.5 A The inverse of a triangulardifference matrix A is a triangularsum matrix S :

[
A I

]
=




1 0 0 1 0 0
−1 1 0 0 1 0
0 −1 1 0 0 1


→




1 0 0 1 0 0
0 1 0 1 1 0
0 −1 1 0 0 1




→




1 0 0 1 0 0
0 1 0 1 1 0
0 0 1 1 1 1


 =

[
I A−1

]
=

[
I sum matrix

]
.

If I changea13 to −1, then all rows ofA add to zero. The equationAx = 0 will now
have the nonzero solutionx = (1, 1, 1). A clear signal :This newA can’t be inverted.
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2.5 B Three of these matrices are invertible, and three are singular. Find the inverse
when it exists. Give reasons for noninvertibility (zero determinant, too few pivots, nonzero
solution toAx = 0) for the other three. The matrices are in the orderA,B,C,D, S,E :

[
4 3
8 6

] [
4 3
8 7

] [
6 6
6 0

] [
6 6
6 6

] 


1 0 0
1 1 0
1 1 1







1 1 1
1 1 0
1 1 1




Solution

B−1 =
1

4

[
7 −3
−8 4

]
C−1 =

1

36

[
0 6
6 −6

]
S−1 =




1 0 0
−1 1 0
0 −1 1




A is not invertible because its determinant is4 · 6 − 3 · 8 = 24 − 24 = 0. D is not
invertible because there is only one pivot; the second row becomes zero when the first row
is subtracted.E has two equal rows (and the second column minus the first column is zero).
In other wordsEx = 0 has the solutionx = (−1, 1, 0).

Of course all three reasons for noninvertibility would apply to each ofA,D,E.

2.5 C Apply the Gauss-Jordan method to invert this triangular “Pascal matrix” L.
You seePascal’s triangle—adding each entry to the entry on its left gives the entry below.
The entries ofL are “binomial coefficients”. The next row would be1, 4, 6, 4, 1.

Triangular Pascal matrix L =




1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1


 = abs(pascal (4,1))

Solution Gauss-Jordan starts with[L I ] and produces zeros by subtracting row1:

[L I ] =




1 0 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 2 1 0 0 0 1 0
1 3 3 1 0 0 0 1


→




1 0 0 0 1 0 0 0
0 1 0 0 −1 1 0 0
0 2 1 0 −1 0 1 0
0 3 3 1 −1 0 0 1


 .

The next stage creates zeros below the second pivot, using multipliers 2 and3. Then the
last stage subtracts3 times the new row3 from the new row4:

→




1 0 0 0 1 0 0 0
0 1 0 0 −1 1 0 0
0 0 1 0 1 −2 1 0
0 0 3 1 2 −3 0 1


→




1 0 0 0 1 0 0 0
0 1 0 0 −1 1 0 0
0 0 1 0 1 −2 1 0
0 0 0 1 −1 3 −3 1


= [I L−1] .

All the pivots were1! So we didn’t need to divide rows by pivots to getI. The inverse
matrixL−1 looks likeL itself, except odd-numbered diagonals have minus signs.

The same pattern continues ton byn Pascal matrices.L−1 has “alternating diagonals”.
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Problem Set 2.5

1 Find the inverses (directly or from the2 by 2 formula) ofA,B,C :

A =

[
0 3
4 0

]
and B =

[
2 0
4 2

]
and C =

[
3 4
5 7

]
.

2 For these “permutation matrices” findP−1 by trial and error (with 1’s and 0’s):

P =



0 0 1
0 1 0
1 0 0


 and P =



0 1 0
0 0 1
1 0 0


 .

3 Solve for the first column(x, y) and second column(t, z) of A−1:

[
10 20
20 50

] [
x
y

]
=

[
1
0

]
and

[
10 20
20 50

] [
t
z

]
=

[
0
1

]
.

4 Show that
[
1 2
3 6

]
is not invertible by trying to solveAA−1 = I for column1 of A−1:

[
1 2
3 6

] [
x
y

]
=

[
1
0

] (
For a differentA, could column1 of A−1

be possible to find but not column2 ?

)

5 Find an upper triangularU (not diagonal) withU2 = I which givesU = U−1.

6 (a) If A is invertible andAB = AC, prove quickly thatB = C.

(b) If A =
[
1 1
1 1

]
, find two different matrices such thatAB = AC.

7 (Important) IfA has row 1+ row 2= row 3, show thatA is not invertible:

(a) Explain whyAx = (0, 0, 1) cannot have a solution. Add eqn1 + eqn2.

(b) Which right sides(b1, b2, b3) might allow a solution toAx = b?

(c) In elimination, what happens to equation3?

8 If A has column1 + column2 = column3, show thatA is not invertible:

(a) Find a nonzero solutionx toAx = 0. The matrix is3 by 3.

(b) Elimination keeps column1 + column2 = column3. Explain why there is no
third pivot.

9 SupposeA is invertible and you exchange its first two rows to reachB. Is the new
matrixB invertible? How would you findB−1 fromA−1?
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10 Find the inverses (in any legal way) of

A =




0 0 0 2
0 0 3 0
0 4 0 0
5 0 0 0


 and B =




3 2 0 0
4 3 0 0
0 0 6 5
0 0 7 6


 .

11 (a) Find invertible matricesA andB such thatA+B is not invertible.

(b) Find singular matricesA andB such thatA+B is invertible.

12 If the productC = AB is invertible(A andB are square), thenA itself is invertible.
Find a formula forA−1 that involvesC−1 andB.

13 If the productM = ABC of three square matrices is invertible, thenB is invertible.
(So areA andC.) Find a formula forB−1 that involvesM−1 andA andC.

14 If you add row1 of A to row2 to getB, how do you findB−1 fromA−1?

Notice the order. The inverse ofB =

[
1 0
1 1

] [
A

]
is .

15 Prove that a matrix with a column of zeros cannot have an inverse.

16 Multiply
[
a b
c d

]
times

[
d −b

−c a

]
. What is the inverse of each matrix ifad 6= bc?

17 (a) What3 by 3 matrixE has the same effect as these three steps? Subtract row1
from row2, subtract row1 from row3, then subtract row2 from row3.

(b) What single matrixL has the same effect as these three reverse steps? Add row
2 to row3, add row1 to row3, then add row1 to row2.

18 If B is the inverse ofA2, show thatAB is the inverse ofA.

19 Find the numbersa andb that give the inverse of5 ∗ eye (4) – ones (4, 4):




4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4




−1

=




a b b b
b a b b
b b a b
b b b a


 .

What area andb in the inverse of6 ∗ eye (5) – ones (5, 5)?

20 Show thatA = 4 ∗ eye (4) – ones (4, 4) is not invertible : Multiply A∗ ones (4, 1).

21 There are sixteen2 by 2 matrices whose entries are1’s and0’s. How many of them
are invertible?
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Questions22–28 are about the Gauss-Jordan method for calculatingA−1.

22 ChangeI intoA−1 as you reduceA to I (by row operations):

[
A I

]
=

[
1 3 1 0
2 7 0 1

]
and

[
A I

]
=

[
1 4 1 0
3 9 0 1

]

23 Follow the3 by 3 text example but with plus signs inA. Eliminate above and below
the pivots to reduce[A I ] to [ I A−1 ]:

[
A I

]
=



2 1 0 1 0 0
1 2 1 0 1 0
0 1 2 0 0 1


 .

24 Use Gauss-Jordan elimination on[U I ] to find the upper triangularU−1:

UU−1 = I



1 a b
0 1 c
0 0 1




x1 x2 x3


 =



1 0 0
0 1 0
0 0 1


 .

25 FindA−1 andB−1 (if they exist) by elimination on[A I ] and[B I ]:

A =



2 1 1
1 2 1
1 1 2


 and B =




2 −1 −1
−1 2 −1
−1 −1 2


 .

26 What three matricesE21 andE12 andD−1 reduceA =
[
1 2
2 6

]
to the identity matrix?

Multiply D−1E12 E21 to findA−1.

27 Invert these matricesA by the Gauss-Jordan method starting with[A I ]:

A =



1 0 0
2 1 3
0 0 1


 and A =



1 1 1
1 2 2
1 2 3


 .

28 Exchange rows and continue with Gauss-Jordan to findA−1:

[
A I

]
=

[
0 2 1 0
2 2 0 1

]
.

29 True or false (with a counterexample if false and a reason if true):

(a) A 4 by 4 matrix with a row of zeros is not invertible.

(b) Every matrix with1’s down the main diagonal is invertible.

(c) If A is invertible thenA−1 andA2 are invertible.
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30 (Recommended) Prove thatA is invertible if a 6= 0 anda 6= b (find the pivots or
A−1). Then find three numbersc so thatC is not invertible:

A =



a b b
a a b
a a a


 C =



2 c c
c c c
8 7 c


 .

31 This matrix has a remarkable inverse. FindA−1 by elimination on[A I ]. Extend
to a5 by 5 “alternating matrix” and guess its inverse; then multiply to confirm.

InvertA =




1 −1 1 −1
0 1 −1 1
0 0 1 −1
0 0 0 1


 and solveAx = (1, 1, 1, 1).

32 Suppose the matricesP andQ have the same rows asI but in any order. They are
“permutation matrices”. Show thatP −Q is singular by solving(P −Q)x = 0.

33 Find and check the inverses (assuming they exist) of these block matrices:

[
I 0
C I

] [
A 0
C D

] [
0 I
I D

]
.

34 Could a4 by 4 matrixA be invertible if every row contains the numbers0, 1, 2, 3 in
some order? What if every row ofB contains0, 1, 2,−3 in some order?

35 In the Worked Example2.5 C, the triangular Pascal matrixL hasL−1 = DLD,
where the diagonal matrixD has alternating entries1,−1, 1,−1. ThenLDLD = I,
so what is the inverse ofLD = pascal (4, 1)?

36 The Hilbert matrices haveHij = 1/(i + j − 1). Ask MATLAB for the exact6 by 6
inverseinvhilb (6). Then ask it to computeinv (hilb (6)). How can these be different,
when the computer never makes mistakes?

37 (a) Useinv(P) to invertMATLAB’s 4 by 4 symmetric matrixP = pascal (4).

(b) Create Pascal’s lower triangularL = abs (pascal (4, 1)) and testP = LLT.

38 If A = ones (4) andb = rand (4, 1), how doesMATLAB tell you thatAx = b has no
solution? For the specialb = ones (4, 1), which solution toAx=b is found byA\b?

Challenge Problems

39 (Recommended)A is a4 by 4 matrix with1’s on the diagonal and−a,−b,−c on the
diagonal above. FindA−1 for this bidiagonal matrix.
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40 SupposeE1, E2, E3 are4 by 4 identity matrices, exceptE1 hasa, b, c in column1
andE2 hasd, e in column2 andE3 hasf in column3 (below the1’s). Multiply
L = E1E2E3 to show that all these nonzeros are copied intoL.

E1E2E3 is in theoppositeorder from elimination (becauseE3 is acting first). But
E1E2E3 = L is in thecorrectorder to invert elimination and recoverA.

41 Second difference matrices have beautiful inverses if theystart with T11 = 1
(instead ofK11 = 2). Here is the3 by 3 tridiagonal matrixT and its inverse:

T =




1 −1 0
−1 2 −1
0 −1 2


 T−1 =



3 2 1
2 2 1
1 1 1




One approach is Gauss-Jordan elimination on[T I ]. I would rather writeT as the
product of first differencesL timesU . The inverses ofL andU in Worked Example
2.5 A aresum matrices, so here areT = LU andT−1 = U−1L−1:

T =




1
−1 1
0 −1 1





1 −1 0

1 −1
1




difference difference

T−1 =



1 1 1

1 1
1





1
1 1
1 1 1




sum sum

Question. (4 by 4) What are the pivots ofT? What is its4 by 4 inverse?
The reverse orderUL gives what matrixT ∗? What is the inverse ofT ∗?

42 Here are two more difference matrices, both important.But are they invertible?

Cyclic C =




2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2


 Free endsF =




1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1


 .

43 Elimination for a block matrix: When you multiply the first block row[A B] by
CA−1 and subtract from the second row[C D], the “Schur complement” S appears:

[
I 0

−CA−1 I

] [
A B
C D

]
=

[
A B
0 S

]
A andD are square

S = D − CA−1B.

Multiply on the right to subtractA−1B times block column1 from block column2.

[
A B
0 S

] [
I −A−1B
0 I

]
= ? FindS for

[
A B
C I

]
=



2 3 3
4 1 0
4 0 1


 .

The block pivots areA andS. If they are invertible, so is[A B ; C D ].

44 How does the identityA(I + BA) = (I + AB)A connect the inverses ofI + BA
andI +AB? Those are both invertible or both singular: not obvious.




