INTRODUCTION

TO

LINEAR

ALGEBRA

Fifth Edition

MANUAL FOR INSTRUCTORS

Gilbert Strang

Massachusetts Institute of Technology

math.mit.edu/linearalgebra

web.mit.edu/18.06

video lectures: ocw.mit.edu

math.mit.edu/~gs

www.wellesleycambridge.com

e-mail: linearalgebrabook@gmail.com

Wellesley - Cambridge Press

Box 812060

Wellesley, Massachusetts 02482
Problem Set 12.1, page 544

1 When 7 is added to every output, the mean increases by 7 and the variance does not change (because new variance comes from (distance)2 to the new mean).

New sample mean and new expected mean: Add 7. New variance: No change.

2 If we add $\frac{1}{3}$ to $\frac{1}{7}$ (fraction of integers divisible by 3 plus fraction divisible by 7) we have **double counted** the integers divisible by both 3 and 7. This is a fraction $\frac{1}{21}$ of all integers (because these double counted numbers are multiples of 21). So the fraction divisible by 3 or 7 or both is

$$\frac{1}{3} + \frac{1}{7} - \frac{1}{21} = \frac{7}{21} + \frac{3}{21} - \frac{1}{21} = \frac{9}{21} = \frac{3}{7}$$

3 In the numbers from 1 to 1000, each group of ten numbers will contain each possible ending $x = 1, 2, 3, \ldots, 0$. So those endings all have the same probability $p_i = \frac{1}{10}$.

Expected mean of that last digit x:

$$m = E[x] = \sum p_i x_i = \frac{1}{10} \sum_{i=0}^{9} i = \frac{45}{10} = 4.5$$

The best way to find the variance $\sigma^2 = 8.25$ is in the last line below and in problem 12.1.7. The slower way to find σ^2 is

$$\sigma^2 = E[(x - 4.5)^2] = \sum_{i=0}^{9} p_i (x_i - 4.5)^2 = \frac{1}{10} \sum_{i=0}^{9} (i - 4.5)^2$$

We can separate $(i - 4.5)^2$ into $i^2 - 9i + (4.5)^2$ and add from $i = 0$ to $i = 9$:

$$\frac{1}{10} \left(\sum_{i=0}^{9} i^2 - 9 \sum_{i=0}^{9} i + \sum_{i=0}^{9} (4.5)^2 \right) = \frac{1}{10} \left(285 - 9(45) + 10(4.5)^2 \right)$$

$$= \frac{1}{10} (285 - 405 + 202.5) = \frac{82.5}{10} = 8.25 = \frac{33}{4}.$$

Notice that 202.5 is half of 405—like Nm^2 and $2Nm^2$ in equation (4), page 536.

I should have extended equation (4) to its best form:

$$\sigma^2 = E[(x - m)^2] = E[x^2] - m^2$$

That quickly gives $\frac{285}{10} - (4.5)^2 = 8.25 = $ same answer.
4 For numbers ending in 0, 1, 2, . . . , 9 the squares end in \(x = 0, 1, 4, 9, 6, 5, 6, 9, 4, 1 \). So the probabilities of \(x = 0 \) and 5 are \(p = \frac{1}{10} \) and the probabilities of \(x = 1, 4, 6, 9 \) are \(p = \frac{1}{5} \). The mean is
\[
 m = \sum p_i x_i = 0 + \frac{5}{10} + \frac{1}{5} (1 + 4 + 6 + 9) = 4.5 = \text{same as before.}
\]
The variance using the improvement of equation (4) is
\[
 \sigma^2 = \mathbb{E}[x^2] - m^2 = \frac{1}{10} 0^2 + \frac{1}{10} 5^2 + \frac{1}{5} (1^2 + 4^2 + 6^2 + 9^2) - m^2
 = 25 \frac{1}{10} + 134 \frac{1}{5} - 20.25 = 9.05
\]

5 For numbers from 1 to 1000, the first digit is \(x = 1 \) for 1000 and 100-199 and 10-19 and 1 \((112 \) times). The first digit is \(x = 2 \) for 200-299 and 20-29 and 2 \((111 \) times). The other first digits \(x = 3 \) to 9 also happen \((111 \) times). Total \((1000 \) times) is correct.

The average first digit is the mean, close to \(\frac{1}{9} (1 + 2 + \cdots + 9) = 5 \):
\[
 m = \sum p_i x_i = \frac{112}{1000} (1) + \frac{111}{1000} (2 + 3 + \cdots + 9) = \frac{112 + 111(44)}{1000} = 4.996 \approx 5.
\]
The variance is
\[
 \sigma^2 = \mathbb{E}[(x - m)^2] = \mathbb{E}[x^2] - m^2 = \frac{112}{1000} (1^2) + \frac{111}{1000} (2^2 + \cdots + 9^2) - m^2
 = \frac{112 + 111(284)}{1000} - m^2 \approx \frac{31635}{1000} - 5^2 = 6.635.
\]

6 The first digits of 157², 312², 696², and 602² are 2, 9, 4, 3. The sample mean is
\[
 \frac{1}{4} (2 + 9 + 4 + 3) = \frac{18}{4} = 4.5. \text{ The sample variance with } N - 1 = 3 \text{ is}
 S^2 = \frac{1}{3} \left[(-2.5)^2 + (4.5)^2 + (-5)^2 + (-1.5)^2 \right] = \frac{1}{3} \left[29 \right].
\]

7 This question is about the fast way to compute \(\sigma^2 \) using \(m^2 \). The mean \(m \) is probably already computed:
\[
 \sigma^2 = \sum p_i (x_i - m)^2 = \sum p_i (x_i^2 - 2mx_i + m^2)
 = \sum p_i x_i^2 - 2m \sum p_i x_i + m^2 \sum p_i
 = \sum p_i x_i^2 - 2m^2 + m^2 = \sum p_i x_i^2 - m^2 = \mathbb{E}[x^2] - m^2.
\]
Solutions to Exercises

8 For $N = 24$ samples, all equal to $x = 20$,
\[\mu = \frac{1}{N} \sum x_i = \frac{24}{24}(20) = 20 \quad \text{and} \quad S^2 = \frac{1}{N-1} \sum (x_i - \mu)^2 = 0 \]

For 12 samples of $x = 20$ and 12 samples of $x = 21$,
\[\mu = \frac{12(20) + 12(21)}{24} = 20.5 \quad \text{and} \quad S^2 = \frac{1}{N-1} \sum (x_i - \mu)^2 = \frac{1}{23} 24 \left(\frac{1}{2} \right)^2 = \frac{6}{23} \]

9 This question asks you to set up a random 0-1 generator and run it a million times to find the average $A_{1000000}$.

One way is to use MATLAB’s `rand` command with a uniform distribution between 0 and 1. Add $\frac{1}{2}$ to go between 0.5 and 1.5, then find the integer part (0 or 1). Using your computed average A_N (its mean is $m = \frac{1}{2}$ since 0 and 1 are equally likely for every sample) find the normalized variable X:
\[X = \frac{A_N - \frac{1}{2}}{2\sqrt{N}} = \frac{A_N - \frac{1}{2}}{2000} \quad \text{for} \quad N = \text{one million.} \]

10 The average number of heads in N fair coin flips is $m = N/2$. This is obvious—but how to derive it from probabilities p_0 to p_N of 0 to N heads? We have to compute
\[m = 0p_0 + 1p_1 + \cdots + Np_N \quad \text{with} \quad p_i = \frac{b_i}{2^N} = \frac{1}{2^N} \frac{N!}{i!(N-i)!} \]

A useful fact is $p_i = p_{N-i}$. The probability of i heads equals the probability of i tails.

If we take just those two terms in m, they give
\[ip_i + (N-i)p_{N-i} = ip_i + (N-i)p_i = Np_i \]

So we can compute m two ways and add:
\[m = 0p_0 + 1p_1 + \cdots + (N - 1)p_{N-1} + Np_N \]
\[m = Np_0 + (N - 1)p_1 + \cdots + 1p_{N-1} + 0p_0 \]
\[2m = Np_0 + Np_1 + \cdots + Np_{N-1} + Np_N \]
\[= N(p_0 + p_1 + \cdots + p_{N-1} + p_N) = N. \]

Then $m = N/2$. The average number of heads is $N/2$.
11 \(E[x^2] = E[(x-m)^2 + 2xm - m^2] \)
\[= E[(x-m)^2] + 2m E[x] - m^2 E[1] \]
\[= \sigma^2 + 2m^2 - m^2 = \sigma^2 + m^2 \]

12 The first step multiplies two independent 1-dimensional integrals (each one from \(-\infty\) to \(\infty\)) to produce a 2-dimensional integral over the whole plane:
\[2\pi \int_{-\infty}^{\infty} p(x) \, dx \int_{-\infty}^{\infty} p(y) \, dy = 2\pi \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x) p(y) \, dxdy = \int_{-\infty}^{\infty} e^{-x^2/2} e^{-y^2/2} \, dxdy.\]
The second step changes to polar coordinates \((x = r \cos \theta, y = r \sin \theta, dxdy = r \, dr \, d\theta, x^2 + y^2 = r^2\) with \(0 \leq \theta \leq 2\pi\) and \(0 \leq r \leq \infty\)). Notice \(-x^2/2 - y^2/2 = -r^2/2\):
\[\int_{\text{plane}} \int e^{-r^2/2} r \, dr \, d\theta = \int_{\theta=0}^{2\pi} \int_{r=0}^{\infty} e^{-r^2/2} r \, dr \, d\theta.\]
The \(r\) and \(\theta\) integrals give the answers 1 and \(2\pi\):
\[\int_{r=0}^{\infty} e^{-r^2/2} r \, dr = \left[-e^{-r^2/2}\right]_{r=0}^{\infty} = 1 \quad \int_{\theta=0}^{2\pi} 1 \, d\theta = 2\pi.\]
The trick was to get \(e^{-r^2/2} r \, dr\) (which is a perfect derivative of \(-e^{-r^2/2}\)) by combining \(e^{-x^2/2} \, dx\) and \(e^{-y^2/2} \, dy\) (which can \textit{not} be separately integrated from \(a\) to \(b\)).

\textbf{Problem Set 12.2, page 554}

1 (a) Mean \(m = E[x] = (0)(1-p) + (1)(p) = p\) when the probability of heads is \(p\). Here \(x = 0\) for tails and \(x = 1\) for heads. Notice that \(0^2 = 0\) and \(1^2 = 1\) so
\[E[x^2] = E[x] = p.\]
Variance \(\sigma^2 = E[x^2] - m^2 = p - p^2\)

(b) These are independent flips! So the \(N\) by \(N\) covariance matrix \(V\) is diagonal. The diagonal entries are the variances \(\sigma^2 = p-p^2\) for each flip. Then the rule \((16-17-18)\) gives the overall variance of the sum from \(N\) flips:
Solutions to Exercises

overall variance = [1 1 . . . 1] V [1]
= Nσ² = N(p - p²)

This is just saying: Add the variances for the N independent experiments. Here those N experiments just repeat one experiment.

2 I am just imitating equation (2) in the text. Now the experiments are numbered 3 and 5. They have means m₃ and m₅. The covariance σ₃₅ adds up joint probabilities pᵢⱼ times (distance 𝒙ᵢ – m₃) times (distance 𝒚ⱼ – m₅). Here 𝒙ᵢ and 𝒚ⱼ are outputs from experiments 3 and 5:

σ₃₅ = ∑ ∀ i,j pᵢⱼ (xᵢ – m₃) (yⱼ – m₅).

3 The 3 by 3 covariance matrix V will be a sum of rank one matrices Vᵢⱼₖ = UUᵀ multiplied by the joint probability pᵢⱼₖ of outputs xᵢ, yⱼ, zₖ. I am copying equation (12):

V = ∑ ∀ i, j, k ∑ pᵢⱼₖ UUᵀ

These matrices UUᵀ = column times row are positive semidefinite with rank 1 (unless U = 0). The sum V is positive definite unless the 3 experiments are dependent.

Notice that the means 𝔽, 𝔽, 𝔽 = m₁, m₂, m₃ have to be computed before the variances.

4 We are told that the 3 experiments are independent. Then the covariances are zero off the main diagonal of V. This covariance matrix only shows “covariances with itself” = “variances” σ¹², σ²², σ³² on the main diagonal.

V = [σ¹² 0 0
 0 σ²² 0
 0 0 σ³²].
Solutions to Exercises

5 The point is that some output \(X = x_i \) must occur. So the possibilities are \(Y = y_j \) and \(X = x_1 \), or \(Y = y_j \) and \(X = x_2 \), or \(Y = y_j \) and \(X = x_3 \) et cetera. The total probability of \(Y = y_j \) is the sum of the conditional probabilities that \(Y = y_j \) when \(X = x_i \).

Here is another way to say this law of total probability. When \(B_1, B_2, \ldots \) are separate disjoint outcomes that together account for all possible outcomes, then for any \(A \)

\[
\text{Prob} (A) = \sum_i \text{Prob} (A \cap B_i) = \sum_i \text{Prob} (A|B_i) \text{Prob} (B_i).
\]

6 \(\text{Prob} (A|B) = \text{conditional probability} \) of \(A \) given \(B \) satisfies this axiom:

\[
\text{Prob} (A \text{ and } B) = \text{Prob} (A|B) \text{Prob} (B).
\]

Reason: If both \(A \) and \(B \) occur, then \(B \) must occur—and knowing that \(B \) occurs, \(\text{Prob} (A|B) \) gives the probability that \(A \) also occurs.

This axiom is saying that \(p_{ij} = \text{Prob} (A|B) \text{ } p_i \)

where \(B \) is the event \(x = x_i \) which has \(\text{Prob} (B) = p_i \).

7 The joint probabilities \(p_{ij} = \text{Prob} (x = x_i \text{ and } y = y_j) \) are in the matrix \(P \):

\[
P = \begin{bmatrix}
0.1 & 0.3 \\
0.2 & 0.4
\end{bmatrix}
\]

with entries adding to 1.

Problem 6 says that \(\text{Prob} (Y = y_2 | X = x_1) = \frac{p_{12}}{p_{11} + p_{12}} = \frac{0.3}{0.1 + 0.3} = \frac{3}{4} \).

Problem 5 says that \(\text{Prob} (X = x_1) = p_{11} + p_{12} = 0.1 + 0.3 = 0.4 \).

8 This product rule of conditional probability is the axiom in Solution 12.2.6 above:

\[
\text{Prob} (A \text{ and } B) = \text{Prob} (A \text{ given } B) \text{ times } \text{Prob} (B).
\]
This discussion of Bayes’ Theorem is much too compressed! Let me reproduce three equations from Wolfram MathWorld. Here \(A \) and \(B \) are possible “sets” = “outcomes from an experiment” and the simple-looking identity (\(\ast \)) connects conditional and unconditional probabilities.

We know from 8 that

\[
\text{Prob} (A \text{ and } B) = \text{Prob} (A \text{ given } B) \times \text{Prob} (B)
\]

Reversing \(A \) and \(B \) gives

\[
\text{Prob} (A \text{ and } B) = \text{Prob} (B \text{ given } A) \times \text{Prob} (A)
\]

(\(\ast \)) Therefore

\[
\text{Prob} (B \text{ given } A) = \frac{\text{Prob} (A \text{ given } B) \times \text{Prob} (B)}{\text{Prob} (A)}
\]

MathWorld gives this extension to non-overlapping sets \(A_1, \ldots, A_n \) whose union is \(A \):

\[
\text{Prob} (A_i \text{ given } A) = \frac{\text{Prob} (A_i) \times \text{Prob} (A \text{ given } A_i)}{\sum_j \text{Prob} (A_j) \times \text{Prob} (A \text{ given } A_j)}
\]

Problem Set 12.3, page 560

1. The two equations from two measurements are

\[
\begin{align*}
x &= b_1 \\
x &= b_2
\end{align*}
\]

or

\[
\begin{bmatrix}
1 \\
1
\end{bmatrix}
\begin{bmatrix}
x
\end{bmatrix} =
\begin{bmatrix}
b_1 \\
b_2
\end{bmatrix}
\quad \text{or} \quad Ax = b.
\]

The covariance matrix \(V \) is diagonal since the measurements are independent:

\[
V =
\begin{bmatrix}
\sigma_1^2 & 0 \\
0 & \sigma_2^2
\end{bmatrix}.
\]

The weighted least squares equation is \(A^T V^{-1} A \hat{x} = A^T V^{-1} b \).

\[
\begin{align*}
A^T V^{-1} A &= \begin{bmatrix}
1 & 1
\end{bmatrix}
\begin{bmatrix}
1/\sigma_1^2 & 0 \\
0 & 1/\sigma_2^2
\end{bmatrix}
\begin{bmatrix}
1 \\
1
\end{bmatrix} = \frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2} \\
A^T V^{-1} b &= \begin{bmatrix}
1 & 1
\end{bmatrix}
\begin{bmatrix}
1/\sigma_1^2 & 0 \\
0 & 1/\sigma_2^2
\end{bmatrix}
\begin{bmatrix}
b_1 \\
b_2
\end{bmatrix} = \frac{b_1}{\sigma_1^2} + \frac{b_2}{\sigma_2^2}.
\end{align*}
\]

Then \(\hat{x} \) is the ratio of those numbers:

\[
\hat{x} = \frac{b_1/\sigma_1^2 + b_2/\sigma_2^2}{1/\sigma_1^2 + 1/\sigma_2^2}.
\]
The variance of that estimate \(\hat{x} \) should be written as in (13):

\[
E \left[(\hat{x} - x) (\hat{x} - x)^T \right] = (A^T V^{-1} A)^{-1} = \left(\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2} \right)^{-1}.
\]

2 (a) In the limit \(\sigma_2 \to 0 \) the ratio \(\hat{x} \) approaches \(b_2 \) because:

\[
(Multiply \ \hat{x} \ \text{above and below by } \sigma_1^2 \sigma_2^2) \quad \hat{x} = \frac{b_1 \sigma_2^2 + b_2 \sigma_1^2}{\sigma_1^2 + \sigma_2^2} \rightarrow \frac{b_2 \sigma_2^2}{\sigma_1^2} = b_2.
\]

The second equation \(x = b_2 \) is 100% accurate if its variance is \(\sigma_2 = 0 \).

(b) If \(\sigma_2 \to \infty \) then \(\frac{1}{\sigma_2^2} \to 0 \) and \(\hat{x} \to \frac{b_1}{\sigma_1^2} \frac{1}{\sigma_2^2} = b_1 \). We are getting no information from the totally unreliable measurement \(x = b_2 \).

3 The key fact of independence is in the equation \(p(x, y) = p(x) \ p(y) \). Then

\[
\int \int p(x, y) \ dx \ dy = \int \int p(x) \ p(y) \ dx \ dy = \int p(x) \ dx \int p(y) \ dy = (1) \ (1) = 1.
\]

\[
\int \int (x + y) \ p(x, y) \ dx \ dy = \int \int x \ p(x) \ p(y) \ dx \ dy + \int \int y \ p(x) \ p(y) \ dx \ dy
\]

\[
= \int x \ p(x) \ dx \int p(y) \ dy + \int p(x) \ dx \int y \ p(y) \ dy
\]

\[
= (m_x) (1) + (1) (m_y) = m_x + m_y.
\]

4 Continue Problem 3 to find variances \(\sigma_x^2 \) and \(\sigma_y^2 \) and to see covariance \(\sigma_{xy} = 0 \):

\[
\int \int (x - m_x)^2 \ p(x, y) \ dx \ dy = \int (x - m_x)^2 \ p(x) \ dx \int p(y) \ dy = \sigma_x^2
\]

\[
\int \int (x - m_x) \ (y - m_y) \ p(x, y) \ dx \ dy = \int (x - m_x) \ p(x) \ dx \int (y - m_y) \ p(y) \ dy = (0) \ (0).
\]

5 We are inverting a 2 by 2 matrix using

\[
V^{-1} = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}^{-1} = \frac{1}{\sigma_1^2 \sigma_2^2 - \sigma_{12}^2} \begin{bmatrix} \sigma_2^2 & -\sigma_{12} \\ -\sigma_{12} & \sigma_1^2 \end{bmatrix} = \frac{\rho}{\sigma_1 \sigma_2} \begin{bmatrix} \sigma_1^2 & -\rho \sigma_1 \sigma_2 \\ -\rho / \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}
\]

\[
\frac{1}{\sigma_1^2 \sigma_2^2 (1 - \rho^2)} \begin{bmatrix} \sigma_2^2 & -\sigma_{12} \\ -\sigma_{12} & \sigma_1^2 \end{bmatrix} = \frac{1}{1 - \rho^2} \begin{bmatrix} 1/\sigma_1^2 & -\rho / \sigma_1 \sigma_2 \\ -\rho / \sigma_1 \sigma_2 & 1/\sigma_2^2 \end{bmatrix}
\]
Solutions to Exercises

6. The right hand side of \(\hat{x}_{k+1}\) shows the gain factor \(1/(k+1)\):

\[
\hat{x}_{k+1} + \frac{1}{k+1} (b_{k+1} - \hat{x}_k) = b_1 + \cdots + b_k + \frac{1}{k+1} \left(b_{k+1} - \frac{b_1 + \cdots + b_k}{k} \right) = b_1 + \cdots + b_{k+1}
\]

Check that each number \(b_1, b_2, \ldots, b_k, b_{k+1}\) is correctly divided by \(k+1\):

\[
\frac{1}{k} - \frac{1}{k+1} = \frac{1}{k} \left(\frac{k+1}{k+1} - 1 \right) = \frac{1}{k+1}.
\]

7. We are considering the case when all the measurements \(b_1, b_2, \ldots, b_{k+1}\) have the same variance \(\sigma^2\). We know that the correct variance of their average is \(W_{k+1} = \sigma^2/(k+1)\).

We want to see how this answer comes from equation (18) when we have the correct \(W_k = \sigma^2/k\) from the previous step, and we update to \(W_{k+1}\):

(18) says that

\[
W_{k+1}^{-1} = W_k^{-1} + A_k^T V_{k+1}^{-1} A_k = \frac{k}{\sigma^2} + [1/\sigma^2] [1/\sigma^2] = \frac{k}{\sigma^2} + \frac{1}{\sigma^2} = \frac{k}{\sigma^2} + \frac{1}{\sigma^2} = \frac{k+1}{\sigma^2}.
\]

So \(W_{k+1} = \sigma^2/(k+1)\) is correct at the new step (and forever by induction).

8. The three equations have variances \(\sigma^2, s^2, \sigma^2\) and they have zero covariances. (This makes the step-by-step Kalman filter possible.) We can divide the equations by \(\sigma, s, \sigma\) to produce unit variances (which lead to ordinary unweighted least squares). We are given \(F = 1\):

\[
\begin{bmatrix}
1/\sigma & 0 \\
-1/s & 1/s \\
0 & 1/\sigma
\end{bmatrix}
\begin{bmatrix}
x_0 \\
x_1
\end{bmatrix}
= \begin{bmatrix}
b_0/\sigma \\
0 \\
b_1/\sigma
\end{bmatrix}
\]

is our \(Ax = b\).

The normal equation (now unweighted) is \(A^T A \hat{x} = A^T b\):

\[
\begin{bmatrix}
\frac{1}{\sigma^2} + \frac{1}{s^2} & \frac{1}{s^2} \\
\frac{1}{s^2} & \frac{1}{\sigma^2} + \frac{1}{s^2}
\end{bmatrix}
\begin{bmatrix}
\hat{x}_1 \\
\hat{x}_2
\end{bmatrix}
= \begin{bmatrix}
b_0/\sigma^2 \\
b_1/\sigma^2
\end{bmatrix}.
\]

The determinant of this \(A^T A\) is \(\det = \frac{1}{\sigma^4} + \frac{2}{\sigma^2 s^2}\). The solution is

\[
\hat{x}_1 = \frac{1}{\det} \left(\frac{b_0}{\sigma^4} + \frac{b_0}{\sigma^2 s^2} + \frac{b_1}{\sigma^2 s^2} \right) \quad \hat{x}_2 = \frac{1}{\det} \left(\frac{b_0}{\sigma^2 s^2} + \frac{b_1}{\sigma^2 s^2} + \frac{b_1}{\sigma^4} \right).
\]
9 With $A = I$ and $u^T = [1 \ 2 \ 3]$ we can use the direct formula for M^{-1}:

$$(I - uv^T)^{-1} = I + \frac{uv^T}{1 - v^T u} = I + \frac{1}{1 - 14} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 - \frac{1}{14} & \frac{2}{14} & \frac{3}{14} \\ \frac{2}{14} & 1 - \frac{4}{14} & \frac{6}{14} \\ \frac{3}{14} & \frac{6}{14} & 1 - \frac{9}{14} \end{bmatrix},$$

Multiply $b = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$ to get $y = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix} - \frac{16}{14} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 10 \\ -19 \\ 4 \end{bmatrix}$.

Instead of this formula for $(I = u v^T)^{-1}$, try steps 1 and 2:

Step 1 with $A = I$ gives $x = b$ and $z = u$.

Step 2 gives $y = b - \frac{v^T u}{14} u = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix} - \frac{16}{14} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ as before.

10 We are asked to check that $M y = b$ using the update formula. Start with

$$M y = (A - uv^T) \left(x + \frac{v^T x}{c} z \right)$$

$$= Ax - u (v^T x) + \frac{v^T x}{c} Az - \frac{u (v^T z)}{c} \left(v^T x \right)$$

Since $Ax = b$ we hope the other 3 terms combine to give zero when $Az = u$

$$uv^T x \left[-1 + \frac{1}{c} - \frac{v^T z}{c} \right] = uv^T x \left[-c + 1 - v^T z \right] = 0$$

from the formula for c.

11 Multiply **columns times rows** to see that the new v changes $A^T A$ to

$$\begin{bmatrix} A^T & v \\ v^T \end{bmatrix} = A^T A + vv^T$$

So adding the new row to A (and of course the new column to A^T) has increased $A^T A$ by the rank one matrix vv^T.
The book is ending with matrix multiplication! We could allow changes of rank r:

When A changes to $M = A - UW^{-1}V$, its inverse changes to

$$M^{-1} = A^{-1} + A^{-1}U(W - VA^{-1}U)^{-1}VA^{-1}.$$

This change has rank r when $W_{r \times r}$ and $V_{r \times n}$ and $U_{n \times r}$ all have rank r.