Chapter 2: The Transpose of a Derivative

Will you allow me a little calculus? This is really linear algebra for functions \(x(t) \). The matrix changes to a derivative so \(A = \frac{d}{dt} \). To find the transpose of this unusual \(A \) we need to define the inner product between two functions \(x(t) \) and \(y(t) \).

The inner product changes from the sum of \(x_k y_k \) to the integral of \(x(t) y(t) \).

\[
\text{Inner product of functions} \quad x^T y = (x, y) = \int_{-\infty}^{\infty} x(t) y(t) \, dt
\]

The transpose of a matrix has \((Ax)^T y = x^T (A^T y) \). The “adjoint” of \(A = \frac{d}{dt} \) has

\[
(Ax, y) = \int_{-\infty}^{\infty} \frac{dx}{dt} y(t) \, dt = \int_{-\infty}^{\infty} x(t) \left(-\frac{dy}{dt}\right) \, dt = (x, A^T y)
\]

I hope you recognize integration by parts. The derivative moves from the first function \(x(t) \) to the second function \(y(t) \). During that move, a minus sign appears. This tells us that the adjoint (transpose) of the derivative is minus the derivative.

The derivative is antisymmetric: \(A = \frac{d}{dt} \) and \(A^T = -\frac{d}{dt} \). Symmetric matrices have \(S^T = S \), antisymmetric matrices have \(A^T = -A \). \(S = (d/dt)^2 \) is symmetric:

\[
A = \begin{bmatrix}
 0 & 1 & 0 & 0 \\
 -1 & 0 & 1 & 0 \\
 0 & -1 & 0 & 1 \\
 0 & 0 & -1 & 0
\end{bmatrix}
\]

transposes to

\[
A^T = \begin{bmatrix}
 0 & -1 & 0 & 0 \\
 1 & 0 & -1 & 0 \\
 0 & 1 & 0 & -1 \\
 0 & 0 & 1 & 0
\end{bmatrix} = -A.
\]

And a forward difference matrix transposes to a backward difference matrix, multiplied by \(-1\). In differential equations, the second derivative (acceleration) is symmetric. The first derivative (damping proportional to velocity) is antisymmetric.