The Functions of Deep Learning

By Gilbert Strang

Suppose we draw one of the digits 0, 1, ..., 9. How does a human recognize which digit it is? That neuroscience question is not answered here. How can a computer recognize which digit it is? This is a machine learning question. Probably both answers begin with the same idea: learn from examples.

So we start with M different images (the training set). An image is a set of p small pixels — or a vector $v=(v_1,\ldots,v_p)$. The component v_i tells us the "grayscale" of the ith pixel in the image: how dark or light it is. We now have M images, each with p features: M vectors v in p-dimensional space. For every v in that training set, we know the digit it represents.

In a way, we know a function. We have M inputs in \mathbb{R}^p, each with an output from 0 to 9. But we don't have a "rule." We are helpless with a new input. Machine learning proposes to create a rule that succeeds on (most of) the training images. But "succeed" means much more than that: the rule should give the correct digit for a much larger set of images (the test set). An image is a set of M pixels - or a vector $v=(v_1,\ldots,v_M)$, each with an output from 0 to 9.

Linear finite elements start with a triangular mesh. But specifying many individual nodes in \mathbb{R}^p is expensive. It will be better if those nodes are the intersections of a smaller number of lines (or hyperplanes). Please note that a regular grid is too simple.

Figure 1 is a first construction of a piecewise linear function of the data vector v. Choose a matrix A and vector b. Then set to 0 (this is the nonlinear step) all negative components of $Av+b$. Then multiply by a matrix C to produce the output $w=F(v)=C(Av+b)_+$. That vector $(Av+b)_+$ forms a "hidden layer" between the input v and the output w.

The nonlinear function called ReLU $x_+=\max(x,0)$ was originally smoothed into a logistic curve like $1/(1+e^{-x})$. It was reasonable to think that continuous derivatives would help in optimizing the weights A, b, C. That proved to be wrong.

The graph of each component of $(Av+b)_+$ has two half-planes (one is flat, from the 0s where $Av+b$ is negative). If A is q by p, the input space \mathbb{R}^p is sliced by q hyperplanes into r pieces. We can count those pieces! This measures the "expressivity" of the overall function $F(v)$.

The formula from combinatorics is

$$r(q,p) = \binom{q}{0} + \binom{q}{1} + \cdots + \binom{q}{p}.$$

This number gives an impression of the graph of F. But our function is not yet sufficiently expressive, and one more idea is needed.

Here is the indispensable ingredient in the learning function F. The best way to create complex functions from simple functions is by composition. Each F_i is a linear (or affine) followed by the nonlinear ReLU $x_+=\max(x,0)$, which is convenient-closed under addition and maximization and composition. The magic is that the learning function $F(A, b, v)$ gives accurate results on images v that F has never seen before.

This article is published with very light edits.

Gilbert Strang teaches linear algebra at the Massachusetts Institute of Technology. A description of the January 2019 textbook Linear Algebra and Learning from Data is available at math.mit.edu/learningfromdata.