
Chapter 5

Vector Spaces and Subspaces

5.1 The Column Space of a Matrix

To a newcomer, matrix calculations involve a lot of numbers.To you, they involve vectors.
The columns ofAv andAB are linear combinations ofn vectors—the columns ofA. This
chapter moves from numbers and vectors to a third level of understanding (the highest
level). Instead of individual columns, we look at “spaces” of vectors. Without seeing
vector spacesand theirsubspaces, you haven’t understood everything aboutAv D b.

Since this chapter goes a little deeper, it may seem a little harder. That is natural. We
are looking inside the calculations, to find the mathematics. The author’s job is to make it
clear. Section 5.5 will present the “Fundamental Theorem of Linear Algebra.”

We begin with the most important vector spaces. They are denoted byR1, R2, R3,
R4, : : :. Each spaceRn consists of a whole collection of vectors.R5 contains all column
vectors with five components. This is called “5-dimensionalspace.”

DEFINITION The spaceRn consists of all column vectorsv with n components.

The components ofv are real numbers, which is the reason for the letterR. When the
n components are complex numbers,v lies in the spaceCn.

The vector spaceR2 is represented by the usualxy plane. Each vectorv in R2 has two
components. The word “space” asks us to think of all those vectors—the whole plane.
Each vector gives thex andy coordinates of a point in the plane :v D .x; y/.

Similarly the vectors inR3 correspond to points.x; y; z/ in three-dimensional space.
The one-dimensional spaceR1 is a line (like thex axis). As before, we print vectors as a
column between brackets, or along a line using commas and parentheses :

�
4

�

�
is in R2; .1; 1; 0; 1; 1/ is in R5;

�
1C i

1 � i

�
is in C2:

The great thing about linear algebra is that it deals easily with five-dimensional space.
We don’t draw the vectors, we just need the five numbers (orn numbers).
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252 Chapter 5. Vector Spaces and Subspaces

To multiplyv by 7, multiply every component by 7. Here 7 is a “scalar.” To add vectors
in R5, add them a component at a time : five additions. The two essential vector operations
go oninside the vector space, and they producelinear combinations:

We can add any vectors inRn, and we can multiply any vectorv by any scalarc.

“Inside the vector space” means thatthe result stays in the space: This is crucial.
If v is in R4 with components1; 0; 0; 1, then2v is the vector inR4 with components

2; 0; 0; 2. (In this case 2 is the scalar.) A whole series of properties can be verified inRn.
The commutative law isv C w D w C v; the distributive law isc.v C w/ D cv C cw.
Every vector space has a unique “zero vector” satisfying0Cv D v. Those are three of the
eight conditions listed in the Chapter 5 Notes.

These eight conditions are required of every vector space. There are vectors other than
column vectors, and there are vector spaces other thanRn. All vector spaces have to obey
the eight reasonable rules.

A real vector space is a set of“vectors” together with rules for vector addition and
multiplication by real numbers. The addition and the multiplication must produce vectors
that are in the space. And the eight conditions must be satisfied (which is usually no
problem). You need to see three vector spaces other thanRn :

M
Y
Z

The vector space ofall real 2 by2 matrices.
The vector space ofall solutionsy.t/ to Ay00 C By0 C Cy D 0.
The vector space that consists only of azero vector.

In M the “vectors” are really matrices. InY the vectors are functions oft , like y D est .
In Z the only addition is0C 0 D 0. In each space we can add : matrices to matrices,
functions to functions, zero vector to zero vector. We can multiply a matrix by 4 or
a function by4 or the zero vector by4. The result is still inM or Y or Z.

The spaceR4 is four-dimensional, and so is the spaceM of 2 by 2 matrices. Vectors
in those spaces are determined by four numbers. The solutionspaceY is two-dimensional,
because second order differential equations have two independent solutions. Section 5.4
will pin down those key words,independence of vectorsanddimension of a space.

The spaceZ is zero-dimensional (by any reasonable definition of dimension). It is the
smallest possible vector space. We hesitate to call itR0, which means no components—
you might think there was no vector.The vector spaceZ contains exactly one vector.
No space can do without that zero vector. Each space has its own zero vector—the
zero matrix, the zero function, the vector.0; 0; 0/ in R3.

Subspaces

At different times, we will ask you to think of matrices and functions as vectors. But at all
times, the vectors that we need most are ordinary column vectors. They are vectors with
n components—butmaybe not allof the vectors withn components. There are important
vector spacesinsideRn. Those aresubspacesof Rn.
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Figure 5.1: “4-dimensional” matrix spaceM . 3 subspaces ofR3 : planeP, line L , pointZ.

Start with the usual three-dimensional spaceR3. Choose a plane through the origin
.0; 0; 0/. That plane is a vector space in its own right.If we add two vectors in the plane,
their sum is in the plane. If we multiply an in-plane vector by2 or�5, it is still in the plane.
A plane in three-dimensional space is notR2 (even if it looks likeR2/. The vectors have
three components and they belong toR3. The planeP is a vector spaceinsideR3.

This illustrates one of the most fundamental ideas in linearalgebra. The plane going
through.0; 0; 0/ is asubspaceof the full vector spaceR3.

DEFINITION A subspaceof a vector space is a set of vectors (including0) that satisfies
two requirements : If v and w are vectors in the subspace andc is any scalar, then

(i) v Cw is in the subspace and (ii ) cv is in the subspace.

In other words, the set of vectors is “closed” under additionv C w and multiplicationcv

(anddw). Those operations leave us in the subspace. We can also subtract, because�w is
in the subspace and its sum withv is v � w. In short,all linear combinationscv C dw

stay in the subspace.
First fact :Every subspace contains the zero vector. The plane inR3 has to go through

.0; 0; 0/. We mention this separately, for extra emphasis, but it follows directly from rule (ii ).
Choosec D 0, and the rule requires0v to be in the subspace.

Planes that don’t contain the origin fail those tests. Whenv is on such a plane,�v

and0v arenot on the plane. A plane that misses the origin is not a subspace.

Lines through the origin are also subspaces. When we multiply by 5, or add two
vectors on the line, we stay on the line. But the line must go through.0; 0; 0/.

Another subspace is all ofR3. The whole space is a subspace (of itself). That is a
fourth subspace in the figure. Here is a list of all the possible subspaces ofR3 :

.L/ Any line through.0; 0; 0/ .R3/ The whole space

.P/ Any plane through.0; 0; 0/ .Z/ The single vector.0; 0; 0/
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If we try to keep onlypart of a plane or line, the requirements for a subspace don’t hold.
Look at these examples inR2.

Example 1 Keep only the vectors.x; y/ whose components are positive or zero (this is
a quarter-plane). The vector.2; 3/ is included but.�2;�3/ is not. So rule (ii ) is violated
when we try to multiply byc D �1. The quarter-plane is not a subspace.

Example 2 Include also the vectors whose components are both negative. Now we have
two quarter-planes. Requirement (ii ) is satisfied; we can multiply by anyc. But rule (i)
now fails. The sum ofv D .2; 3/ andw D .�3;�2/ is .�1; 1/, which is outside the
quarter-planes.Two quarter-planes don’t make a subspace.

Rules (i) and (ii ) involve vector additionv C w and multiplication by scalars likec
andd . The rules can be combined into a single requirement—the rule for subspaces:

A subspace containingv andw must contain all linear combinationscv C dw.

Example 3 Inside the vector spaceM of all 2 by 2 matrices, here are two subspaces :

.U/ All upper triangular matrices

�
a b

0 d

�
.D/ All diagonal matrices

�
a 0

0 d

�
:

Add any two matrices inU, and the sum is inU. Add diagonal matrices, and the sum is
diagonal. In this caseD is also a subspace ofU ! The zero matrix alone is also a subspace,
whena, b, andd all equal zero.

For a smaller subspace of diagonal matrices, we could requirea D d . The matrices are
multiples of the identity matrixI . TheseaI form a “line of matrices” inM andU andD.

Is the matrixI a subspace by itself ? Certainly not. Only the zero matrix is.Your mind
will invent more subspaces of 2 by 2 matrices—write them downfor Problem 6.

The Column Space of A

The most important subspaces are tied directly to a matrixA. We are trying to solve
Av D b. If A is not invertible, the system is solvable for someb and not solvable for
otherb. We want to describe the good right sidesb—the vectors thatcanbe written asA
timesv. Thoseb0s form the “column space” of A.

Remember thatAv is a combination of the columns ofA. To get every possibleb, we
use every possiblev. Start with the columns ofA, andtake all their linear combinations.
This produces the column space ofA. It contains not just then columns ofA !

DEFINITION The column space consists of all combinations of the columns:

The combinations are all possible vectorsAv. They fill the column spaceC .A/.
This column space is crucial to the whole book, and here is why. To solveAv D b is

to expressb as a combination of the columns. The right sideb has to be in the column
spaceproduced byA on the left side. Ifb is not inC .A/, Av D b has no solution.
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The systemAv D b is solvable if and only ifb is in the column space ofA.

Whenb is in the column space, it is a combination of the columns. Thecoefficients in that
combination give us a solutionv to the systemAv D b.

SupposeA is an m by n matrix. Its columns havem components (notn/. So the
columns belong toRm. The column space ofA is a subspace ofRm (not Rn ) . The set
of all column combinationsAx satisfies rules (i) and (ii ) for a subspace : When we add
linear combinations or multiply by scalars, we still produce combinations of the columns.
The word “subspace” is always justifiedby taking all linear combinations.

Here is a 3 by 2 matrixA, whose column space is a subspace ofR3. The column space
of A is a plane in Figure 5.2.

b

2
4

0

3

3

3
5

2
4

1

4

2

3
5

2
4

0

0

0

3
5

A D

2
4

1 0

4 3

2 3

3
5

b D v1

2
4

1

4

2

3
5C v2

2
4

0

3

3

3
5

PlaneD C.A/ D all vectorsAv

Figure 5.2: The column spaceC .A/ is a plane containing the two columns ofA.
Av D b is solvable whenb is on that plane. Thenb is a combination of the columns.

We drew one particularb (a combination of the columns). Thisb D Av lies on the plane.
The plane has zero thickness, so most right sidesb in R3 arenot in the column space.
For mostb there is no solution to our 3 equations in2 unknowns.

Of course.0; 0; 0/ is in the column space. The plane passes through the origin. There
is certainly a solution toAv D 0. That solution, always available, isv D .

To repeat, the attainable right sidesb are exactly the vectors in the column space. One
possibility is the first column itself—takev1 D 1 andv2 D 0. Another combination is the
second column—takev1 D 0 andv2 D 1. The new level of understanding is to seeall
combinations—the whole subspace is generated by those two columns.

Notation The column space ofA is denoted byC .A/. Start with the columns and take all
their linear combinations. We might get the wholeRm or only a small subspace.
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Important Instead of columns inRm, we could start with any set of vectors in a vector
spaceV. To get a subspaceSSof V, we takeall combinationsof the vectors in that set :

S D set of vectorss in V (S is probablynot a subspace)
SS D all combinations of vectors inS (SSis a subspace)

SSD all c1s1 C � � � C cN sN D the subspace of V“spanned” byS

WhenS is the set of columns,SS is the column space. When there is only one nonzero
vectorv in S, the subspaceSS is the line throughv. AlwaysSS is the smallest subspace
containingS. This is a fundamental way to create subspaces and we will comeback to it.

The subspace SS is the “span” of S, containing all combinations of vectors in S.

Example 4 Describe the column spaces (they are subspaces ofR2) for these matrices :

I D
�

1 0

0 1

�
and A D

�
1 2

2 4

�
and B D

�
1 2 3

0 0 4

�
:

Solution The column space ofI is thewhole spaceR2. Every vector is a combination of
the columns ofI . In vector space language,C .I / equalsR2.

The column space ofA is only a line. The second column.2; 4/ is a multiple of the first
column.1; 2/. Those vectors are different, but our eye is on vectorspaces. The column
space contains.1; 2/ and.2; 4/ and all other vectors.c; 2c/ along that line. The equation
Av D b is only solvable whenb is on the line.

For the third matrix (with three columns) the column spaceC .B/ is all of R2. Everyb

is attainable. The vectorb D .5; 4/ is column 2 plus column 3, sov can be.0; 1; 1/. The
same vector.5; 4/ is also 2(column 1)C column 3, so another possiblev is .2; 0; 1/. This
matrix has the same column space asI—anyb is allowed. But nowv has extra components
andAv D b has more solutions—more combinations that giveb.

The next section creates thenullspaceN .A/, to describe all the solutions ofAv D 0.
This section created the column spaceC .A/, to describe all the attainable right sidesb.

REVIEW OF THE KEY IDEAS

1. Rn contains all column vectors withn real components.

2. M (2 by 2 matrices) andY (functions) andZ (zero vector alone) are vector spaces.

3. A subspace containingv andw must contain all their combinationscv C dw.

4. The combinations of the columns ofA form the column spaceC .A/. Then the
column space is “spanned” by the columns.
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5. Av D b has a solution exactly whenb is in the column space ofA.

WORKED EXAMPLES

5.1 A We are given three different vectorsb1; b2; b3. Construct a matrix so that the
equationsAv D b1 andAv D b2 are solvable, butAv D b3 is not solvable. How can you
decide if this is possible ? How could you constructA ?

Solution We want to haveb1 andb2 in the column space ofA. ThenAv D b1 and
Av D b2 will be solvable.The quickest way is to makeb1 andb2 the two columns ofA.
Then the solutions arev D .1; 0/ andv D .0; 1/.

Also, we don’t wantAv D b3 to be solvable. So don’t make the column space any
larger ! Keeping only the columnsb1 andb2, the question is :Do we already haveb3 ?

Is Av D
�

b1 b2

� �
v1

v2

�
D b3 solvable ? Isb3 a combination ofb1 andb2 ?

If the answer isno, we have the desired matrixA. If b3 is a combination ofb1 andb2,
then it isnot possibleto constructA. The column spaceC .A/ will have to containb3.

5:1 B Describe a subspaceS of each vector spaceV, and then a subspaceSSof S.

V3 D all combinations of.1; 1; 0; 0/ and.1; 1; 1; 0/ and.1; 1; 1; 1/

V2 D all vectorsv perpendicular tou D .1; 2; 1/; sou � v D 0

V4 D all solutionsy.x/ to the equationd 4y=dx4 D 0

Describe eachV two ways : (1)All combinations of. . . . (2)All solutions of. . . .

Solution V3 starts with three vectors. A subspaceScomes from all combinations of the
first two vectors.1; 1; 0; 0/ and.1; 1; 1; 0/. A subspaceSSof S comes from all multiples
.c; c; 0; 0/ of the first vector. So many possibilities.

A subspaceS of V2 is the line through.1;�1; 1/. This line is perpendicular tou.
The zero vectorz D .0; 0; 0/ is in S. The smallest subspaceSSis Z.

V4 contains all cubic polynomialsy D a C bx C cx2 C dx3, with d 4y=dx4 D 0.
The quadratic polynomials (without anx3 term) give a subspaceS. The linear polynomials
are one choice ofSS. The constantsy D a could beSSS.

In all three parts we could takeSD V itself, andSSD the zero subspaceZ.
EachV can be described asall combinations of. . . . and asall solutions of. . . . :

V3 D all combinations of the3 vectors V3 D all solutions ofv1 � v2 D 0:

V2 D all combinations of.1; 0;�1/ and.1;�1; 1/ V2 D all solutions ofu � v D 0:

V4 D all combinations of1; x; x2; x3 V4 D all solutions tod 4y=dx4 D 0:
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Problem Set 5.1

Questions 1–10 are about the “subspace requirements” :v C w and cv (and then all
linear combinationscv C dw) stay in the subspace.

1 One requirement can be met while the other fails. Show this byfinding

(a) A set of vectors inR2 for whichvCw stays in the set but1
2
v may be outside.

(b) A set of vectors inR2 (other than two quarter-planes) for which everycv stays
in the set butvCw may be outside.

2 Which of the following subsets ofR3 are actually subspaces ?

(a) The plane of vectors.b1; b2; b3/ with b1 D b2.

(b) The plane of vectors withb1 D 1.

(c) The vectors withb1b2b3 D 0.

(d) All linear combinations ofv D .1; 4; 0/ andw D .2; 2; 2/.

(e) All vectors that satisfyb1 C b2 C b3 D 0.

(f) All vectors with b1 � b2 � b3.

3 Describe the smallest subspace of the matrix spaceM that contains

(a)

�
1 0

0 0

�
and

�
0 1

0 0

�
(b)

�
1 1

0 0

�
(c)

�
1 0

0 0

�
and

�
1 0

0 1

�
.

4 Let P be the plane inR3 with equationxC y � 2z D 4. The origin.0; 0; 0/ is not in
P ! Find two vectors inP and check that their sum is not inP.

5 Let P0 be the plane through.0; 0; 0/ parallel to the previous planeP. What is the
equation forP0 ? Find two vectors inP0 and check that their sum is inP0.

6 The subspaces ofR3 are planes, lines,R3 itself, orZ containing only.0; 0; 0/.

(a) Describe the three types of subspaces ofR2.

(b) Describe all subspaces ofD, the space of2 by 2 diagonal matrices.

7 (a) The intersection of two planes through.0; 0; 0/ is probably a but it could
be a . It can’t beZ !

(b) The intersection of a plane through.0; 0; 0/ with a line through.0; 0; 0/ is
probably a but it could be a .

(c) If S and T are subspaces ofR5, prove that their intersectionS \ T is a
subspace ofR5. HereS\ T consists of the vectors that lie in both subspaces.
Check the requirements onvCw andcv.

8 SupposeP is a plane through.0; 0; 0/ andL is a line through.0; 0; 0/. The smallest
vector spacePC L containing bothP andL is either or .
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9 (a) Show that the set ofinvertiblematrices inM is not a subspace.

(b) Show that the set ofsingularmatrices inM is not a subspace.

10 True or false (check addition in each case by an example) :

(a) The symmetric matrices inM (with AT D A/ form a subspace.

(b) The skew-symmetric matrices inM (with AT D �A/ form a subspace.

(c) The unsymmetric matrices inM (with AT ¤ A/ form a subspace.

Questions 11–19 are about column spacesC .A/ and the equationAv D b.

11 Describe the column spaces (lines or planes) of these particular matrices :

A D

2
4

1 2

0 0

0 0

3
5 B D

2
4

1 0

0 2

0 0

3
5 C D

2
4

1 0

2 0

0 0

3
5 :

12 For which right sides (find a condition onb1; b2; b3) are these systems solvable ?

(a)

2
4

1 4 2

2 8 4

�1 �4 �2

3
5
2
4

v1

v2

v3

3
5 D

2
4

b1

b2

b3

3
5 (b)

2
4

1 4

2 9

�1 �4

3
5
�

v1

v2

�
D

2
4

b1

b2

b3

3
5

13 Adding row 1 ofA to row 2 producesB. Adding column 1 to column 2 producesC .
Which matrices have the same column space ? Which have the same row space?

A D
�

1 3

2 6

�
and B D

�
1 3

3 9

�
and C D

�
1 4

2 8

�
:

14 For which vectors.b1; b2; b3/ do these systems have a solution ?
2
4

1 1 1

0 1 1

0 0 1

3
5
2
4

x1

x2

x3

3
5 D

2
4

b1

b2

b3

3
5 and

2
4

1 1 1

0 1 1

0 0 0

3
5
2
4

x1

x2

x3

3
5 D

2
4

b1

b2

b3

3
5

and

2
4

1 1 1

0 0 1

0 0 1

3
5
2
4

x1

x2

x3

3
5 D

2
4

b1

b2

b3

3
5 :

15 (Recommended) If we add an extra columnb to a matrixA, then the column space
gets larger unless . Give an example where the column space gets larger
and an example where it doesn’t. Why isAv D b solvable exactly when the
column spacedoesn’tget larger ? Then it is the same forA and

�
A b

�
.

16 The columns ofAB are combinations of the columns ofA. This means :The
column space ofAB is contained in(possibly equal to)the column space ofA.
Give an example where the column spaces ofA andAB are not equal.
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17 SupposeAv D b andAw D b� are both solvable. ThenAz D bC b� is solvable.
What isz ? This translates into : Ifb andb� are in the column spaceC .A/, then
bC b� is also inC .A/.

18 If A is any 5 by 5 invertible matrix, then its column space is . Why ?

19 True or false (with a counterexample if false) :

(a) The vectorsb that are not in the column spaceC .A/ form a subspace.

(b) If C .A/ contains only the zero vector, thenA is the zero matrix.

(c) The column space of2A equals the column space ofA.

(d) The column space ofA� I equals the column space ofA (test this).

20 Construct a 3 by 3 matrix whose column space contains.1; 1; 0/ and.1; 0; 1/ but not
.1; 1; 1/. Construct a3 by 3 matrix whose column space is only a line.

21 If the 9 by 12 systemAv D b is solvable for everyb, thenC .A/ must be .

Challenge Problems

22 SupposeSandT are two subspaces of a vector spaceV. Thesum SCT contains all
sumssC t of a vectors in S and a vectort in T. ThenSC T is a vector space.

If S and T are lines inRm, what is the difference betweenSC T and S [ T ?
That union contains all vectors fromS and all vectors fromT. Explain this state-
ment :The span ofS[ T is SC T.

23 If S is the column space ofA andT is C .B/, thenSC T is the column space of
what matrixM ? The columns ofA andB andM are all in Rm. (I don’t think
AC B is always a correctM .)

24 Show that the matricesA and
�

A AB
�

(this has extra columns) have the same
column space. But find a square matrix withC .A2/ smaller thanC .A/.

25 An n by n matrix hasC .A/ D Rn exactly whenA is an matrix.




