Chapter 5

Vector Spaces and Subspaces

5.1 The Column Space of a Matrix

To a newcomer, matrix calculations involve a lot of numb@msyou, they involve vectors.
The columns ofAv and A B are linear combinations af vectors—the columns of. This
chapter moves from numbers and vectors to a third level otrstdnding (the highest
level). Instead of individual columns, we look at “space$’vectors. Without seeing
vector spaceand theirsubspacesyou haven't understood everything abolit = b.

Since this chapter goes a little deeper, it may seem a ligitddr. That is natural. We
are looking inside the calculations, to find the mathemaifite author’s job is to make it
clear. Section 5.5 will present th&tindamental Theorem of Linear Algebra

We begin with the most important vector spaces. They aretddruyR', R?, R?,
R*, .. .. Each spac®” consists of a whole collection of vecto®’ contains all column
vectors with five components. This is called “5-dimensispace.”

DEFINITION The spaceR” consists of all column vectors with n components.

The components ob are real numbers, which is the reason for the leRerWhen the
n components are complex numbardies in the spac€”.

The vector spac®? is represented by the usuap plane. Each vectos in R? has two
components. The wordspacé asks us to think of all those vectors—the whole plane.
Each vector gives the andy coordinates of a point in the plane:= (x, y).

Similarly the vectors irR3 correspond to pointéx, y, z) in three-dimensional space.
The one-dimensional spaé¥ is a line (like thex axis). As before, we print vectors as a
column between brackets, or along a line using commas araiberses :

. f} is in C2.

4 . . 2 . . 5
[n] isinR*, (1,1,0,1,1)isinR>, |:1_l

The great thing about linear algebra is that it deals easitl five-dimensional space.
We don’t draw the vectors, we just need the five numbers fmumbers).
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To multiply v by 7, multiply every componentby 7. Here 7 is a “scalar.” Td adctors
in R%, add them a component at a time : five additions. The two dasgattor operations
go oninside the vector spacand they producknear combinations

We can add any vectors iR”, and we can multiply any vectoe by any scalarc.

“Inside the vector space” means tlila¢ result stays in the spaceThis is crucial.

If v is in R* with componentd, 0,0, 1, then2w is the vector inR* with components
2,0,0,2. (In this case 2 is the scalar.) A whole series of proper@éeshe verified irR”.
The commutative law i® + w = w + v; the distributive law is(v + w) = cv + cw.
Every vector space has a unique “zero vector” satisf@irgv = v. Those are three of the
eight conditions listed in the Chapter 5 Notes.

These eight conditions are required of every vector spalsereTare vectors other than
column vectors, and there are vector spaces otherRAar\ll vector spaces have to obey
the eight reasonable rules.

A real vector space is a set dfectors” together with rules for vector addition and
multiplication by real numbersThe addition and the multiplication must produce vectors
that are in the space. And the eight conditions must be satigfivhich is usually no
problem). You need to see three vector spaces otheRhan

M The vector space d@ll real 2 by 2 matrices.
Y The vector space @il solutions y(¢) to Ay” + By’ + Cy = 0.
VA The vector space that consists only afeao vector

In M the “vectors” are really matrices. M the vectors are functions of like y = e%*.

In Z the only addition i0 + 0 = 0. In each space we can add: matrices to matrices,
functions to functions, zero vector to zero vector. We caritiply a matrix by 4 or

a function by4 or the zero vector by. The result is still infM or Y or Z.

The spaceR* is four-dimensional, and so is the spadeof 2 by 2 matrices. Vectors
in those spaces are determined by four numbers. The sokgExeY is two-dimensional,
because second order differential equations have two et solutions. Section 5.4
will pin down those key wordsndependence of vectoasiddimension of a space

The space is zero-dimensional (by any reasonable definition of dir@)s It is the
smallest possible vector space. We hesitate to c& jtwhich means no components—
you might think there was no vectoiThe vector spac& contains exactly one vector
No space can do without that zero vector. Each space has itszewo vector—the
zero matrix, the zero function, the vect@, 0, 0) in R3.

Subspaces

At different times, we will ask you to think of matrices andhflions as vectors. But at all
times, the vectors that we need most are ordinary columrokgcThey are vectors with
n components—bunaybe not albf the vectors withh components. There are important
vector spacemside R”. Those arsubspacesf R".
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{“ ﬂ = typical vector in M
C

X

Figure 5.1: 4-dimensional” matrix spackl. 3 subspaces d®3 : planeP, line L, pointZ.

Start with the usual three-dimensional sp&® Choose a plane through the origin
(0,0,0). That plane is a vector space in its own righif we add two vectors in the plane,
their sum is in the plane. If we multiply an in-plane vectoryr —5, it is still in the plane.
A plane in three-dimensional space is it (even if it looks likeR?). The vectors have
three components and they belond& The planeP is a vector spacimside R3.

This illustrates one of the most fundamental ideas in lirdgebra. The plane going
through(0, 0, 0) is asubspacef the full vector spac®3.

DEFINITION A subspacef a vector space is a set of vectors (includdghat satisfies
two requirements: If v and w are vectors in the subspace andis any scalar, then

(i) v+ wisinthe subspace and (i) cwvisinthe subspace.

In other words, the set of vectors is “closed” under additoft w and multiplicationcv
(andd w). Those operations leave us in the subspace. We can alsadibecausew is
in the subspace and its sum withis v — w. In short,all linear combinationscv + dw
stay in the subspace

First fact : Every subspace contains the zero vect®he plane irR? has to go through
(0,0, 0). We mention this separately, for extra emphasis, but ibfedl directly from ruleif).
Choosec = 0, and the rule require®v to be in the subspace.

Planes that don’t contain the origin fail those tests. Whdn on such a plane;v
andOwv arenoton the plane. A plane that misses the origin is not a subspace.

Lines through the origin are also subspacesVhen we multiply by 5, or add two
vectors on the line, we stay on the line. But the line must gough(0, 0, 0).

Another subspace is all &3. The whole space is a subspacé ifself). That is a
fourth subspace in the figure. Here is a list of all the posssbbspaces &> :

(L) Any line through(0, 0, 0) (R?) The whole space
(P) Any plane through0, 0, 0) (Z) The single vecto(0, 0, 0)
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If we try to keep onlypart of a plane or line, the requirements for a subspace don’t hold
Look at these examples R?.

Example 1  Keep only the vectoréx, y) whose components are positive or zero (this is
a quarter-plane). The vect€t, 3) is included but(—2, —3) is not. So rulei{) is violated
when we try to multiply by = —1. The quarter-plane is not a subspace

Example 2 Include also the vectors whose components are both neghlibve we have
two quarter-planes. Requiremeii) (s satisfied; we can multiply by any. But rule ()
now fails. The sum oy = (2,3) andw = (—3,-2) is (—1, 1), which is outside the
guarter-planesTwo quarter-planes don’t make a subspace

Rules () and (i) involve vector additiorv + w and multiplication by scalars like
andd. The rules can be combined into a single requiremehe+ule for subspaces

A subspace containing and w must contain all linear combinationgv + d w.
Example 3  Inside the vector spadd of all 2 by 2 matrices, here are two subspaces:

a b

0 d

(U) All upper triangular matrice{ 0 d

] (D) All diagonal matrices[a 0 ]

Add any two matrices itJ, and the sum is itJ. Add diagonal matrices, and the sum is
diagonal. In this casB is also a subspace bf! The zero matrix alone is also a subspace,
whena, b, andd all equal zero.

For a smaller subspace of diagonal matrices, we could reguir d. The matrices are
multiples of the identity matrix{ . Thesex! form a “line of matrices” inM andU andD.

Is the matrix/ a subspace by itself ? Certainly not. Only the zero matriX¥asr mind
will invent more subspaces of 2 by 2 matrices—write them déwyriProblem 6.

The Column Space of A

The most important subspaces are tied directly to a matrixWe are trying to solve
Av = b. If A is not invertible, the system is solvable for somend not solvable for
otherd. We want to describe the good right sides-the vectors thatanbe written as4
timesv. Thoseb’s form the “column spackof A.

Remember thatlv is a combination of the columns df. To get every possiblg, we
use every possible. Start with the columns oft, andtake all their linear combinations.
This produces the column space df. It contains not just thea columns ofA4 !

DEFINITION The column space consists of all combinations of the columns

The combinations are all possible vectdrs. They fill the column spac€ (A4).

This column space is crucial to the whole book, and here is VibysolveAv = b is
to expres® as a combination of the columns. The right sidehas to be in the column
spaceproduced by4 on the left side. 1® is notinC (A4), Av = b has no solution.
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The systemdv = b is solvable if and only ifs is in the column space ofd.

Whenb is in the column space, it is a combination of the columns. ddedficients in that
combination give us a solutianto the systendv = b.

Supposed is anm by n matrix. Its columns have: components (nok). So the
columns belong t&R™. The column space ofd is a subspace oR™ (not R"). The set
of all column combinationgix satisfies rulesif and (i) for a subspace: When we add
linear combinations or multiply by scalars, we still produwmombinations of the columns.
The word “subspace” is always justifiéy taking all linear combinations

Here is a 3 by 2 matrixd, whose column space is a subspacBRdf The column space
of A is a plane in Figure 5.2.

1 0
0 A=14 3
3 2 3
1 0
b=v |4 +v2|3
2 3

Plane= C(A) = all vectorsdv

Figure 5.2: The column spac€ (A4) is a plane containing the two columns df.
Av = b is solvable wher is on that plane. Theh is a combination of the columns.

We drew one particulad (a combination of the columns). This= Awv lies on the plane.
The plane has zero thickness, so most right sidés R3 arenot in the column space.
For mosth there is no solution to our 3 equation2iminknowns.

Of course(0, 0, 0) is in the column space. The plane passes through the origereT
is certainly a solution tolv = 0. That solution, always available,is=

To repeat, the attainable right sidesire exactly the vectors in the column space. One
possibility is the first column itself—take; = 1 andv, = 0. Another combination is the
second column—take; = 0 andv, = 1. The new level of understanding is to saé
combinations—the whole subspace is generated by thosealwmos.

Notation The column space of is denoted byC (A). Start with the columns and take all
their linear combinations. We might get the wh&# or only a small subspace.
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Important Instead of columns iflR™, we could start with any set of vectors in a vector
spaceV. To get a subspacgSof V, we takeall combinationof the vectors in that set :

S = setofvectors inV (Sis probablynota subspace)
SS = all combinations of vectors iB (SSis a subspace)

SS= allc¢;s1 + -+ cysy = the subspace of V'spanned” byS

WhenSis the set of columnsSSis the column space. When there is only one nonzero
vectorv in S, the subspacgSis the line throughv. AlwaysSSis the smallest subspace
containingS. This is a fundamental way to create subspaces and we will baieto it.

The subspace SS is the “span” of S, containing all combinatits of vectors in S

Example 4  Describe the column spaces (they are subspad@$)dbr these matrices :
1 0 1 2 1 2 3
1_[0 1] and A_[z 4} and B_[O 0 4].
Solution The column space df is thewhole spacdR?. Every vector is a combination of
the columns off . In vector space languag€,(/) equalsR?.

The column space of is only a line. The second colungg, 4) is a multiple of the first
column(1,2). Those vectors are different, but our eye is on vesfmaces The column
space containél, 2) and(2, 4) and all other vectorée, 2¢) along that line. The equation
Av = b is only solvable whem is on the line.

For the third matrix (with three columns) the column spéueB) is all of R?. Everyb
is attainable. The vectdr = (5, 4) is column 2 plus column 3, smcan be(0, 1, 1). The
same vecto(5, 4) is also 2(column 1} column 3, so another possihléds (2,0, 1). This

matrix has the same column spacd asanyb is allowed. But now has extra components
andAv = b has more solutions—more combinations that dive

The next section creates timellspaceN (A4), to describe all the solutions ofv = 0.
This section created the column sp#&cted), to describe all the attainable right sides

B REVIEW OF THE KEY IDEAS =

. R" contains all column vectors with real components.
. M (2 by 2 matrices) and (functions) and (zero vector alone) are vector spaces.

. A subspace containing andw must contain all their combinatior® + d w.

A W N P

. The combinations of the columns daf form the column spaceC (4). Then the
column space is “spanned” by the columns.
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5. Av = b has a solution exactly whehnis in the column space of.

® WORKED EXAMPLES =

5.1 A We are given three different vectabs, b,, b3. Construct a matrix so that the
equationsdv = b; andAv = b, are solvable, bulv = b3 is notsolvable. How can you
decide if this is possible ? How could you constrdc?

Solution We want to haveh; andb, in the column space ofl. ThenAv = b; and
Av = b, will be solvable.The quickest way is to malke and b, the two columns oAl.
Then the solutions are = (1,0) andv = (0, 1).

Also, we don't wantdv = b3 to be solvable. So don't make the column space any
larger! Keeping only the columns; andb,, the question is Do we already havé; ?

Is Av = [ by b, } [ 51 } = b3 solvable? 195 a combination ob; andb, ?
2

If the answer isno, we have the desired matrix. If b3 is a combination ofh; andb,,
then it isnot possibldo construct4. The column spac€ (A) will have to contairbs.

5.1B Describe a subspa&of each vector spacé, and then a subspa&Sof S.

V3 = all combinations of1,1,0,0) and(1,1,1,0) and(1,1,1,1)
V, = allvectorsv perpendicularte = (1,2,1), sou-v =0
V, = allsolutionsy(x) to the equation/*y /dx* = 0

Describe eacl two ways: (1)All combinations of ... (2) All solutions of.. ..

Solution V3 starts with three vectors. A subsp&eomes from all combinations of the
first two vectorq1, 1,0,0) and(1, 1, 1,0). A subspac&Sof S comes from all multiples
(c,c,0,0) of the first vector. So many possibilities.

A subspaces of V, is the line through(l,—1,1). This line is perpendicular ta.
The zero vectot = (0,0,0) isin S. The smallest subspa&Sis Z.

V4 contains all cubic polynomialg = a + bx + cx? + dx3, with d*y/dx* = 0.
The quadratic polynomials (without ari term) give a subspac® The linear polynomials
are one choice S The constants = a could beSSS

In all three parts we could take= V itself, andSS = the zero subspacé.

EachV can be described @dl combinations of ... and asll solutions of. .. .:

V3 = all combinations of thé vectors V3 = all solutions ofv;y —v, =0.
V, = all combinations of1,0,—1) and(1,—1,1) V, = all solutions ofu - v =0.
V, = all combinations ofl, x, x2, x3 V,4 = all solutions tod*y /dx* = 0.
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Problem Set 5.1

Questions 1-10 are about the “subspace requirements”» + w and cv (and then all
linear combinationscv + d w) stay in the subspace.

1 One requirement can be met while the other fails. Show thignoyng

(a) A set of vectors ifR? for whichv + w stays in the set bu}v may be outside.
(b) A set of vectors irR? (other than two quarter-planes) for which evewystays
in the set bub + w may be outside.
2 Which of the following subsets d®3 are actually subspaces ?

(a) The plane of vector®,, b,, b3) with b; = b,.

(b) The plane of vectors with; = 1.

(c) The vectors wittb,b,b3 = 0.

(d) All linear combinations ob = (1,4,0) andw = (2,2, 2).
(e) All vectors that satisfyp, + b, + b3 = 0.

() All vectors withb, < by < bs.

3 Describe the smallest subspace of the matrix sphdtkat contains

1 0 0 1 1 1 1 0 1 0
(a)[o O]and[o 0} (b)[o 0] (c)[o O]and[o 1]
4 Let P be the plane iflR3 with equationx 4+ y — 2z = 4. The origin(0, 0, 0) is not in

P! Find two vectors inP and check that their sum is noth

5 Let Py be the plane througlD, 0, 0) parallel to the previous plarie. What is the
equation forPy ? Find two vectors ifPy and check that their sum is Py.

6  The subspaces &3 are planes, linefR? itself, orZ containing only(0, 0, 0).

(a) Describe the three types of subspaceRof
(b) Describe all subspacesDf the space ot by 2 diagonal matrices.

7 (a) Theintersection of two planes throu@ho, 0) is probably a butit could
be a .ltcan'tbez!
(b) The intersection of a plane throug, 0,0) with a line through(0, 0, 0) is
probably a but it could be a

() If SandT are subspaces d®>, prove that their intersectioB N T is a
subspace oR>. HereSN T consists of the vectors that lie in both subspaces.
Check the requirements a4 w andcw.

8 Supposeé® is a plane througko, 0, 0) andL is a line through0, 0, 0). The smallest
vector spac® + L containing bottP andL is either or
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9 (a) Show that the set dfivertiblematrices inM is not a subspace.
(b) Show that the set agfingularmatrices inM is not a subspace.

10 True or false (check addition in each case by an example):

(a) The symmetric matrices M (with AT = A4) form a subspace.
(b) The skew-symmetric matrices i (with AT = —A) form a subspace.
(c) The unsymmetric matrices M (with AT # A) form a subspace.

Questions 11-19 are about column spac&3(A) and the equation4dv = b.

11  Describe the column spaces (lines or planes) of these platimatrices :

oo~
owno
a
Il
o=
coo

1 2
A= 0 0 B =
0 0

12 For which right sides (find a condition dn, b,, b3) are these systems solvable ?

1 4 2 U1 b] 1 4 v bl
@] 2 8 4f|lv|=|b (b) 2 9 [vl} =| by
1 -4 2| vs bs —-1 —4 2 bs

13 Adding row 1 of 4 to row 2 produce®. Adding column 1 to column 2 producés
Which matrices have the same column space ? Which have therearspace?

1 3 1 3 1 4
Az[2 6} and Bz[3 9} and Cz[2 8]

14  For which vectorgb,, b,, b3) do these systems have a solution ?

1 1 1 X1 b] 1 1 1 X1 b]
01 1 X2 | = b2 and 0 1 1 X2 | = b2
0 0 1 X3 b3 0 0 O X3 b3

1 1 1 X1 b]

and 0 0 1 X2 = by

0 0 1 X3 b3

15 (Recommended) If we add an extra columto a matrix4, then the column space
gets larger unless . Give an example where the column space gets large
and an example where it doesn’t. Why i = b solvable exactly when the
column spaceloesn'tget larger ? Then it is the same fdrand[ 4 5 |.

16 The columns ofAB are combinations of the columns df. This means:The
column space ofi B is contained in(possibly equal to}he column space of.
Give an example where the column spaced @nd A B are not equal.
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17

18
19

20

21

22

23

24

25
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Supposedv = b andAw = b* are both solvable. Thedz = b + b* is solvable.
What isz ? This translates into: I andb™ are in the column spac€ (4), then
b+ b* is also inC (A).

If Ais any 5 by 5 invertible matrix, then its column spaceis . Why?

True or false (with a counterexample if false):

(a) The vector$ that are not in the column spac¢q A) form a subspace.
(b) If C(A) contains only the zero vector, thehis the zero matrix.

(c) The column space @f4 equals the column space df

(d) The column space of — I equals the column space df(test this).

Construct a 3 by 3 matrix whose column space contding, 0) and(1, 0, 1) but not
(1,1, 1). Construct 8 by 3 matrix whose column space is only a line.

If the 9 by 12 systemAwv = b is solvable for every, thenC (4) must be .
Challenge Problems

Suppos& andT are two subspaces of a vector specélhesum S+ T contains all
sumss + ¢ of a vectors in Sand a vector in T. ThenS+ T is a vector space.

If SandT are lines inR™, what is the difference betwee®+ T andSU T ?
That union contains all vectors fro®and all vectors fromT. Explain this state-
ment:The span ofSUTiSS+T.

If Sis the column space of andT is C(B), thenS + T is the column space of
what matrixM ? The columns o4 and B and M are all inR™. (I don’t think
A + B is always a correcM .)

Show that the matriced and [A AB] (this has extra columns) have the same
column space. But find a square matrix Witt{ 42) smaller thanC (A4).

An n by n matrix hasC (4) = R" exactly whend is an matrix.





