
Chapter 2

Second Order Equations

2.1 Second Derivatives in Science and Engineering

Second order equations involve the second derivatived 2y=dt2. Often this is shortened to
y00, and then the first derivative isy0. In physical problems,y0 can represent velocityv and
the second derivativey00 D a is acceleration: the ratedy 0=dt that velocity is changing.

The most important equation in dynamics is Newton’s Second Law F D ma.
Compare a second order equation to a first order equation, andallow them to be nonlinear :

First order y0 D f .t; y/ Second order y 00 D F.t; y; y0/ (1)

The second order equation needstwo initial conditions , normally y.0/ and y0.0/—
the initial velocity as well as the initial position. Then the equation tells usy 00.0/ and
the movement begins.

When you press the gas pedal, that produces acceleration. The brake pedal also brings
acceleration but it isnegative(the velocity decreases). The steering wheel produces
acceleration too ! Steering changes the direction of velocity, not the speed.

Right now we stay with straight line motion and one–dimensional problems :

d2y

dt2
> 0 (speeding up)

d2y

dt2
< 0 (slowing down):

The graph ofy.t/ bends upwards fory00 > 0 (the right word isconvex). Then the
velocity y 0 (slope of the graph) is increasing. The graph bends downwards for y00 < 0

(concave). Figure 2.1 shows the graph ofy D sin t, when the acceleration isa D
d 2y=dt2 D � sin t . The important equationy 00 D �y leads to sint and cost .

Notice how the velocitydy=dt (slope of the graph) changes sign in between zeros ofy.
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y

� 2� 3� t
v D 0

y D sin t

y 00 D � sin t
y 0 D cost

a D y 00 > 0

v D y 0 < 0

y is going down and bending up

Figure 2.1:y00 > 0 means that velocityy 0 (or slope) increases. The curve bends upward.

The best examples ofF D ma come when the forceF is �ky, a constantk times
the “position” or “displacement”y.t/. This produces the oscillation equation.

Fundamental equation of mechanics m
d2y

dt2
C ky D 0 (2)

Think of a mass hanging at the bottom of a spring (Figure 2.2).The top of the spring
is fixed, and the spring will stretch. Now stretch it a little more (move the mass downward
by y.0/) and let go. The spring pulls back on the mass. Hooke’s Law says that the force is
F D �ky, proportional to the stretching distancey. Hooke’s constant isk.

The mass will oscillate up and down. The oscillation goes on forever, because equation
(2) does not include any friction (damping termb dy=dt). The oscillation is a perfect
cosine, withy D cos!t and! D

p
k=m, because the second derivative has to produce

k=m to matchy 00 D �.k=m/y.

Oscillation at frequency ! D
r

k

m
y D y.0/ cos

 r
k

m
t

!
: (3)

At time t D 0, this shows the extra stretchingy.0/. The derivative of cos!t has a factor
! D

p
k=m. The second derivativey 00 has the required!2 D k=m, somy 00 D �ky.

The movement of one spring and one mass is especially simple.There is only one fre-
quency!. When we connectN masses by a line of springs there will beN frequencies—
then Chapter 6 has to study the eigenvalues ofN by N matrices.

m
d2y

dt2
D �ky
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m y > 0 y00 < 0 spring pulls up

y < 0 y00 > 0
spring pushes down

y

..................
................................
..............

......................

......................
......................
......................

............................
.... ............................
....

...............

m

Figure 2.2: Largerk D stiffer springD faster!. Largerm D heavier massD slower!.
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Initial Velocity y 0.0/

Second order equations havetwo initial conditions. The motion starts in an initial position
y.0/, and its initial velocity isy0.0/. We need bothy.0/ andy0.0/ to determine the two
constantsc1 andc2 in the complete solution tomy00 C ky D 0 :

“Simple harmonic motion” y D c1 cos

 r
k

m
t

!
C c2 sin

 r
k

m
t

!
: (4)

Up to now the motion has started from rest (y0.0/ D 0, no initial velocity). Thenc1 is
y.0/ andc2 is zero : only cosines. As soon as we allow an initial velocity, the sine solution
y D c2 sin !t must be included. But its coefficientc2 is not justy0.0/.

At t D 0;
dy

dt
D c2 ! cos!t matches y0.0/ when c2 D

y 0.0/

!
: (5)

The original solutiony D y.0/ cos!t matchedy.0/, with zero velocity att D 0. The
new solutiony D .y0.0/=!/ sin !t has the right initial velocity and it starts from zero.
When we combine those two solutions,y.t/ matches both conditionsy.0/ andy0.0/ :

Unforced oscillation y.t/ D y.0/ cos!t C y 0.0/

!
sin!t with ! D

r
k

m
: (6)

With a trigonometric identity, I can combine those two terms(cosine and sine) into one.

Cosine with Phase Shift

We want to rewrite the solution (6) asy.t/ D R cos.!t � ˛/. The amplitude ofy.t/

will be the positive numberR. The phase shift or lag in this solution will be the angle˛.
By using the right identity for the cosine of!t � ˛, we match both cos!t and sin!t :

R cos.!t � ˛/ D R cos!t cos˛ CR sin !t sin ˛: (7)

This combination of cos!t and sin!t agrees with the solution (6) if

R cos˛ D y.0/ and R sin ˛ D y0.0/

!
: (8)

Squaring those equations and adding will produceR2 :

Amplitude R R2 D R2.cos2 ˛ C sin2 ˛/ D .y.0//2 C
�

y0.0/

!

�2

: (9)

The ratio of the equations (8) will produce the tangent of˛ :

Phase lag̨ tan ˛ D R sin ˛

R cos˛
D y0.0/

! y.0/
: (10)

Problem 14 will discuss the anglęwe should choose, since different angles can have the
same tangent. The tangent is the same if˛ is increased by� or any multiple of�.

The pure cosine solution that started fromy0.0/ D 0 hasno phase shift: ˛ D 0.
Then the new formy.t/ D R cos.!t � ˛/ is the same as the old formy.0/ cos!t .
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Frequency ! or f

If the time t is measured inseconds, the frequency! is in radians per second.
Then!t is in radians—it is an angle and cos!t is its cosine. But not everyone thinks
naturally about radians. Complete cycles are easier to visualize. So frequency is also mea-
sured incycles per second. A typical frequency in your home isf D 60 cycles per second.
One cycle per second is usually shortened tof D 1 Hertz. A complete cycle is2� radians,
sof D 60 Hertz is the same frequency as! D 120� radians per second.

Theperiod is the timeT for one complete cycle. ThusT D 1=f . This is the only page
wheref is a frequency—on all other pagesf .t/ is the driving function.

Frequency ! D 2�f Period T D 1

f
D 2�

!
:

T D 1

f
D 2�

!

y D A cos!t

D A cos

r
k

m
t f D !

2�
! D

r
k

m

A A

t D 0 t D T time

Figure 2.3: Simple harmonic motiony D A cos!t : amplitudeA and frequency!.

Harmonic Motion and Circular Motion

Harmonic motion is up and down (or side to side).When a point is in circular motion,
its projections on thex and y axes are in harmonic motion. Those motions are closely
related, which is why a piston going up and down can produce circular motion of a flywheel.
The harmonic motion “speeds up in the middle and slows down atthe ends” while the
point moves with constant speed around the circle.

cos!t

ei!t
sin !t

1�1
0 �

!
2�
!

t

1 x D cos!t

0 �
!

2�
!

t

y D sin!t

Figure 2.4: Steady motion around a circle produces cosine and sine motion along the axes.
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Response Functions

I want to introduce some important words. Theresponseis the outputy.t/. Up to now
the only inputs were the initial valuesy.0/ andy 0.0/. In this casey.t/ would be theinitial
value response(but I have never seen those words). When we only see a few cycles of the
motion, initial values make a big difference. In the long run, what counts is the response to
a forcing functionlike f D cos!t .

Now ! is thedriving frequency on the right hand side, where thenatural frequency
!n D

p
k=m is decided by the left hand side :! comes fromyp , !n comes fromyn.

When the motion is driven by cos!t , a particular solution isyp D Y cos!t :

Forced motionyp.t/

at frequency!
my 00 C ky D cos!t yp.t/ D 1

k �m!2
cos!t: (11)

To find yp.t/, I put Y cos!t into my 00 C ky and the result was.k � m!2/Y cos!t .
This matches the driving function cos!t whenY D 1=.k �m!2/.

The initial conditions are nowhere in equation (11). Those conditions contribute the
null solutionyn, which oscillates at the natural frequency!n D

p
k=m. Thenk D m!2

n.

If I replace k by m!2
n in the responseyp.t/, I see!2

n � !2 in the denominator :

Response to cos!t yp.t/ D 1

m
�
!2

n �!2
� cos!t. (12)

Our equationmy 00 C ky D cos!t has no damping term. That will come in Section 2.3.
It will produce a phase shift̨ . Damping will also reduce the amplitudejY.!/j. The
amplitude is all we are seeing here inY.!/ cos!t :

Frequency response Y.!/ D 1

k �m!2
D 1

m
�
!2

n � !2
� : (13)

The mass and spring, or the inductance and capacitance, decide the natural frequency
!n. The response to a driving term cos!t (or ei!t ) is multiplication by the frequency
responseY.!/. The formula changes when! D !n—we will study resonance!

With damping in Section 2.3, the frequency responseY.!/ will be a complex num-
ber. We can’t escape complex arithmetic and we don’t want to.The magnitudejY.!/j
will give the magnitude response(or amplitude response). The angle� in the complex
plane will decide thephase response(then˛ D �� because we measure the phase lag).

The response isY.!/ei!t to f .t/ D ei!t and the response isg.t/ to f .t/ D ı.t/.
These show the frequency responseY from equation (13) and the impulse responseg from
equation (15).Yei!t andg.t/ are the two key solutions tomy 00 C ky D f .t/.
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Impulse Response = Fundamental Solution

The most important solution to a linear differential equation will be calledg.t/. In math-
ematicsg is the fundamental solution. In engineeringg is the impulse response. It is
a particular solution when the right sidef .t/ D ı.t/ is an impulse (a delta function).

The sameg.t/ solvesmg 00 C kg D 0 when the initial velocity isg 0.0/ D 1=m.

Fundamental solution mg 00 C kg D ı.t/ with zero initial conditions (14)

Null solution also g.t/ D sin!nt

m!n

hasg.0/D0 and g 0.0/D 1

m
: (15)

To find that null solution, I just put its initial values0 and 1=m into equation (6).
The cosine term disappeared becauseg.0/ D 0.

I will show that those two problems give the same answer. Thenthis whole chapter will
show whyg.t/ is so important. For first order equationsy 0 D ay C q in Chapter 1,
the fundamental solution (impulse response, growth factor) wasg.t/ D eat . The first two
names were not used, but you saw howeat dominated that whole chapter.

I will first explain the responseg.t/ in physical language.We strike the mass and
it starts to move. All our force is acting at one instant of time :an impulse. A finite
force within one moment is impossible for an ordinary function, only possible for a delta
function. Remember that the integral ofı.t/ jumps to1 when we pass the pointt D 0.

If we integratemg 00 D ı.t/, nothing happens beforet D 0. In that instant, the integral
jumps to1. The integral of the left sidemg 00 is mg 0. Thenmg 0 D 1 instantly att D 0.
This givesg 0.0/ D 1=m. You see that computing with an impulseı.t/ needs some faith.

The point of g.t/ is that it solves the equation for any forcing functionf .t/ :

my 00 C ky D f .t/ has the particular solutiony.t/ D
tR

0

g.t � s/f .s/ ds. (16)

That was the key formula of Chapter 1, wheng.t � s/ wasea.t�s/ and the equation was
first order. Section 2.3 will findg.t/ when the differential equation includes damping.
The coefficients in the equation will stay constant, to allowa neat formula forg.t/.

You may feel uncertain about working with delta functions—ameans to an end.
We will verify this final solutiony.t/ in three different ways :

1 Substitutey.t/ from (16) directly into the differential equation (Problem21)

2 Solve fory.t/ by variation of parameters (Section 2.6)

3 Solve again by using the Laplace transformY.s/ (Section 2.7).



2.1. Second Derivatives in Science and Engineering 79

REVIEW OF THE KEY IDEAS

1. my 00Cky D 0 : A mass on a spring oscillates at the natural frequency!n D
p

k=m.

2. my 00 C ky D cos!t : This driving force producesyp D .cos!t/=m
�
!2

n � !2
�
.

3. There is resonance when!nD!. The solutionypD t sin!t includes a new factort .

4. mg 00Ckg D ı.t/ givesg.t/ D .sin!nt/=m!n D null solution withg 0.0/ D 1=m.

5. Fundamental solutiong : Every driving functionf givesy.t/ D
tR

0

g.t � s/f .s/ ds.

6. Frequency :! radians per second orf cycles per second (f Hertz). PeriodT D1=f .

Problem Set 2.1

1 Find a cosine and a sine that solved 2y=dt2 D �9y. This is a second order equation
so we expecttwo constantsC andD (from integrating twice) :

Simple harmonic motion y.t/ D C cos!t CD sin !t: What is! ‹

If the system starts from rest (this meansdy=dt D 0 at t D 0), which constantC or
D will be zero ?

2 In Problem 1, whichC andD will give the starting valuesy.0/ D 0 andy0.0/ D 1 ?

3 Draw Figure 2.3 to show simple harmonic motiony D A cos.!t � ˛/ with phases
˛ D �=3 and˛ D ��=2.

4 Suppose the circle in Figure 2.4 has radius3 and circular frequencyf D 60 Hertz.
If the moving point starts at the angle�45ı, find its x-coordinateA cos.!t � ˛/.
The phase lag is̨ D 45ı. When does the point first hit thex axis ?

5 If you drive at60 miles per hour on a circular track with radiusR D 3 miles, what
is the timeT for one complete circuit ? Your circular frequency isf D and
your angular frequency is! D (with what units ?). The period isT .

6 The total energyE in the oscillating spring-mass system is

E D kinetic energy in massC potential energy in springD m

2

�
dy

dt

�2

C k

2
y2:

ComputeE wheny D C cos!t CD sin !t . The energy is constant !

7 Another way to show that the total energyE is constant :

Multiply my 00 C ky D 0 by y 0: Then integratemy 0y 00 and kyy 0:
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8 A forced oscillationhas another term in the equation and in the solution :

d 2y

dt2
C 4y D F cos!t has y D C cos2t CD sin 2t C A cos!t:

(a) Substitutey into the equation to see howC andD disappear (they giveyn).
Find the forced amplitudeA in the particular solutionyp D A cos!t .

(b) In case! D 2 (forcing frequencyD natural frequency), what answer does
your formula give forA ? The solution formula fory breaks down in this case.

9 Following Problem8, write down the complete solutionyn C yp to the equation

m
d 2y

dt2
C ky D F cos!t with ! ¤ !n D

p
k=m (no resonance):

The answery has free constantsC andD to matchy.0/ andy0.0/ (A is fixedby F ).

10 Suppose Newton’s LawF D ma has the forceF in thesamedirection asa :

my 00 D C ky including y 00 D 4y:

Find two possible choices ofs in the exponential solutionsy D est . The solution is
not sinusoidal ands is real and the oscillations are gone. Nowy is unstable.

11 Here is afourth orderequation :d 4y=dt4 D 16y. Find four values ofs that give
exponential solutionsy D est . You could expect four initial conditions ony :
y.0/ is given along with what three other conditions ?

12 To find a particular solution toy 00 C 9y D ect , I would look for a multiple
yp.t/ D Yect of the forcing function. What is that numberY ? When does your
formula giveY D1 ? (Resonance needs a new formula forY .)

13 In a particular solutiony D Aei!t to y00 C 9y D ei!t , what is the amplitudeA ?
The formula blows up when the forcing frequency! D what natural frequency?

14 Equation (10) says that the tangent of the phase angle is tan˛ D y0.0/=!y.0/.
First, check that tan̨ is dimensionless wheny is in meters and time is in seconds.
Next, if that ratio is tan̨ D 1, should you choosę D �=4 or ˛ D 5�=4 ?
Answer :

Separately you wantR cos˛ D y.0/ and R sin˛ D y 0.0/=!:

If those right hand sides are positive, choose the angle˛ between0 and�=2.
If those right hand sides are negative, add� and choosę D 5�=4.

Question: If y.0/ > 0 andy0.0/ < 0, does˛ fall between�=2 and� or between
3�=2 and2� ? If you plot the vector from.0; 0/ to .y.0/; y 0.0/=!/, its angle is̨ .
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15 Find a point on the sine curve in Figure 2.1 wherey > 0 but v D y0 < 0 and also
a D y00 < 0. The curve is sloping down and bending down.

Find a point wherey < 0 but y0 > 0 andy00 > 0. The point is below thex-axis but
the curve is sloping and bending .

16 (a) Solvey00 C 100y D 0 starting fromy.0/ D 1 andy0.0/ D 10. (This is yn.)

(b) Solvey00 C 100y D cos!t with y.0/ D 0 andy0.0/ D 0. (This can beyp.)

17 Find a particular solutionyp D R cos.!t � ˛/ to y00 C 100y D cos!t � sin!t .

18 Simple harmonic motion also comes from a linear pendulum (like a grandfather
clock). At timet , the height isA cos!t . What is the frequency! if the pendulum
comes back to the start after1 second ? The period does not depend on the amplitude
(a large clock or a small metronome or the movement in a watch can all haveT D 1).

19 If the phase lag is̨ , what is the time lag in graphing cos.!t � ˛/ ?

20 What is the responsey.t/ to a delayed impulse ifmy 00 C ky D ı.t � T / ?

21 (Good challenge) Show thaty D
tR

0

g.t � s/f .s/ ds has my 00 C ky D f .t/.

1 Why isy 0 D
tR

0

g 0.t � s/f .s/ ds C g.0/f .t/ ? Notice the twot ’s in y.

2 Usingg.0/ D 0, explain whyy 00 D
tR

0

g 00.t � s/f .s/ ds C g 0.0/f .t/.

3 Now useg 0.0/ D 1=m andmg 00 C kg D 0 to confirmmy 00 C ky D f .t/.

22 With f D 1 (direct current has! D 0) verify thatmy 00 C ky D 1 for thisy :

Step response y.t/ D
tZ

0

sin!n.t � s/

m!n

1 ds D ypCyn equals
1

k
� 1

k
cos!nt :

23 (Recommended) For the equationd 2y=dt2 D 0 find the null solution. Then for
d 2g=dt2 D ı.t/ find the fundamental solution (start the null solution withg.0/ D 0

andg 0.0/ D 1). Fory 00 D f .t/ find the particular solution using formula (16).

24 For the equationd 2y=dt2 D ei!t find a particular solutiony D Y.!/ei!t . Then
Y.!/ is the frequency response. Note the “resonance” when! D 0 with the null
solutionyn D 1.

25 Find a particular solutionYei!t to my 00 � ky D ei!t . The equation has�ky

instead ofky. What is the frequency responseY.!/ ? For which! is Y infinite ?


