Chapter 2

Second Order Equations

2.1 Second Derivatives in Science and Engineering

Second order equations involve the second derivatise/dt2. Often this is shortened to
y”, and then the first derivative is. In physical problemsy’ can represent velocity and
the second derivative” = a is acceleration: the ratedy’/d that velocity is changing.
The most important equation in dynamics is Newton’s Secomaav IF = ma.
Compare a second order equation to a first order equatiorgllEwdthem to be nonlinear:

Firstorder y' = f(t,y) Secondorder y” = F(t,y,y") (1)

The second order equation neem® initial conditions, normally y(0) and y’(0)—
the initial velocity as well as the initial position. Thenretlequation tells ug " (0) and
the movement begins.

When you press the gas pedal, that produces acceleratierbrake pedal also brings
acceleration but it imegative(the velocity decreases). The steering wheel produce:s
acceleration too! Steering changes the direction of viloeot the speed.

Right now we stay with straight line motion and one—dimenalgroblems::

d%y . d?y .
— >0 speeding u — <0 slowing down
—5 >0 (speeding up) 5 <0 (slowing down)

The graph ofy(r) bends upwards fop” > 0 (the right word isconve}. Then the
velocity y’ (slope of the graph) is increasing. The graph bends dowrsafardy” < 0
(concave. Figure 2.1 shows the graph of = sin¢, when the acceleration i =
d?y/dt?> = —sint. The important equation” = —y leads to sin and cos.

Notice how the velocityly /dt (slope of the graph) changes sign in between zergs of
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<’ -~ y’ = cost
y" = —sint y is going down and bending up
Figure 2.1:y” > 0 means that velocity ’ (or slope) increases. The curve bends upward.

The best examples af = ma come when the forcé' is —ky, a constank times
the “position” or “displacementy (¢). This produces the oscillation equation.

. . d?
Fundamental equation of mechanics m d_t;; +ky=0 2)

Think of a mass hanging at the bottom of a spring (Figure Z[Bg top of the spring
is fixed, and the spring will stretch. Now stretch it a littl@ra (move the mass downward
by y(0)) and let go. The spring pulls back on the mass. Hooke’s Law g&t the force is
F = —ky, proportional to the stretching distangeHooke’s constant i%.

The mass will oscillate up and down. The oscillation goesavavfer, because equation
(2) does not include any friction (damping tefmiy/dt). The oscillation is a perfect
cosine, withy = coswt andw = /k/m, because the second derivative has to produce
k/mto matchy” = —(k/m)y.

Oscillation at frequency w = ‘/ E y = y(0) cos <‘/Zt> 3)
m m

At time ¢ = 0, this shows the extra stretching0). The derivative of co®t has a factor
w = +/k/m. The second derivative” has the required? = k/m, somy” = —ky.

The movement of one spring and one mass is especially siffipkre is only one fre-
guencyw. When we connecV masses by a line of springs there will iyefrequencies—
then Chapter 6 has to study the eigenvalue§ dfy N matrices.

y<0 y">0
spring pushes down

y y >0 y” <0 spring pulls up

Figure 2.2: Largek = stiffer spring= fasterw. Largerm = heavier mass- slowerw.
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Initial Velocity y’(0)

Second order equations have initial conditions. The motion starts in an initial positio
y(0), and its initial velocity isy’(0). We need botty(0) andy’(0) to determine the two
constantg; andc, in the complete solution tary” + ky = 0:

[k [k
“Simple harmonic motion” y=c cos( — t) ) sin( — t) .4
m m

Up to now the motion has started from regt(0) = 0, no initial velocity). Therr; is
v(0) andc; is zero: only cosines. As soon as we allow an initial velqc¢hg sine solution
y = ¢ sin wt must be included. But its coefficieat is not justy’(0).

d (0
At =0, d_)t) = ¢, w coswt matches y'(0) when ¢z = At ). (5)
[0}

The original solutiory = y(0) coswt matchedy(0), with zero velocity at = 0. The
new solutiony = (y’(0)/w) sin wt has the right initial velocity and it starts from zero.
When we combine those two solutiongy) matches both conditions(0) andy’(0):

I '0) . . [k
Unforced oscillation  y () = y(0) cosw? + At )smwt with @ = ,/—. (6)
® m
With a trigonometric identity, | can combine those two terfossine and sine) into one.

Cosine with Phase Shift

We want to rewrite the solution (6) as(t) = R cos(wt — a). The amplitude ofy(¢)
will be the positive numbeR. The phase shift or lag in this solution will be the angle
By using the right identity for the cosine aft — «, we match both cosr and sinwt :

R coJwt —a) = R coswt CoSa + R sinwt sina. (7

This combination of cost and sinwt agrees with the solution (6) if

R cosa = y(0) and Rsiha = @ (8)
Squaring those equations and adding will prodRée
Amplitude R R? = R*(coS o + sifa) = (y(0))? + (#)2. (9)
The ratio of the equations (8) will produce the tangent of
Phase laga tana = Rsina _ y'(0 (10)

Rcosa  w y(0)
Problem 14 will discuss the anglewe should choose, since different angles can have the
same tangent. The tangent is the sameiff increased by or any multiple ofr.

The pure cosine solution that started frgii{0) = 0 hasno phase shift « = 0.
Then the new formy(t) = R cos(wt — «) is the same as the old form(0) cosw?.
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Frequency w or f

If the time ¢ is measured irseconds the frequencyw is in radians per second
Thenwt is in radians—it is an angle and cas is its cosine. But not everyone thinks
naturally about radians. Complete cycles are easier t@lizgi So frequency is also mea-
sured incycles per secondh typical frequency in your home ig = 60 cycles per second.
One cycle per second is usually shortenedfte= 1 Hertz. A complete cycle i2x radians,
so f = 60 Hertz is the same frequency @as= 120z radians per second

Theperiod is the timeT for one complete cycle. Thus = 1/f. This is the only page
where f is a frequency—on all other pag¢$t) is the driving function.

: 1 2
Frequency w=2xf Period T=—=22
f ®
1 27
I‘— = — = — >
f w
y = A coswt A
k k w
= A cos,/—t w=,= f=_—
m m 2

Figure 2.3: Simple harmonic motion= A coswt? : amplituded and frequencw.
Harmonic Motion and Circular Motion

Harmonic motion is up and down (or side to sidéYhen a point is in circular motion,
its projections on thex and y axes are in harmonic motion Those motions are closely
related, which is why a piston going up and down can produceler motion of a flywheel.
The harmonic motion “speeds up in the middle and slows dowtheends” while the
point moves with constant speed around the circle.

Figure 2.4: Steady motion around a circle produces cosidesizi@ motion along the axes.
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Response Functions

| want to introduce some important words. Tiesponseis the outputy (). Up to now
the only inputs were the initial valugg0) andy’(0). In this casey () would be thenitial
value responsébut | have never seen those words). When we only see a few<g€the
motion, initial values make a big difference. In the long,ruhat counts is the response to
aforcing functionlike f = coswt.

Now w is thedriving frequency on the right hand side, where thatural frequency
wp = /k/m is decided by the left hand sides comes fromy,, w, comes fromy,.

When the motion is driven by ces, a particular solution iy, = Y cosw? :

Forced motion y, ()

1
at frequency @ w2 coswt. (1)

my” +ky =coswt  y,(t) = Z

To find y,(¢), | put Y coswt into my” + ky and the result wagk — mw?)Y coswt.
This matches the driving function cag whenY = 1/(k — mw?).

The initial conditions are nowhere in equation (11). Thoseditions contribute the
null solutiony,, which oscillates at the natural frequengy = /k/m. Thenk = mw?.

If I replace k by mw? in the response,(t), | seew? — w? in the denominator:

1
Response to coet yp(t) = —— 5% COswft. (12)
m (s —w?)

Our equationny” + ky = coswt has no damping term. That will come in Section 2.3.
It will produce a phase shifz. Damping will also reduce the amplitud®(w)|. The
amplitude is all we are seeing hereliiw) coswt :

1 1
Frequency response Y(w) = = . (13)
k—mo? m(02-w?)

The mass and spring, or the inductance and capacitanceedbe natural frequency
wy. The response to a driving term aos (or ¢'®") is multiplication by the frequency
responsé’(w). The formula changes when= w,—we will study resonande

With damping in Section 2.3, the frequency respokige) will be a complex num-
ber. We can’t escape complex arithmetic and we don’t wanflioe magnituddY (w)|
will give the magnitude responsgor amplitude response). The andglén the complex
plane will decide thehase responséthenae = —6 because we measure the phase lag).
The response i¥ (w)e'®* to f(t) = ¢'®* and the response ig(t) to f(t) = §(¢).
These show the frequency respof’'skom equation (13) and the impulse respopdeom
equation (15)Ye’“! andg(¢) are the two key solutions tay” + ky = f(t).
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Impulse Response = Fundamental Solution

The most important solution to a linear differential eqoatwill be calledg(z). In math-

ematicsg is the fundamental solution In engineeringg is the impulse responselt is

a particular solution when the right sig&z) = §(¢) is an impulse (a delta function).
The same(¢) solvesmg” + kg = 0 when the initial velocity iz’ (0) = 1/m.

Fundamental solution  mg” + kg = §(¢t) with zero initial conditions (14)

Sinw,t

1
Null solution also gl) = hasg(0)=0and g’(0)=—. (15)
m

mey

To find that null solution, | just put its initial value® and 1/m into equation (6).
The cosine term disappeared becagi€p = 0.

I will show that those two problems give the same answer. Thisrwhole chapter will
show whyg(?) is so important. For first order equationd = ay + ¢ in Chapter 1,
the fundamental solution (impulse response, growth fagtas g () = ¢?*. The first two
names were not used, but you saw hdwdominated that whole chapter.

I will first explain the responsg(z) in physical language We strike the mass and
it starts to move All our force is acting at one instant of timean impulse A finite
force within one moment is impossible for an ordinary fuantionly possible for a delta
function. Remember that the integraldf) jumps tol when we pass the point= 0.

If we integratemg” = §(¢), nothing happens before= 0. In that instant, the integral
jumps tol. The integral of the left sideig” ismg’. Thenmg’ = 1 instantly atr = 0.
This givesg’(0) = 1/m. You see that computing with an impul8€) needs some faith.

The point of g(¢) is that it solves the equation for any forcing function f(¢) :

t
my” + ky = f(¢) has the particular solutiop(t) = [ g(t —s) f(s) ds. (16)
0

That was the key formula of Chapter 1, whe@t — s) wase??~) and the equation was
first order. Section 2.3 will fingz(z) when the differential equation includes damping.
The coefficients in the equation will stay constant, to allaweat formula forg(z).

You may feel uncertain about working with delta functions-+aans to an end.
We will verify this final solutiony (¢) in three different ways:

1 Substitutey(¢) from (16) directly into the differential equation (Proble&h)
2 Solve fory(t) by variation of parameters (Section 2.6)

3 Solve again by using the Laplace transfa¥i@) (Section 2.7).
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a A W N P

B REVIEW OF THE KEY IDEAS =

. my"” +ky = 0: Amass on a spring oscillates at the natural frequency: /k/m.

.my” + ky = coswt : This driving force produces, = (coswt)/m (w? — »?).

. There is resonance whexn = w. The solutiony, =t sinw? includes a new factor.

. mg" +kg = 8(t) givesg(t) = (Sinw,t)/mwy = null solution withg’(0) = 1/m.

. Fundamental solutiop : Every driving functionf givesy(t) = ftg(t —8) f(s)ds.
0

. Frequency w radians per second gt cycles per secondf(Hertz). Period’ =1/f.

Problem Set 2.1

Find a cosine and a sine that sol&y /dt> = —9y. This is a second order equation
S0 we expectwo constant€” and D (from integrating twice) :

Simple harmonic motion y() = C coswt + D sinwt. Whatisw?

If the system starts from rest (this meahs/dr = 0 atr = 0), which constanC or
D will be zero?

In Problem 1, whickC and D will give the starting values(0) = 0 andy’(0) = 1?

Draw Figure 2.3 to show simple harmonic motipn= A cos(wt — «) with phases
a =mn/3anda = —x/2.

Suppose the circle in Figure 2.4 has radiuand circular frequency’ = 60 Hertz.
If the moving point starts at the anglet5°, find its x-coordinated cos(wt — «).
The phase lag is = 45°. When does the point first hit theaxis ?

If you drive at60 miles per hour on a circular track with radis= 3 miles, what
is the timeT for one complete circuit? Your circular frequencyfis= and
your angular frequency is = (with what units ?). The period i&.

dy\>  k ,
2(E)+§y'

The total energyE in the oscillating spring-mass system is
E = kinetic energy in masg- potential energy in spring= n

ComputeE wheny = C coswt + D sin wt. The energy is constant!

Another way to show that the total energyis constant :

/

Multiply my” + ky =0 by y’. Thenintegratemy’y” and kyy’.
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A forced oscillation has another term in the equation and in the solution :

d? .
d—[f + 4y = F coswt has y = C cos2t + D sin2t + A coswt.
(a) Substitutey into the equation to see ho@ and D disappear (they give,).

Find the forced amplitudd in the particular solutiory, = A coswt.

(b) In casew = 2 (forcing frequency= natural frequency), what answer does
your formula give ford ? The solution formula foy breaks down in this case.

Following Problens, write down the complete solutioy), + y, to the equation
d?y .
mﬁ +ky = F coswt with w # w, = v/ k/m (noresonance)

The answep has free constants and D to matchy(0) andy’(0) (4 is fixedby F).

Suppose Newton'’s La = ma has the force” in thesamedirection as: :

my” =4ky including y” =4y.
Find two possible choices afin the exponential solutions = ¢%!. The solution is
not sinusoidal and is real and the oscillations are gone. Novis unstable.

Here is afourth orderequation:d*y/dt* = 16y. Findfour values ofs that give
exponential solutiony = e%’. You could expect four initial conditions on:
y(0) is given along with what three other conditions ?

To find a particular solution toy” + 9y = e, | would look for a multiple
yp(t) = Ye of the forcing function. What is that numb&r? When does your
formula giveY = oo ? (Resonance needs a new formulaifoy

In a particular solutiony = Ae’®* to y” + 9y = ¢'®*, what is the amplitudet ?
The formula blows up when the forcing frequeney= what natural frequency ?

Equation (10) says that the tangent of the phase angle 8 tany’(0)/wy(0).
First, check that tam is dimensionless when is in meters and time is in seconds.
Next, if that ratio is tame = 1, should you choose = 7/4 or @« = 57/47
Answer:

Separately you wantR cose = y(0) and R sine = y’(0)/w.

If those right hand sides are positive, choose the amdletweer) andn/2.
If those right hand sides are negative, addnd choose = 57/4.

Question If y(0) > 0 andy’(0) < 0, doesw fall betweenrz/2 andz or between
3m/2 and2x ? If you plot the vector fronf0, 0) to ((0), y'(0)/w), its angle isa.
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15 Find a point on the sine curve in Figure 2.1 where- 0 butv = y’ < 0 and also
a = y” < 0. The curve is sloping down and bending down.

Find a point wherey < 0 buty’ > 0 andy” > 0. The point is below the-axis but
the curve is sloping and bending .

16 (&) Solvey” 4+ 100y = 0 starting fromy(0) = 1 andy’(0) = 10. (This is y,.)
(b) Solvey” + 100y = coswt with y(0) = 0 andy’(0) = 0. (This can bey,.)
17  Find a particular solutiory, = Rcojwt — «) to y” + 100y = coswt — Sinwt.

18 Simple harmonic motion also comes from a linear penduluke (& grandfather
clock). At timez, the height isA coswt. What is the frequency if the pendulum
comes back to the start aftesecond ? The period does not depend on the amplituds
(alarge clock or a small metronome or the movement in a watotalt havel” = 1).

19 Ifthe phase lag ig, what is the time lag in graphing cest — ) ?
20 Whatis the responsg(t) to a delayed impulse iy + ky = §(t — T)?

t
21 (Good challenge) Showthat= [ g(r —s) f(s)ds hasmy” + ky = f(1).
0

t
1 Whyisy’ = [g'(t —s) f(s)ds + g(0) f(r) ? Notice the twa’s in y.
0

2 Usingg(0) = 0, explain whyy” = flg“(t —5)f(s)ds + g’(0) f(2).
0

3 Now useg’(0) = 1/m andmg” + kg = 0to confirmmy” + ky = f(z).

22 With £ = 1 (direct current has = 0) verify thatmy” + ky = 1 forthisy:

t
Sinwy (t — 1 1
Step response y(t) = / M lds =yp,+y, equals % COS® pt .
mawy
0

23 (Recommended) For the equatidiy/dt?> = 0 find the null solution. Then for
d?g/dt* = §(¢) find the fundamental solution (start the null solution wjit) = 0
andg’(0) = 1). Fory” = f(¢) find the particular solution using formula (16).

24 For the equatiom/?y/dt?> = '’ find a particular solutiory = Y(w)e’®’. Then
Y(w) is the frequency response. Note the “resonance” whesa 0 with the null
solutiony, = 1.

25 Find a particular solutior¥e’®* to my” — ky = ¢'®’. The equation has-ky
instead ofky. What is the frequency respon¥éw) ? For whichw is Y infinite ?



