2. (15 pts. T Sep 22) Suppose \(f \) is integrable on \([a, b]\) and \(g \) is a function on \([a, b]\) such that \(g(x) = f(x) \) for all except a finite number of \(x \in [a, b] \). Prove that \(g \) is integrable and
\[
\int_a^b f(x)dx = \int_a^b g(x)dx.
\]
Start by considering the case in which \(g \) differs from \(f \) at only one point, \(z \). Let \(s \) and \(t \) be step functions satisfying the Riemann Condition for some \(\varepsilon \in \mathbb{R}^+ \). Let \(P = \{x_0, \ldots, x_n\} \) be the partition for \(s \). Define a new step function \(\tilde{s} \) relative to the partition \(\tilde{P} = P \cup \{z\} \) with
\[
\tilde{s}(x) = \begin{cases}
 s(x) & \text{if } x \neq z \\
 g(z) & \text{if } x = z.
\end{cases}
\]
Clearly \(\tilde{s}(x) \leq g(x) \) on \([a, b]\). We can define a step function \(\tilde{t}(x) \) such that \(g(x) \leq \tilde{t}(x) \) in the same way. Since changing the value of a step function at one point does not change its integral, (see §1.12),
\[
\int_a^b \tilde{s}(x)dx = \int_a^b s(x)dx, \\
\int_a^b \tilde{t}(x)dx = \int_a^b t(x)dx,
\]

hence \(\int_a^b \tilde{t}(x) - \int_a^b \tilde{s}(x) \leq \varepsilon \). Therefore \(g \) is integrable and
\[
\int_a^b g(x)dx = \int_a^b f(x)dx.
\]
Now consider the case where \(g \) differs from \(f \) at \(n \) points, \(\{z_1, \ldots, z_n\} \), and assume that the statement holds for all functions that differ from \(f \) at \(n - 1 \) points. Define
\[
\tilde{g}(x) = \begin{cases}
 g(x) & \text{if } x \neq z_n \\
 f(x) & \text{if } x = z_n.
\end{cases}
\]
This function agrees with \(f \) at all but \(n - 1 \) points, hence \(\int_a^b \tilde{g} = \int_a^b f \). It differs from \(g \) at only one point, hence \(\int_a^b \tilde{g} = \int_a^b g \).

4. (20 pts. F Sep 25) Compute the following:

(b) \(\int_1^3 (3x^2 + 1)dx = \left(x^3 + x \right) \bigg|_1^3 = 30 - 2 = 28 \).

(c) \(\int_{-50}^{49} (x + 50)^{100}dx = \int_0^1 x^{100}dx = \frac{x^{101}}{101} \bigg|_0^1 = \frac{1}{101} \).
(d) \[\int_0^2 |(x-1)(3x-1)|. \] Define
\[
f(x) = \begin{cases}
(x-1)(3x-1) & \text{if } x \in [0, \frac{1}{3}] \cup [1, 2] \\
-(x-1)(3x-1) & \text{if } x \in [\frac{1}{3}, 1].
\end{cases}
\]
Then \(f(x) = |(x-1)(3x-1)| \) on \([0, 2]\). Therefore,
\[
\int_0^2 |(x-1)(3x-1)| \, dx = \int_0^2 f(x) \, dx
\]
\[
= \int_0^{\frac{1}{3}} (3x^2 - 4x + 1) \, dx - \int_1^{\frac{1}{3}} (3x^2 - 4x + 1) \, dx + \int_{\frac{1}{3}}^2 (3x^2 - 4x + 1) \, dx.
\]
Let \(g(x) = x^3 - 2x^2 + x \). Then the above integral becomes
\[
g\left(\frac{1}{3}\right) - g(0) - g(1) + g\left(\frac{1}{3}\right) + g(2) - g(1) = 2g\left(\frac{1}{3}\right) - 2g(1) - g(0) + g(2).
\]

5. (10 pts.) Denote by \(r \) the radius of the sphere. Then the volume of the napkin holder is
\[
2 \int_0^h \pi (\sqrt{r^2 - x^2})^2 \, dx - 2 \int_0^h \pi (\sqrt{r^2 - h^2})^2 \, dx
\]
(the first integral is the volume of the sphere with the left and right ends cut off; the second integral is the volume of the inner cylinder). Simplifying gives
\[
2\pi r^2 h - \frac{2}{3} \pi h^3 - 2\pi r^2 h + 2\pi h^3 = \frac{4}{3} \pi h^3.
\]

Bonus. Find a sequence of functions \(q_n \) and a function \(q \), on \([0, 1]\), such that

(a) The \(q_n \)'s “approach” \(q \) as \(n \) gets large. More precisely, for all \(x \in [0, 1] \) there exists \(N \in \mathbb{Z}^+ \) such that \(q_n(x) = q(x) \) for all \(n > N \).

(b) \(q_n \) is integrable on \([0, 1]\).

(c) \(q \) is not integrable on \([0, 1]\).

Define \(q(x) \) as suggested by the hint.

Since the rationals are countable, so are the rationals that lie on the unit interval. We therefore have a bijection from \(\mathbb{N} \) to \(\mathbb{Q} \); denote by \(r_n \) the image of \(n \). Then \(\mathbb{Q} \cap [0, 1] = \{r_1, r_2, r_3, \ldots\} \). Define
\[
q_n(x) = \begin{cases}
1 & \text{if } x \in \{r_1, \ldots, r_n\} \\
0 & \text{otherwise}.
\end{cases}
\]

We now prove that \(q_n \) and \(q \) satisfy the above conditions.

(a) We find for each \(x \in [0, 1]\) an \(N \) satisfying the above condition.

Case 1 If \(x \) is irrational, then \(q_n(x) = q(x) \) for all \(n \in \mathbb{N} \) (hence \(N = 0 \)).

Case 2 Suppose that \(x \) is rational. Then \(x = r_N \) for some \(N \in \mathbb{N} \), and
\[
q_n(r_N) = 1 = q(r_N) \quad \text{for all } n \geq N.
\]

(b) Each \(q_n \) differs from the function \(f(x) = 0 \) at a finite number of points and is therefore integrable.

(c) We saw on Practice Exam 1 that \(q \) is not integrable.