Many of the solutions to these problems are in the back of the book. You may check your work there. However, do not look at a solution until you have done the problem.

0. (0 pts. T Oct 20) Read 4.1-4.9. Skim if you already know this stuff.

1. (10 pts. T Oct 20) Do the following problems from Apostol §4.9.
 (a) (3 pts. each) #4, #10. Exercise 10 fails when \(c \leq 0 \). Explain why.
 (b) (3 pts. each) #15, #16. For 16a, just derive the formula for a product.

2. (12 pts. T Oct 20) We saw in class that the derivative of a constant function is always 0. Prove the converse, i.e. that if \(f'(x) = 0 \), then \(f(x) = c \), for some \(c \in \mathbb{R} \). This problem is harder than it looks - if you need a hint, go to http://math.mit.edu/~gracelyo/18014/PSets/hints.html.

3. (12 pts. R Oct 22) Do the following problems from Apostol §4.6
 (a) (2 pts. each) #2, #9, #23
 (b) (2 pts.) Compute the derivative of \(f(x) = \sin(2009) \).
 (c) (4 pts. each) #24, #38. Let \(f(x) \) be the solution to 38a. In 38b, write your solution in terms of \(f(x) \) and \(f'(x) \) (do not compute \(f'(x) \)).

4. (10 pts. R Oct 22) Do the following problems from Apostol §4.12
 (a) (2 pts.) #16
 (b) (2 pts. each) #19a, #19d
 (c) (4 pts.) #30

Bonus. Suppose that \(f \) is continuous on \([a, b]\) and \(f^{(n)} \) is differentiable on \([a, b]\) for all \(n \leq p + q \) (i.e. the \((p + q + 1)\)st derivative of \(f \) exists). If

\[
\begin{align*}
f(a) &= f'(a) = \ldots = f^{(p)}(a) = 0 \\
f(b) &= f'(b) = \ldots = f^{(q)}(b) = 0,
\end{align*}
\]

then there is some \(c \in (a, b) \) such that \(f^{(p+q+1)}(c) = 0 \). Prove that this is true when \(p = 1 \) and \(q = 2 \).